What shall we do?

Analysis of chapter 8 of Bas Spitters' thesis
Motivated by the question: what are the algorithms behind these proofs??

Spectral theorems/representation theorems: what should be the definition of a compact space in constructive mathematics??

Use of enumerations, dependent choices entails a lot of non canonical choices. Can we avoid to have to make these choices??

Cf. the thought provoking review of Bridges "Constructive functional analysis." by Kreinovic MR 82k:03094

The Spectral Theorem

Two fundamental papers
M.H. Stone "A General Theory of Spectra I, II" 1940 Proc. N.A.S.

Algebraization of spectral theory
"Treatment of any system of real, simultaneously observable quantities as envisaged in the quantum theory"

hat the spectral theorem says?

We have a commutative algebra R of operators (on a preHilbert space), we can consider R as a dense subalgebra of continuous functions $C(X)$ on a compact Hausdorff space $S p(R)$ $S p(R)$ can be seen as a set of maps $\phi: R \rightarrow \mathbb{R}$ such that

$$
A \geq 0 \rightarrow \phi(A) \geq 0
$$

Here we give a purely phenomenological description of $S p(R)$
All the proofs here are constructive, most of them don't require dependent choices

Key Example

G compact group, $I: C(G) \rightarrow \mathbb{C}$ Haar measure

$$
I(f)=\int f(x) d x
$$

We have the convolution product on $C(G)$

$$
(f \times g)(y)=\int f(x) g\left(x^{-1} y\right) d x
$$

and scalar product

$$
(f, g)=\int f(x) \overline{g(x)} d x
$$

we write $g^{*}(x)=\overline{g\left(x^{-1}\right)}$ and $|f|_{2}^{2}=(f, f)$

Lemma 1

Lemma 1: The operator $T(f): g \longmapsto f \times g$ is compact, and hence $T(f)$ is normable

The proof is elementary
Let B be the set of g such that $(g, g) \leq 1$
We prove that if $x_{1}, \ldots, x_{n} \in G$ then

$$
\left\{\left(f \times g\left(x_{1}\right), \ldots, f \times g\left(x_{n}\right)\right) \mid g \in B\right\}
$$

is totally bounded. Since $f \times g, g \in B$ is equicontinuous, the claim follows from Ascoli.

Key sublemma

Notice $f \times g(x)=(T(x) f, g)$ we are reduced to show, that in a preHilbert space

$$
\left.\left\{\left(h_{1}, g\right), \ldots,\left(h_{n}, g\right)\right) \mid g \in B\right\}
$$

is totally bounded, which follows from the existence, for all $r>0$ of a finite dimensional X such that $d\left(h_{i}, X\right)<r$

Lemma: In a preHilbert space for any x_{1}, \ldots, x_{n} and $r>0$ there exists a finite dimensional X such that $d\left(x_{i}, X\right)<r$

Proof: By induction on n
If we have X and x_{n+1} we do a case analysis on

$$
d\left(x_{n+1}, X\right)<r \quad \vee \quad 0<d\left(x_{n+1}, X\right)
$$

Key Example (continued)

The elements of R are formal expressions $A=\lambda-f$ with $f \in Z(G)$ and $\lambda \in \mathbb{R}$

$$
(\lambda-f)(\mu-g)=\lambda \mu-\lambda g-\mu f+f \times g
$$

$A \geq 0$ iff $\lambda(g, g) \geq(f \times g, g)$ for all g
Lemma 2 (Riesz): if $A \geq 0$ and $B \geq 0$ and $A B=B A$ then $A B \geq 0$

Aside: center of $C(G)$

We let $Z(G)$ be the set of central functions $f(x y)=f(y x)$ and $f=f^{*}$ We have $f \times g=g \times f$ if $f \in Z(G)$

We have the explicit projection operator

$$
P f x=f\left(y^{-1} x y\right) d y
$$

such that $P f \in Z(G)$ if $f=f^{*}$ and

$$
(f-P f, g)=0
$$

for all $g \in Z(G)$

Aside: center of $C(G)$

It is quite remarkable that the order on R can be defined without mention to the Haar measure. A direct definition is that $\lambda-f \geq 0$ iff

$$
\Sigma f\left(x_{i} x_{j}^{-1}\right) r_{i} \overline{r_{j}} \leq \lambda\left(\Sigma r_{i} \overline{r_{j}}\right)
$$

for all $x_{i} \in G, r_{i} \in \mathbb{C}$
This ordering has been further analysed by Krein

