/ What shall we do? \

Analysis of chapter 8 of Bas Spitters’ thesis

Motivated by the question: what are the algorithms behind these
proofs??
Spectral theorems/representation theorems: what should be the

definition of a compact space in constructive mathematics??

Use of enumerations, dependent choices entails a lot of non canonical

choices. Can we avoid to have to make these choices??

Cf. the thought provoking review of Bridges “Constructive functional
analysis.” by Kreinovic MR 82k:03094
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The Spectral Theorem

Two fundamental papers
M.H. Stone “A General Theory of Spectra I, II” 1940 Proc. N.A.S.
Algebraization of spectral theory

“Treatment of any system of real, simultaneously observable

quantities as envisaged in the quantum theory”




hat the spectral theorem says?

We have a commutative algebra R of operators (on a preHilbert
space), we can consider R as a dense subalgebra of continuous
functions C'(X) on a compact Hausdorff space Sp(R)

Sp(R) can be seen as a set of maps ¢ : R — R such that
A>0—=¢(A) >0

Here we give a purely phenomenological description of Sp(R)

All the proofs here are constructive, most of them don’t require

dependent choices




Key Example

G compact group, I : C(G) — C Haar measure

— /f(x)dx

We have the convolution product on C'(G)

(% 9)) = [ Fagl

and scalar product

we write g*(z) = g(z—1) and |f|3 = (f, f)

dx




Lemma 1

Lemma 1: The operator T'(f) : g — f X g is compact, and hence
T(f) is normable

The proof is elementary

Let B be the set of g such that (g,9) <1

We prove that if z1,..., 2, € G then

{(f xg(x1),...,f xg(zn)) | g € B}

is totally bounded. Since f X g,g € B is equicontinuous, the claim

follows from Ascoli.




Key sublemma

Notice f x g(x) = (T(x)f,g) we are reduced to show, that in a
preHilbert space

{(hlag>7"'7(hnag>) ‘ g c B}

is totally bounded, which follows from the existence, for all » > 0 of a
finite dimensional X such that d(h;, X) < r

Lemma: In a preHilbert space for any z1,...,xz, and r > 0 there
exists a finite dimensional X such that d(x;, X) <r

Proof: By induction on n

If we have X and x,11 we do a case analysis on

d(ZCn_|_1,X) <r V 0< d<$n+1,X)




Key Example (continued)

The elements of R are formal expressions A = A — f with f € Z(G)
and A € R

A=fp—9)=Ap—Ag—puf+fxg
A>0iff AM(g,g9) > (f x g,g) for all g

Lemma 2 (Riesz): if A>0and B> 0 and AB = BA then AB >0




Aside: center of C'(G)
We let Z(G) be the set of central functions f(zy) = f(yz) and f = f*

We have f x g=g x fif f € Z(G)
We have the explicit projection operator
Pfaz= fy 'zy)dy
such that P f € Z(G) if f = f* and
(f=P f9)=0
for all g € Z(G)




Aside: center of C'(G)

It is quite remarkable that the order on R can be defined without
mention to the Haar measure. A direct definition is that A — f > 0 iff

Sf(wizy )riry < X(Brir)

for all z; € G,r; € C

This ordering has been further analysed by Krein




Proof of Lemma 2
If AB=BAand A>0,B >0 then AB >0
We can assume 0 < A <1
We notice BC? > 0 since (BC?g,g) = (BCg,Cg) >0
We define Ag = A, A, = A, — A?
One shows 0 < 4,11 < A4, <1 and A%H < A?

Since A = A% +...+ A% + A,,;1 we have A2 — (
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Key Example (continued)

Thus to a compact group GG we associate an algebra R of elements of

the form A=X—f, f € Z(G)
Because of lemma 1, all elements of R are normable

To R we shall associate a compact space Sp(R), such that the

elements A can also be seen as continuous functions on Sp(R)

It will turned out that the space Sp(R) has a positivity predicate

(open locale)
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Aside: centrum of C(G)

We are going also to define a formal space X of characters that are
nonzero maps o : Z(G) — C such that

o(f xg)=0o(f)o(g)

This space will be locally compact and discrete, and Sp(R) is its

Alexandrov compactification (we add one point)

It is very interesting to understand what discrete means here in a

formal way
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hat is a point-free compact space?

