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Presheaf and sheaf models of type theory

Goal of the talk

I am going to present some models of univalent type theory

These models can be used to extract some proof theoretic informations on
this formal system

-what is its proof theoretic strength?

-consistency of the notion of higher inductive types?

-independence results, e.g. countable choice cannot be proved

-consistency results, e.g. consistency with Brouwer’s fan theorem
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Presheaf and sheaf models of type theory

Goal of this talk

The first part (proof theoretic power) is part of joint work with

Simon Huber, Marc Bezem, Anders Mörtberg, Cyril Cohen

with contributions from Dan Licata, Ian Orton, Andy Pitts, Nicola Gambino,
Christian Sattler

The second part (sheaf models) is work in progress, from several discussions
with Christian Sattler and previous joint work with Bassel Mannaa and Fabian
Ruch
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Presheaf and sheaf models of type theory

Univalent type theory

These models will be “inner” models inside suitable presheaf models of type
theory (inspired from Voevodsky’s simplicial set model)

For suitable base category, we can then consider further internal models, which
can be seen as sheaf models for type theory

These models can be seen as generalization of sheaf models for simple type
theory

Sheaf models for simple type theory used for independence or consistency
results can in this way be extended to univalent type theory

All these definitions will take place in a constructive set theory known to have
the same proof theoretic strength as dependent type theory
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Presheaf and sheaf models of type theory

Basic type theory

Π(x ∶ A)B and Σ(x ∶ A)B given a family of types B over x ∶ A

Special case: A→ B and A ×B (if B is a constant family)

Inductive data types: boolean, natural numbers N , lists (finitary) and ordinal
notations, W (x ∶ A)B (infinitary)

Use propositions-as-types to express logical operations
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Presheaf and sheaf models of type theory

Universes and Identity types

One needs to add two notions to these basic operations

(1) universes

(2) identity types or (maybe better?) identification types

One also adds two new principles

-univalence axiom

-propositional truncation
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Presheaf and sheaf models of type theory

Universes

By analogy with the notion of Grothendieck universes, one adds types
U0, U1, U2, . . . with the rules

A is a type if A ∶ Uk

A ∶ Uk+1 if A ∶ Uk

Uk ∶ Uk+1

Π(x ∶ A)B ∶ Uk if A ∶ Uk and B ∶ Uk (x ∶ A)

Σ(x ∶ A)B ∶ Uk if A ∶ Uk and B ∶ Uk (x ∶ A)
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Presheaf and sheaf models of type theory

Universes

This is used to represent collection of structures

E.g. Σ(X ∶ U0)X × (X →X) collection of small types with one constant and
one unary function
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Presheaf and sheaf models of type theory

Universes

There are remarkable mutual interpretation of this type theory with extensions
of CZF, using the representation of sets-as-trees

CZF+u<ω = CZF + REA + a cumulative sequence of inaccessible sets

On relating type theories and set theories

Peter Aczel, Proceedings of TYPES 1998, pp. 1-18
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Presheaf and sheaf models of type theory

Identification types

If we want to express the collection of all small rings, or all small groups we
need a notion of equality

Id A a0 a1 type of possible identifications of a0 and a1

Using this notion, we can introduce Voevodsky’s stratification

isProp A is Π(a0 a1 ∶ A) Id A a0 a1

isSet A is Π(a0 a1 ∶ A) isProp (Id A a0 a1)

isGroupoid A is Π(a0 a1 ∶ A) isSet (Id A a0 a1)
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Presheaf and sheaf models of type theory

Identification types

The type of small semigroups will be

G = Σ(X ∶ U0)(Σ(f ∶X →X →X) A(X,f)) × isSet X

where

A(X,f) = Π(x0 x1 x2 ∶X)Id X (f x0 (f x1 x2)) (f (f x0 x1) x2)

One can prove G ∶ U1

An element of this type is an object of the form (X, (f, q), p) where X ∶ U0

and p is a proof that X is a set and f a binary operation and q is a proof that
this operation is associative
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Presheaf and sheaf models of type theory

Identification types

One would expect A(X,f) to be a proposition and G to be a groupoid

An element of Id G (X0, (f0, q0), p0) (X1, (f1, q1), p1) should represent an
isomorphism between the semigroups X0 and X1

This holds, but only as a consequence of the univalence axiom
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Presheaf and sheaf models of type theory

Univalence axiom

For f ∶ A→ B and b ∶ B define Fiber(f, b) = Σ(a ∶ A)Id B b (f a) and

isEquiv(f) = Π(b ∶ B)isContr Fiber(f, b)

where

isContr T = T × isProp T

and then Equiv A B = Σ(f ∶ A→ B)isEquiv(f)

The Univalence Axiom can be stated as

the canonical map Id Uk A B → Equiv A B is an equivalence
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Presheaf and sheaf models of type theory

Univalence axiom

How does it compare to simple type theory as formulated by Church?