Proof of Lemma 2

If $A B=B A$ and $A \geq 0, B \geq 0$ then $A B \geq 0$
We can assume $0 \leq A \leq 1$
We notice $B C^{2} \geq 0$ since $\left(B C^{2} g, g\right)=(B C g, C g) \geq 0$
We define $A_{0}=A, A_{n+1}=A_{n}-A_{n}^{2}$
One shows $0 \leq A_{n+1} \leq A_{n} \leq 1$ and $A_{n+1}^{2} \leq A_{n}^{2}$
Since $A=A_{1}^{2}+\ldots+A_{n}^{2}+A_{n+1}$ we have $A_{n}^{2} \rightarrow 0$

Key Example (continued)

Thus to a compact group G we associate an algebra R of elements of the form $A=\lambda-f, f \in Z(G)$

Because of lemma 1, all elements of R are normable
To R we shall associate a compact space $S p(R)$, such that the elements A can also be seen as continuous functions on $S p(R)$

$$
\hat{A}(\phi)=\phi(A)
$$

It will turned out that the space $S p(R)$ has a positivity predicate (open locale)

Aside: centrum of $C(G)$

We are going also to define a formal space Σ of characters that are nonzero maps $\sigma: Z(G) \rightarrow \mathbb{C}$ such that

$$
\sigma(f \times g)=\sigma(f) \sigma(g)
$$

This space will be locally compact and discrete, and $S p(R)$ is its Alexandrov compactification (we add one point)

It is very interesting to understand what discrete means here in a formal way

hat is a point-free compact space?

A space is described as a logical theory
The Lindenbaum-Tarski algebra of this theory forms a distributive lattice (of basic open sets)

The models form a spectral space
The maximal models form a compact Hausdorff space if the lattice is normal
$u \ll v$ iff $(\exists x)[0=u x \quad \& \quad 1=v \vee x]$
normal: if $1=a \vee b$ then $1=a^{\prime} \vee b$ for some $a^{\prime} \ll a$

Example I

R commutative ring of elements A, B, C, \ldots
A subset of "positive" elements: R is an ordered group
A special element 1 , so that R is divisible: for each $n>0$ the equation $n X=1$ has a solution and R is archimedian: for any $A \in R$ there exists k such that $A \leq k .1$

Finally, no "infinitesimal": if $n . A \leq 1$ for all n then $A \leq 0$

Spectral Space I

In the case of an ordered ring R we consider the theory T_{1}

1. $D(A), D(-A) \vdash$
2. $D(A+B) \vdash D(A), D(B)$
3. $D(A) \vdash$ if $A \leq 0$
4. $\vdash D(1)$
5. $D(A), D(B) \vdash D(A B)$
6. $D(A B) \vdash D(A), D(-B)$

The models of this theory define exactly a total ordering on R extending the given ordering

Spectral Space I

The Lindenbaum-Tarski algebra of T_{1} is a distributive lattice L_{1}
The lattice L_{1} is normal
Hence L_{1} defines a compact Hausdorff space: the spectrum of R
One can completely characterise the order in L_{1}
For instance $D(A) \vdash D(B)$ iff we have $A^{n}(-B)^{m} \leq 0$ for some n, m
"Phenomenological" description of the spectrum $S p(R)$ of R

Aside: space of characters

The same basic open will describe the space Σ of characters of $Z(G)$
Notice that the basic open of L_{1} are of the form

$$
D(\lambda-f)
$$

An intuitive interpretation is that it represents the set of all characters σ such that

$$
\sigma(f)<\lambda
$$

This is a basic observation that we can make about a character σ

Spectral Space I

Proposition: (Krivine) If $1 \leq A B$ and $0 \leq A$ then there exists $r>0$ such that $r \leq B$

From this follows
Main Theorem: We have $\vdash D(A)$ iff $A \geq r$ for some $r>0$
The proof of the theorem is constructive, and similar to arguments used in proof theory (cut-elimination)