A space is described as a logical theory

The Lindenbaum-Tarski algebra of this theory forms a distributive

lattice (of basic open sets)
The models form a spectral space

The maximal models form a compact Hausdorff space if the lattice is

normal
u<Lviff 3r)[0=ux & 1=vVx]

normal: if 1 =aVbthen1l=a Vb for some a’ < a
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Example 1

R commutative ring of elements A, B, C, ...

A subset of “positive” elements: R is an ordered group

A special element 1, so that R is divisible: for each n > 0 the
equation nX = 1 has a solution and R is archimedian: for any A € R
there exists k such that 4 < k.1

Finally, no “infinitesimal”: if n.A <1 for all n then A <0
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Spectral Space 1
Tn the case of an ordered ring R we consider the theory T}
1. D(A),D(—A) +
2. D(A+ B) F D(A), D(B)
3. D(A)Fif A<0
4. F D(1)
5. D(A), D(B) - D(AB)
6. D(AB) - D(A), D(—B)

The models of this theory define exactly a total ordering on R

extending the given ordering
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Spectral Space 1

The Lindenbaum-Tarski algebra of T3 is a distributive lattice L,
The lattice L1 is normal

Hence L1 defines a compact Hausdorft space: the spectrum of R
One can completely characterise the order in L4

For instance D(A) - D(B) iff we have A”(—B)™ < 0 for some n, m

“Phenomenological” description of the spectrum Sp(R) of R
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Aside: space of characters

The same basic open will describe the space ¥ of characters of Z(G)

Notice that the basic open of L are of the form
D(A— )

An intuitive interpretation is that it represents the set of all

characters o such that

o(f) <A

This 1s a basic observation that we can make about a character o
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Spectral Space 1
Proposition: (Krivine) If 1 < AB and 0 < A then there exists r > 0
such that r < B

From this follows

Main Theorem: We have - D(A) iff A > r for some r > 0

The prootf of the theorem is constructive, and similar to arguments

used in proof theory (cut-elimination)
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Stone- elerstrass

Lemma 3: If A > 0 then there exists B,, > 0 such that B> — A

The proof is elementary
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Proof of Lemma 3
We can assume 0 < A <1
We define By =0 and B,,,1 = (1 — A+ B2)/2
We define also Co =0, C,y1 = (1+C?)/2
Then

OSBn SBn—I—la OSCn SCn—|—17 Bn—I—l_Bn Scn—l—l_cn

C,—1land (1-B,)?— A
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Spectral Space 11

If we Cauchy complete R we have an operation AV B
We can give another description of the spectrum

Inspired by F. Riesz “Sur la décomposition des opérations

fonctionelles linéaires” 1928

The theory T} is
1. D(A),D(—A) F

2. D(A)Fif A <0

3. D(A+ B) - D(A), D(B)
4. D(AV B)F D(A), D(B)
5. F D(1)
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Spectral Space 11

Actually, in the case we are analysing, it seems that we do not have
to complete

Z (@) should be itself closed under binary sup operations

This would mean that Z(G) and R are natural example of Riesz

spaces, i.e. ordered vector spaces that are lattices
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The Spectrum as a Formal Space

For instance in 75 one can show
D(A)v D(B)=D(AV B) D(A)AND(B)=D(AANB)

We have two descriptions T} and 715 of two lattices that are normal.

They both define the same compact Hausdorff space Sp(R) , whose
points are models of the corresponding theories with the extra
“continuity” axiom
D(A)F \/ D(A—r)
>0

These points correspond to the maximal points in the spectral spaces
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Spectral Theorem

The points of the spectrum can be also seen as continuous linear
maps ¢ : R — R such that

O(AB) = G(A)d(B) and (A B) = $(4) V $(B)
Main Theorem: We have ¢(A) > 0 for all ¢ iff A > r for some r > 0

This can be proved constructively in a point-free way
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Aside: elimination of choice sequences

What is the meaning of
For all ¢ € Sp(R) we have ¢(A) > 0
in a point-free way???

