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type theory

instead of
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1



Univalent Foundation and Constructive Mathematics

Foundation of mathematics

This program relies on 2 points

(1) description of mathematics as analysis of structures on ∞-groupoids

(2) dependent type theory provides a suitable language and system of notations
to express structures on ∞-groupoids
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Description of mathematical object

First level: algebraic structure, ordered structure

E.g. groups, rings, lattices

Set with operations and/or relations satisfying some properties

Uniqueness up to isomorphisms

It is the level considered by Bourbaki in his theory of structures
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Description of mathematical object

The next level is usually described as the level of categories

Actually the next level is the level of groupoid with structures

(A category will be like a poset at the level of groupoids)

The notion of isomorphism becomes at this level the notion of equivalences
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Description of mathematical object

At the next level we have structures on 2-groupoids

And so on, n-groupoids and then ∞-groupoids

〈〈 the intuition appeared that ∞-groupoids should constitute particularly
adequate models for homotopy types, the n-groupoids corresponding to truncated
homotopy types (with πi = 0 for i > n) 〉〉 (Grothendieck, Sketch of a program)

The notion of homotopy type generalizes the notion of set

The notion of (homotopical) equivalence generalizes the notion of bijection
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Description of mathematical object

This description of mathematical objects gets a remarkably simple formal
representation in dependent type theory

The notion of ∞-groupoid becomes there a primitive notion

The notions of set, groupoid, 2-groupoid, . . . are derived notions
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Set theory and type theory

1908 Zermelo Untersuchungen über die Grundlagen der Mengenlehre

1908 Russell Mathematical Logic as Based on the Theory of Types
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〈〈Simple 〉〉 type theory

1940 Church A Formulation of the Simple Theory of Types

Extremely simple and natural

A type bool as a type of 〈〈propositions 〉〉

A type I for 〈〈 individuals 〉〉

Function type A→ B

Natural semantics of types as sets
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Functions in simple type theory

In set theory, a function is a functional graph

In type theory, a function is given by an explicit definition

If t : B, we can introduce f of type A→ B by the definition

f(x) = t

f(a) 〈〈 reduces 〉〉 to (a/x)t if a is of type A
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Functions in simple type theory

We have two notions of function

-functional graph

-function explicitly defined by a term

What is the connection between these two notions?

Church introduces a special operation ιx.P (x) and the 〈〈axiom of description 〉〉

If ∃!x : A.P (x) then P (ιx.P (x))
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Functions in simple type theory

We can then define a function from a functional graph

∀x.∃!y.R(x, y)→ ∃f.∀x.R(x, f(x))

by taking f(x) = ιy.R(x, y)

By contrast, Hilbert’s operation εx.P (x) (also used by Bourbaki) satisfies

if ∃x : A.P (x) then P (εx.P (x))

To use ∃!x : A.ϕ presupposes a notion of equality on the type A
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Rules of equality

Equality can be specified by the following purely logical rules

(1) a =A a

(2) if a0 =A a1 and P (a0) then P (a1)
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Equality in mathematics

The first axiom of set theory is the axiom of extensionality stating that two
sets are equal if they have the same element

In Church’s system we have two form of the axiom of extensionality

(1) two equivalent propositions are equal

(P ≡ Q) → P =bool Q

(2) two pointwise equal functions are equal

(∀x : A.f(x) =B g(x)) → f =A→B g

The axiom of univalence will be a generalization of (1)
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Dependent types

The basic notion is the one of family of types B(x), x : A

We describe directly some primitive operations

(Πx : A)B(x) f where f(x) = b

(Σx : A)B(x) (a, b)

A+B i(a), j(b)

which are derived operations in set theory
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Dependent types

Logical operations are reduced to constructions on types by the following
dictionnary

A ∧B A×B = (Σx : A)B

A ∨B A+B

A→ B A→ B = (Πx : A)B

(∀x : A)B(x) (Πx : A)B(x)

(∃x : A)B(x) (Σx : A)B(x)
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Dependent types

de Bruijn (1967) notices that this approach is suitable for representation of
mathematical proofs on a computer (AUTOMATH)

Proving a proposition is reduced to building an element of a given type

〈〈This reminds me of the very interesting language AUTOMATH, invented by
Dijkstra’s colleague (and next-door neighbor) N. G. de Bruijn. AUTOMATH is not
a programming language, it is a language for expressing proofs of mathematical
theorems. The interesting thing is that AUTOMATH works entirely by type
declarations, without any need for traditional logic! I urge you to spend a couple
of days looking at AUTOMATH, since it is the epitome of the concept of type. 〉〉