Stone- eierstrass

Lemma 3: If $A \geq 0$ then there exists $B_{n} \geq 0$ such that $B_{n}^{2} \rightarrow A$ The proof is elementary

Proof of Lemma 3

We can assume $0 \leq A \leq 1$
We define $B_{0}=0$ and $B_{n+1}=\left(1-A+B_{n}^{2}\right) / 2$
We define also $C_{0}=0, \quad C_{n+1}=\left(1+C_{n}^{2}\right) / 2$
Then

$$
\begin{aligned}
0 & \leq B_{n} \leq B_{n+1}, \quad 0 \leq C_{n} \leq C_{n+1}, \quad B_{n+1}-B_{n} \leq C_{n+1}-C_{n} \\
C_{n} & \rightarrow 1 \text { and }\left(1-B_{n}\right)^{2} \rightarrow A
\end{aligned}
$$

Spectral Space II

If we Cauchy complete R we have an operation $A \vee B$
We can give another description of the spectrum
Inspired by F. Riesz "Sur la décomposition des opérations fonctionelles linéaires" 1928

The theory T_{2} is

1. $D(A), D(-A) \vdash$
2. $D(A) \vdash$ if $A \leq 0$
3. $D(A+B) \vdash D(A), D(B)$
4. $D(A \vee B) \vdash D(A), D(B)$
5. $\vdash D(1)$

Spectral Space II

Actually, in the case we are analysing, it seems that we do not have to complete
$Z(G)$ should be itself closed under binary sup operations
This would mean that $Z(G)$ and R are natural example of Riesz
spaces, i.e. ordered vector spaces that are lattices

The Spectrum as a Formal Space

For instance in T_{2} one can show

$$
D(A) \vee D(B)=D(A \vee B) \quad D(A) \wedge D(B)=D(A \wedge B)
$$

We have two descriptions T_{1} and T_{2} of two lattices that are normal. They both define the same compact Hausdorff space $S p(R)$, whose points are models of the corresponding theories with the extra "continuity" axiom

$$
D(A) \vdash \bigvee_{r>0} D(A-r)
$$

These points correspond to the maximal points in the spectral spaces

Spectral Theorem

The points of the spectrum can be also seen as continuous linear maps $\phi: R \rightarrow \mathbb{R}$ such that
$\phi(A B)=\phi(A) \phi(B)$ and $\phi(A \vee B)=\phi(A) \vee \phi(B)$
Main Theorem: We have $\phi(A)>0$ for all ϕ iff $A \geq r$ for some $r>0$
This can be proved constructively in a point-free way

Aside: elimination of choice sequences

What is the meaning of
For all $\phi \in S p(R)$ we have $\phi(A)>0$
in a point-free way???
Cf. introduction of Martin-Löf "Notes on Constructive Mathematics" and elimination of choice sequences

It means that

$$
\vdash D(A)
$$

is provable in the theory describing $S p(R)$

Spectral Theorem

The spectral theorem in this point-free form holds without having to suppose that the elements in R are normable i.e. that

$$
\{r>0 \mid-r \leq A \leq r\}
$$

has a g.l.b. $\|A\|$
In this sense, the statement is more general than in Bishop's (also R not given as an algebra of operators)

Also no separability hypotheses
BUT without extra-hypotheses we cannot "build" any points of $S p(R)$. We know only that the theory describing $S p(R)$ is consistent. (It may be that for actual computations, this is all that is needed.)

Spectral Theorem

To connect this to Bishop-Bridges theory: if all elements of R are normable then $S p(R)$ is open that is admits a positivity predicate defined by
$\operatorname{Pos}(D(A))$ iff $\left\|A^{+}\right\|>0\left(\right.$ written $\left.A^{+}>0\right)$
This follows from
Lemma 4: $D(A) \ll D(B) \rightarrow[D(A)=0 \vee \operatorname{Pos}(D(B))]$
Using Pos, we can build (with dependent choices) as many points as we want if we can enumerate R

Intuitively, whenever $\left\|A^{+}\right\|>0$ we can build ϕ, effectively, but with maybe non canonical choices, such that $\phi(A)>0$