Cf. introduction of Martin-Lof “Notes on Constructive Mathematics”

and elimination of choice sequences

It means that

- D(A)
is provable in the theory describing Sp(R)
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Spectral Theorem

The spectral theorem in this point-free form holds without having to

suppose that the elements in R are normable i.e. that
{r>0] —r<A<r}

has a g.l.b. ||A]|

In this sense, the statement is more general than in Bishop’s (also R

not given as an algebra of operators)
Also no separability hypotheses

BUT without extra-hypotheses we cannot “build” any points of
Sp(R). We know only that the theory describing Sp(R) is consistent.

(It may be that for actual computations, this is all that is needed.)
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Spectral Theorem

To connect this to Bishop-Bridges theory: if all elements of R are

normable then Sp(R) is open that is admits a positivity predicate
defined by

Pos(D(A)) iff ||AT|| > 0 (written AT > 0)
This follows from
Lemma 4: D(A) < D(B) = [D(A) =0V Pos(D(B))]

Using Pos, we can build (with dependent choices) as many points as

we want if we can enumerate R

Intuitively, whenever ||AT|| > 0 we can build ¢, effectively, but with

maybe non canonical choices, such that ¢(A) > 0
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Spectral Theorem

If we can enumerate a dense subset f,, of Z(G) then we take r, — 0
and using dependent choices we build a sequence of rationals ¢,, such
that

fo—aqol <roAN|fi—q| <ri A A fn—qn| <Tn
1S positive

Given such a sequence we build then ¢ such that |¢(f,) — gn| < r»

for all n
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Spectral Theorem

If all elements of R are normable, we have a much nicer formulation

of the main theorem

Main Theorem: If A € R then ||A|| is equal to the uniform norm of

the continuous map

A

A:C(Sp(R)) =R ¢r— ¢(A)

defined on the spectrum

This is Gelfand’s theorem (for real C*-algebras)
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A discrete space??
In Sp(R) there is a special point ¢y such that
Po(A—f) = A

The space of characters ot G is the space X that we get by removing
ult
We get X by adding the axiom

= Vieze)D(f)
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A discrete space??

We prove first with points that X is discrete

That is for any given model ¢ of the theory X we build a function f,
such that the open D(f,) is the singleton {o}

Here we give only the explicit formula: if f € Z(G) such that

o(f) # 0 then
o(f)fo(x) =0o(P fz)

where f,(y) = f(zy)
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A discrete space??
It is possible to show that f, x f, = f, and D(f,) = {o}
But notice that f, is defined in term of o

There is thus a kind a circularity: a basic open is defined in term of a
point

Similar situation in intuitionism, when the definition of a spread may

depend on a choice sequence
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A discrete space??

We conjecture that without dependent choices, the space X may fail

to have enough points

It is likely also that Y has a natural measure that we can define in a
point-free way, and that the corresponding Plancherel formula holds

(even if we cannot have access to the points)

fI?de = |f|*do
G >

With points this becomes

fIPde = 2| fo|*
G
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Plancherel Formula??
The commutative algebra Z(G) with the map
I:Z(G) =R I(f) = f(e)
is a (constructive) example of an integration algebra (Segal)
The map I is positive: I(f) > 0if f >0
I can be seen as a measure on the point-free space X

For this measure, the corresponding Plancherel formula holds
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Enough characters??

In a point-free way, we expect that we can express most of the known

theorems about irreducible representations

For instance the set of functions f € C'(G) such that

fo X f=1F

should be a finite dimensional space
Such a statement makes sense over the space X

It can be expected that, for applications, we need only to talk about

a generic character, and not to build all characters effectively
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A-notation

We just illustrate the use of A-notation in the proof and statement

similar to lemma 3.4 of Bishop-Bridges

Lemma: If F: C(G) — C is continuous then
F(fxg)= fla ")F(¢")dz

Proof: We consider h(z,y) = f(z71)g(zy). The lemma can be

expressed as
F(AyI(Az.h(z,y))) =I(Ax.F(Ay.h(z,y)))

We only have to check it in the case where h(x,y) = u(x)v(y), since
the functions of the form ¥;u,(z)v,(y) are dense in C(G x G), by

Stone-Weierstrass and it is direct in this case.
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