In simple type theory, we cannot express the notion of arbitrary structures
that we can express using universes

The univalence axiom can be seen as a generalization of Church’s extensionality
principle for propositions: two equivalent propositions are equal

It also can be seen as providing an “explanation” of what should be the notion
of identification for universes: it should be given by equivalences
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Presheaf and sheaf models of type theory

Identification and transport

These notions were analysed in Bourbaki

Théorie des Ensembles, Chapitre 4, Structures (1957)

The discovery of isomorphisms between seemingly different structures and
the fact that we can transport results/notions from one structure to another
corresponds often to key steps in mathematics

This has been refined with the notion of equivalences
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Presheaf and sheaf models of type theory

Propositional truncation

Operation ∥A∥ on types

isProp ∥A∥

A→ ∥A∥

((A→ B) × isProp B)→ (∥A∥→ B)

∥A∥ expresses that A is inhabited

We can introduce new quantification ∃(x ∶ A)B defined as ∥Σ(x ∶ A)B∥
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Presheaf and sheaf models of type theory

Countable choice

Π(A ∶ N → U0) (Π(n ∶ N) ∥A n∥)→ ∥Π(n ∶ N)A n∥

If we take A n of the form Σ(y ∶ B)R(n, y) we get

(Π(n ∶ N)∃(y ∶ B)R(n, y))→ ∃(f ∶ N → B)Π(n ∶ N)R(n, f(n))

which is a way to express countable choice

We can build a model with a particular family A where

-the hypothesis Π(n ∶ N) ∥A n∥ holds

-the conclusion ∥Π(n ∶ N)A n∥ does not hold
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Presheaf and sheaf models of type theory

Univalence axiom and propositional truncation

One gets a formal system with notations and concepts appropriate for
representing some abstract notions used in mathematics

Expresses some general laws of the notion of identification coming from
mathematical practice (Voevodsky)

E.g. representation of additive/abelian categories, category of complexes of an
additive category, homotopy of complexes, triangulated categories (Tomi Pannila)

Is it consistent to add these new operations to type theory?
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Presheaf and sheaf models of type theory

Simplicial set model

For interpreting one univalent universe: requires ZFC + two Grothendieck
universes

Natural question: can one modify this model so that it can be expressed in a
weaker formal system?
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Presheaf and sheaf models of type theory

Models of identification type and univalence

The only known models (so far) rely in an essential way on ideas coming from
homotopy theory, interpreting the type of identifications as a type of paths

Grothendieck’s intuition that the laws underlying the notion of identifications
in mathematics are similar to the laws underlying homotopy theory

Awodey-Warren’s homotopic interpretation of the laws of identity type
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Presheaf and sheaf models of type theory

Models of identification type and univalence

-definition of presheaf models of type theory

-we assume that there is a special presheaf I which will play the role of an
interval

-using the interval we can isolate the types having a refined form of the path
lifting property (which has been isolated in homotopy theory)

-the types having this extension property form a model of type theory
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Presheaf and sheaf models of type theory

Models of identification type and univalence

How does it compare with Gandy and Takeuti’s model of extensionality
principles in simple type theory?

R. Gandy On axiomatic systems in mathematics and theories in physics PhD
thesis, University of Cambridge, 1953

Internal model: defines a relation by induction on the types (logical relation)

Proves by induction on the type that this is an equivalence relation

The first step corresponds to the presheaf model and the second step to
checking the homotopy extension property by induction on the type
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Presheaf and sheaf models of type theory

Presheaf models of type theory

We work in a (constructive) set theory with universes U0 ∈ U1 ∈ . . .