D. Knuth (1973, letter to Hoare)
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Dependent types

This is the approach followed for the formalization of Feit-Thompson’s theorem

Voevodsky’s program precises this representation by characterizing which types
correspond to mathematical propositions
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Universes

A universe is a type the element of which are types, and which is closed by
the operations

(Πx : A)B(x) (Σx : A)B(x) A+B

Russell’s paradox does not apply directly since one cannot express X : X as a
type

However, Girard (1971) shows how to represent Burali-Forti paradox if one
introduces a type of all types
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Univers

Martin-Löf (1973), following Grothendieck, introduces of hierarcy of universe

U0 : U1 : U2 : . . .

Each universe Un is closed by the operations

(Πx : A)B(x) (Σx : A)B(x) A+B
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Universes and dependent sums

We can formally represent the notion of structure

(ΣX : U0)((X ×X → X)×X)

collection of types with a binary operation and a constant

(X ×X → X)×X family of types for X : U0

This kind of representation is used by Girard for expressing Burali-Forti paradox
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New laws for equality

Martin-Löf introduces (1973) a primitive notion of equality in dependent type
theory

The 〈〈proposition 〉〉 expressing the equality of a0 and a1 of type A is represented
by a family of type EqA(a0, a1)

Since EqA(a0, a1) is itself a type, one can iterate this construnction

EqEqA(a0,a1)
(p, q)

This is the core of the connection with ∞-groupoid
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New laws for equality

What are the rules of equality?

(1) Any element is equal to itself 1a : EqA(a, a)

(2) C(a) implies C(x) if we have p : EqA(a, x)
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New laws for equality

The new law discovered by Martin-Löf (1973) can be expressed as the fact
that in the type

(Σx : A)EqA(a, x)

which contains the special element

(a, 1a) : (Σx : A)EqA(a, x)

any element (x, ω) is actually equal to this special element (a, 1a)
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New laws for equality

It follows from these laws that any type has a ∞-groupoid structure

For instance, composition corresponds to transitivity of equality

The fact that equality is symmetric corresponds to the inverse operation

Hoffman-Streicher (1993)

S. Awodey, M. Warren (2009), P. Lumsdaine (2010), B. van den Berg, R.
Garner

24



Univalent Foundation and Constructive Mathematics

New laws for equality

These laws were discovered in 1973

Should equality be extensional?

Actually, how to express the extensionality axioms in this context?

An answer to this question is given by Voevodsky (2009)
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Stratification

A type A is a proposition

(Πx0 : A)(Πx1 : A)EqA(x0, x1)

A type A is a set

(Πx0 : A)(Πx1 : A)prop(EqA(x0, x1))

A type A is a groupoid

(Πx0 : A)(Πx1 : A)set(EqA(x0, x1))
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Stratification

The notions of propositions, sets, groupoids have now aquired a precise
meaning

They will be used with this meaning in the rest of this talk

Type theory appears as a generalization of set theory
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Equivalence

Voevodsky gives a simple and uniform definition of the notion of equivalence
for f : A→ B

If A and B are sets we get back the notion of bijection between sets

If A and B are propositions we get back the notion of logical equivalence
between propositions

If A and B are groupoids we get back the notion of categorical equivalence
between groupoids
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Equivalence

If f : A→ B the fiber of f at b : B is the type

F (b) = (Σx : A)EqB(b, f(x))

f is an equivalence if this fiber is contractible for each b

(Πb : B)(F (b)× prop(F (b)))

A ' B is defined to be (Σf : A→ B)Equiv(f)

For instance, the identity function is an equivalence using the new law of
equality discovered by Martin-Löf and hence we have A ' A
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The axiom of univalence

The axiom of univalence states roughly that if f : A→ B is an equality then
A and B are equal

More precisely, since A ' A we have a map EqU(A,B)→ A ' B

the canonical map EqU(A,B)→ A ' B is an equivalence

This generalizes Church’s axiom of extensionality for propositions

Voevodsky has shown that this axiom implies function extensionality
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The axiom of univalence

EqU(A×B,B ×A)

EqU(A× (B × C), (A×B)× C)