Spectral Theorem

If we can enumerate a dense subset f_{n} of $Z(G)$ then we take $r_{n} \rightarrow 0$ and using dependent choices we build a sequence of rationals q_{n} such that

$$
\left|f_{0}-q_{0}\right|<r_{0} \wedge\left|f_{1}-q_{1}\right|<r_{1} \wedge \ldots \wedge\left|f_{n}-q_{n}\right|<r_{n}
$$

is positive
Given such a sequence we build then ϕ such that $\left|\phi\left(f_{n}\right)-q_{n}\right|<r_{n}$ for all n

Spectral Theorem

If all elements of R are normable, we have a much nicer formulation of the main theorem

Main Theorem: If $A \in R$ then $\|A\|$ is equal to the uniform norm of the continuous map

$$
\hat{A}: C(S p(R)) \rightarrow \mathbb{R} \quad \phi \longmapsto \phi(A)
$$

defined on the spectrum
This is Gelfand's theorem (for real C^{*}-algebras)

A discrete space??

In $S p(R)$ there is a special point ϕ_{0} such that

$$
\phi_{0}(\lambda-f)=\lambda
$$

The space of characters of G is the space Σ that we get by removing ϕ_{0}

We get Σ by adding the axiom

$$
\vdash \vee_{f \in Z(G)} D(f)
$$

A discrete space??

We prove first with points that Σ is discrete
That is for any given model σ of the theory Σ we build a function f_{σ} such that the open $D\left(f_{\sigma}\right)$ is the singleton $\{\sigma\}$

Here we give only the explicit formula: if $f \in Z(G)$ such that $\sigma(f) \neq 0$ then

$$
\sigma(f) f_{\sigma}(x)=\sigma\left(P f_{x}\right)
$$

where $f_{x}(y)=f(x y)$

A discrete space??

It is possible to show that $f_{\sigma} \times f_{\sigma}=f_{\sigma}$ and $D\left(f_{\sigma}\right)=\{\sigma\}$
But notice that f_{σ} is defined in term of σ
There is thus a kind a circularity: a basic open is defined in term of a point

Similar situation in intuitionism, when the definition of a spread may depend on a choice sequence

A discrete space??

We conjecture that without dependent choices, the space Σ may fail to have enough points

It is likely also that Σ has a natural measure that we can define in a point-free way, and that the corresponding Plancherel formula holds (even if we cannot have access to the points)

$$
{ }_{G}|f|^{2} d x={ }_{\Sigma}|\hat{f}|^{2} d \sigma
$$

With points this becomes

$$
{ }_{G}|f|^{2} d x=\Sigma\left|f_{\sigma}\right|^{2}
$$

Plancherel Formula??

The commutative algebra $Z(G)$ with the map

$$
I: Z(G) \rightarrow \mathbb{R} \quad I(f)=f(e)
$$

is a (constructive) example of an integration algebra (Segal)
The map I is positive: $I(f) \geq 0$ if $\hat{f} \geq 0$
I can be seen as a measure on the point-free space Σ
For this measure, the corresponding Plancherel formula holds

Enough characters??

In a point-free way, we expect that we can express most of the known theorems about irreducible representations

For instance the set of functions $f \in C(G)$ such that

$$
f_{\sigma} \times f=f
$$

should be a finite dimensional space
Such a statement makes sense over the space Σ
It can be expected that, for applications, we need only to talk about a generic character, and not to build all characters effectively

λ-notation

We just illustrate the use of λ-notation in the proof and statement similar to lemma 3.4 of Bishop-Bridges

Lemma: If $F: C(G) \rightarrow \mathbb{C}$ is continuous then

$$
F(f \times g)=f\left(x^{-1}\right) F\left(g^{x}\right) d x
$$

Proof: We consider $h(x, y)=f\left(x^{-1}\right) g(x y)$. The lemma can be expressed as

$$
F(\lambda y \cdot I(\lambda x \cdot h(x, y)))=I(\lambda x \cdot F(\lambda y \cdot h(x, y)))
$$

We only have to check it in the case where $h(x, y)=u(x) v(y)$, since the functions of the form $\Sigma_{i} u_{i}(x) v_{j}(y)$ are dense in $C(G \times G)$, by Stone-Weierstrass and it is direct in this case.