We have a base category C in U0

We write I, J,K, . . . the objects of C

Y o(I) denotes the presheaf represented by I

A context Γ,∆, . . . is a Uk-presheaf (for some k) on C

Typen(Γ) set of Un-presheaves on the category of elements of Γ

Elem(Γ,A) set of global sections of A ∈ Typen(Γ)
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Presheaf and sheaf models of type theory

Presheaf models of type theory

Composition gives a substitution operation Aσ in Typen(∆) if σ ∶ ∆→ Γ

Similarly, we define aσ in Elem(∆,Aσ) if a is in Elem(Γ,A) and σ ∶ ∆→ Γ

We have a canonical context extension operation Γ.A for A in Typen(Γ)

p ∶ Γ.A→ Γ and q in Elem(Γ.A,Ap)

Any Un-presheaf F defines a constant family F ∈ Typen(Γ)

23



Presheaf and sheaf models of type theory

Presheaf model of type theory: universes

Typen with substitution defines a presheaf on the category of contexts

It is continuous and hence representable by Un(I) = Typen(Y o(I))

We have natural bijections Typen(Γ) ≃ Γ→ Un ≃ Elem(Γ, Un)

Definition due to Martin Hofmann and Thomas Streicher
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Presheaf and sheaf models of type theory

Presheaf model of type theory: universes

Note that this does not work with sheaves

The problem is how to model the universes

⟨⟨The collection of sheaves don’t form a sheaf ⟩⟩

If we define F (V ) to be the collection of all U-sheaves on V then F is a
presheaf which is not a sheaf in general, since glueing will only be defined up to
isomorphism

This basic fact was the motivation for the notion of stacks

We need a notion of identification
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Presheaf and sheaf models of type theory

Base category

There are several possible choices for the base category

What matters is that we have a segment i.e. a presheaf I with two distinct
elements 0 and 1 satisfying

(1) I has a connection structure, i.e. maps (∧), (∨) ∶ I → ×I → I satisfying
x ∧ 1 = x = 1 ∧ x, x ∧ 0 = 0 = 0 ∧ x and x ∨ 1 = 1 = 1 ∨ x, x ∨ 0 = x = 0 ∨ x and

(2) We have a functor J+ on C with a natural isomorphism Y o(J+) ≃ Y o(J)×I

We get a notion of path by exponentiation to this interval I
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Presheaf and sheaf models of type theory

Base category

The axiomatic conditions required for getting a model of type theory have
been analysed by Ian Orton and Andy Pitts

Axioms for Modelling Cubical Type Theory in a Topos, CSL 2016

A complementary analysis can be found in

The Frobenius condition, right properness, and uniform fibrations
Nicola Gambino and Christian Sattler, Journal of Pure and Applied Algebra, 221
(12), 2017, pp. 3027-3068.
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Presheaf and sheaf models of type theory

⟨⟨ Inner ⟩⟩ models

Using the segment I we can define a set of ⟨⟨filling structures ⟩⟩ Fill(Γ,A),
inspired from homotopy theory

An element of Fill(Γ,A) represents a generalized ⟨⟨path lifting ⟩⟩ operation

It expresses that the type of all path liftings is a singleton up to homotopy
(for a given path in the base and starting point)
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Presheaf and sheaf models of type theory

⟨⟨ Inner ⟩⟩ models

Define Fibn(Γ) in Un+1

Fibn(Γ) set of pairs (X,c) with X ∈ Typen(Γ) and c ∈ Fill(Γ,X)

ElemF(Γ, (X,c)) = Elem(Γ,X)

We get a new ⟨⟨proof relevant ⟩⟩ inner model of the presheaf model
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Presheaf and sheaf models of type theory

⟨⟨ Inner ⟩⟩ models

We can lift the product operation at this level, using the connection structure
on the interval

π(cA, cB) ∈ Fill(Γ,Π(A,B)) if cA ∈ Fill(Γ,A) and cB ∈ Fill(Γ.A,B)

Furthermore π(cA, cB)σ = π(cAσ, cB(σp, q))

We can define a product operation for this new model

Π((A, cA), (B, cB)) = (Π(A,B), π(cA, cB))

We don’t need to change the abstraction and application operations

ElemF(Γ, (X,c)) = Elem(Γ,X) Γ.(X,c) = Γ.X
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Presheaf and sheaf models of type theory

⟨⟨ Inner ⟩⟩ models

What about universes? This is where the second condition on the interval is
used

Fibn is continuous and hence representable by Fn(I) = Fibn(Y o(I))

We have a natural isomorphism Γ→ Fn ≃ Fibn(Γ)

We can then build cn in Fill(Γ, Fn)

In this way we define Un = (Fn, cn) in Fibn+1(Γ)

Theorem: We get a model of type theory with the univalence axiom and
higher inductive types
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Presheaf and sheaf models of type theory