Any property satisfied by A × B that can be expressed in type theory is also
satisfied by B ×A

This is not the case in set theory

(1,−1) ∈ N× Z (1,−1) /∈ Z× N
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The axiom of univalence

This also entails

-two isomorphic sets are equal

-two isomorphic algebraic structures are equal

-two (categorically) equivalent groupoid are equal

-two equivalent categories are equal

The equality of a and b entails that any property of a is also a property of b
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Algebraic structures

An algebraic structure is an element of a type of the form

(ΣX : U0)set(X)× T (X)

sets with operations and properties
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Semantics

It is natural to represent a type as a homotopy type

D. Kan A Combinatorial Definition of Homotopy Groups, 1958

A type is interpreted as a Kan simplicial set

A family of type B(x), x : A is interpreted as a Kan fibration

The type EqA(a0, a1) becomes the space of paths joining a0 and a1

This model satisfies the axiom of univalence (Voevodsky, 2009)
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Semantics

What happens to the new law for equality discovered by Martin-Löf in this
interpretation?

Any element of (Σx : A)EqA(a, x) is equal to (a, 1a)

It expresses the fact that the total space of the fibration defined by the space
of paths having a given origin is contractible

This is exactly this fact which was the starting point of the loop-space method
in algebraic topology (J.P. Serre)
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Semantics

〈〈 Indeed, to apply Leray’s theory I needed to construct fibre spaces which did
not exist if one used the standard definition. Namely, for every space X, I needed
a fibre space E with base X and with trivial homotopy (for instance contractible).
But how to get such a space? One night in 1950, on the train bringing me back
from our summer vacation, I saw it in a flash: just take for E the space of paths
on X (with fixed origin a), the projection E → X being the evaluation map:
path → extremity of the path. The fibre is then the loop space of (X, a). I had
no doubt: this was it! . . . It is strange that such a simple construction had so
many consequences. 〉〉
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Transport de structures

Soit Grp(A) le type qui donne une structure de groupe sur A

Grp(A) = (Σf : A→ A→ A)(Σa : A) . . .

The collection of all groups is (ΣX : U0)set(X)× Grp(X)

This type is a groupoid
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Transport of structures

If A and B are two isomorphic sets we have a proof of

EqU(A,B)

by the axiom of univalence and hence a proof of

Grp(A)→ Grp(B)

This expresses the notion of transport of structure (Bourbaki) along the given
isomorphism between A and B

38



Univalent Foundation and Constructive Mathematics

Differences with set theory

Any property is transportable

No need of 〈〈critères de transportabilité 〉〉 as in set theory

〈〈Only practice can teach us in what measure the identification of two sets,
with or without additional structures, presents more advantage than inconvenient.
It is necessary in any case, when applying it, that we are not lead to describe non
transportable relations. 〉〉 Bourbaki, Théorie des Ensembles, Chapitre 4, Structures
(1957)

0 ∈ A is a non transportable property of a group A

〈〈 to be solvable 〉〉 is a transportable property

39



Univalent Foundation and Constructive Mathematics

Differences with set theory

The collection of all groups/rings/posets form a groupoid

U0 is not a set (at least a groupoid)

U1 is not a groupoid (at least a 2-groupoid)

Complexity of equality of a type versus set theoretic 〈〈size 〉〉
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Posets and categories

In this approach

the notion of groupoid is more fondamental than the notion of category

A groupoid is defined as a type satisfying a property
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Posets and categories

A preorder is a set A with a relation R(x, y) satisfying

(Πx : A)(Πy : A)prop(R(x, y))

which is reflexive and transitive

A poset is a preorder such that the canonical implication

EqA(x, y)→ R(x, y)×R(y, x)

is a logical equivalence
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Posets and categories

A category is a groupoid A with a relation Hom(x, y) satisfying

(Πx : A)(Πy : A)set(Hom(x, y))

This family of sets is 〈〈 transitive 〉〉 (associative composition operation) and
〈〈 reflexive 〉〉 (we have a neutral element)

This corresponds to the notion of preorder
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Posets and categories

One can define Iso(x, y) which is a set and show Iso(x, x)

This defines a canonical map

EqA(x, y)→ Iso(x, y)

For being a category we require that this map is an equivalence (bijection)
between the sets Eq(x, y) and Iso(x, y)

The axiom of univalence implies that the groupoid of rings, for instance, has
a categorical structure
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