Presheaf extension of the cubical set model

Given another category D in U0 with objects X,V,L, . . . we now consider a
new model, where the base category is now D × C

This is similar to iterated forcing

A context Γ is given by a family of sets Γ(X ∣I) with restriction maps

ID(X ∣J) = I(J) defines an interval for this presheaf extension
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Presheaf and sheaf models of type theory

Some examples

X A(X)

V0

-

V1

�

A(V0)
�

A(V1)
-

V01

-
�

A(V01)
�

-
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Presheaf and sheaf models of type theory

Some examples: Countable choice

We now consider the following space, where Xn is covered by Ln and Xn+1

X0

L0

-

X1

�

L1

-
�

X2

�

L2

-
� .........

.........
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Presheaf and sheaf models of type theory

Sheaf models as internal models

In all these models, we can express the notion of sheaf internally in the
presheaf model

We get a type operation S(X) which expresses that the presheaf X is a sheaf
(and which is a proposition)

“Any compatible collection of local data can be glued in a unique way”

This can be expressed (internally) by the fact that some maps are equivalences

35



Presheaf and sheaf models of type theory

Sheaf models as internal models

Furthermore this operation satisfies the following closure conditions

cΠ ∶ (Π(x ∶ A)S(B)) → S(Π(x ∶ A)B)

cΣ ∶ S(A) × (Π(x ∶ A)S(B)) → S(Σ(x ∶ A)B)

cPath ∶ S(A)→ Π(a0 a1 ∶ A)S(Path A a0 a1)

cUk
∶ S(Σ(X ∶ Uk)S(X))

Whenever we have such an operation, we can define a new model of type
theory by internalisation, where a type is now interpreted by a type with a proof
that this type is a sheaf
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Presheaf and sheaf models of type theory

Sheaf models as internal models

Inspired from An effectful way to eliminate addiction to dependences, P.-M.
Pédrot and N. Tabareau, LICS 2017

[x] = x
[M N] = [M] [N]
[λ(x ∶ A)M] = λ(x ∶ [A].1)[M]
[Π(x ∶ A)B] = (Π(x ∶ [A].1)[B].1, cΠ (λ(x ∶ [A].1)[B].2))
[Σ(x ∶ A)B] = (Σ(x ∶ [A].1)[B].1, cΣ [A].2 (λ(x ∶ [A].1)[B].2))
[Uk] = (Σ(X ∶ Uk)S(X), cUk

)
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Presheaf and sheaf models of type theory

Sheaf models as internal models

We get in this way new models of univalence
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Presheaf and sheaf models of type theory

Example 2: Countable choice

We then can define a family of sets (stacks) A n, e.g. for A 0, A 1 and A 2

∅ ∅ ∅

{0}
�

{1}
-

{0}
�

∅
-

{0}
�

∅
-

{0,1}
�

-

{1}
-

{0}
�

-

{1}
-

{0}
�

-

∅
-

{0,1}
�

-
........ {0,1}

�
-

........ {0}
�

-

..........
.........

.........
........
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Presheaf and sheaf models of type theory

Example 2: Countable choice

Π(n ∶ N)A n is (a proposition) is not globally inhabited and ∥A n∥ is globally
inhabited because of the stack condition

∅

{0}
�

∅
-

{0}
�

-

∅
-

{0}
�

-
..........

........
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Presheaf and sheaf models of type theory

Example 3: Markov principle

Let C be the Boolean algebra corresponding to Cantor space

The base category is the poset of nonzero elements of C

A covering is a partition of unity.

Theorem: Markov’s principle does not hold in the corresponding stack model
of type theory. Actually, its negation holds (Bassel Mannaa).

Corollary: Markov’s principle cannot be proved in type theory with univalence
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Presheaf and sheaf models of type theory

Example 4: Fan theorem

Let Dop be a full subcategory of the category of Boolean algebra having for
objects localizations of finite power of C

A covering of an object is given by a partition of unity and corresponding
localizations (Zariski topology)

Lemma: 2(B∣J) = B and 2N is represented by (C,∅)

Theorem: Brouwer’s fan theorem holds in the corresponding stack model of
type theory
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Presheaf and sheaf models of type theory

Conclusion

For representing in a natural way collections of mathematical objects, it seems
necessary to extend simple type structure with universes

Understanding what notion of identification we should have on these universes
seems to be involve ideas similar to the ones used in the theory of homotopy
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