Constructive Stacks?

Munich, 20 December 2019

Goal

Generalize sheaf models of Intuitionistic Logic to Univalent Type Theory

Reminder: main issue

The problem is how to model *universes*

The collection of sheaves don't form a sheaf

If we define F(V) to be the collection of all \mathcal{U} -sheaves on V then F is a presheaf which is not a sheaf in general, since glueing will only be defined up to isomorphism

This basic fact was the motivation for the notion of *stacks*

Reminder: what is a sheaf of sets?

Small category C, objects X, Y, Z, \ldots and J Grothendieck topology on C

F presheaf: collection of sets F(X) with restriction maps $u \mapsto uf$

S in J(X): we can form the set $D_S(F)(X)$

An element of this set is a family u(f) in F(Y) for $f: Y \to X$ in S which is compatible: u(f)g = u(fg) if $g: Z \to Y$

We have a map $\eta_F : F(X) \to D_S(F)(X)$ natural in X, S

The presheaf F is a sheaf if each map η_F is a bijection

Reminder: what is a sheaf of sets?

If J(X) contains only the trivial sieve Then we have a patch function $D_S(F)(X) \to F(X)$ $u \mapsto u(1_X)$

If now F(X) is a presheaf of spaces/types

The equality $u(fg) \rightarrow u(f)g$ may only be given as a *path* equality u(f,g)

We should then ask a cocycle condition at the next level

and then higher equalities $u(f_1, \ldots, f_n)$

The compatible descent data still form a space $D_S(F)$

We require the map $F \rightarrow D_S(F)$ to be an *equivalence*

Theorem: The collection of stacks form a new model of univalent type theory with higher inductive types

Even for the trivial topology, this provides *new* models of type theory

Equivalence coincides with pointwise equivalence

 $D_S F(X) \to F(X)$

 $u \mapsto u(1_X)$

This might not be natural anymore

 $u(1_X)f$ may not be strictly equal to u(f)

How to organize these definitions?

Key fact: we have constructive models of univalence

Hence these models relativize automatically to *presheaf* models

We define stacks from these models using *left exact modalities*

How to define these left exact modalities?

Content of the talk

Part 1: abstract notion of descent data

frame/point-free space	model of univalent type theory
nucleus	lex modality
prenucleus	abstract notion of descent data
$x \leqslant p(x)$	well-pointed endofunctor D,η
$p(1) = 1 \qquad p(x \land y) = p(x) \land p(y)$	lex endofunctor
x = p(x)	η is an equivalence
frame of fixpoints	new model of univalent type theory

cf. Martín Escardó Joins in the frame of nucleus, 2003

Constructive Stacks?

Content of the talk

Part 2: examples of lex operations

We express in type theory the notion of endomorphism of *tribes*

Functor that preserves

terminal objects, fibrations, base change of fibrations and anodyne maps

We have a map $E: \mathcal{U} \to \mathcal{U}$ which defines a strict functor

A type theoretic function $T \rightarrow A$ is a *fibration* if it is strictly isomorphic, as a map over A, to some projection map $\Sigma_A B \rightarrow A$.

We express that E preserves fibrations by giving a map $L: E(\mathcal{U}) \to \mathcal{U}$

In this way from $B: A \rightarrow \mathcal{U}$ we can define

 $\tilde{E}(B) = L \circ E(B) : E(A) \to \mathcal{U}$

and we express that $E(\Sigma_A B) \to E(A)$ is isomorphic to $\Sigma_{E(A)} \tilde{E}(B) \to E(A)$, naturally in A

The map $E(1) \rightarrow 1$ should be a strict isomorphism

E also should preserve *equivalences*

This corresponds to the preservation of anodyne maps

If E is a lex operation we have a natural transformation $\eta_A : A \to E(A)$

This natural transformation is furthermore uniquely determined

We require $L \circ \eta_{\mathcal{U}} = E$

This implies that the (strict) gap map of the commuting diagram

$$T \xrightarrow{\eta_T} E(T)$$

$$\pi_B \downarrow \qquad \qquad \downarrow E(\pi_B)$$

$$A \xrightarrow{\eta_A} E(A)$$

where $T = \Sigma_A B$, is the map $\eta_{Ba} : Ba \to E(Ba)$ over A

E-modal types

We say that a type A is *E*-modal if the map $\eta_A : A \to E(A)$ is an equivalence

Family of *E*-modal types

Theorem: If *B* is a family of types over *A* then this is a family of *E*-modal types iff the strict commuting diagram

$$T \xrightarrow{\eta_T} E(T)$$

$$\pi_B \downarrow \qquad \qquad \downarrow E(\pi_B)$$

$$A \xrightarrow{\eta_A} E(A)$$

where $T = \sum_A B$, is a homotopy pullback diagram.

Family of *E*-modal types

Corollary: Families of E-modal types are closed by composition

Example

If R is a type then $E(A) = A^R$

We can define $L: E(\mathcal{U}) \to \mathcal{U}$ by $L(B) = \prod_R B$

E preserves fibrations and equivalences

The map $\eta_A: A \to A^R$ is defined by $\eta_A a x = a$

Example

Consider a (cubical) presheaf model over a small category CWe define E(A)(X) to be the set of families u(f) in A(Y) for $f: Y \to X$ $E(A)(X) = \prod_{f:Y \to X} A(Y)$

E preserves fibrations and equivalences

The map $\eta_A : A \to E(A)$ is defined by $(\eta_A \ a)(f) = af$

Abstract descent data

Definition: An abstract notion of descent data is a lex operation D, η such that there is a path between $\eta_{D(A)}$ and $D(\eta_A)$

Furthermore this path should be natural in A along fibrations

Well-pointed endofunctor up to homotopy

A is a *stack* for D if A is D-modal i.e. $\eta_A : A \to D(A)$ is an equivalence

Example

In general $D(A) = A^R$ may not be a notion of descent data

But this is the case if R is a *proposition*

Abstract descent data

This notion of abstract descent data can be seen as a higher version of the notion of *prenucleus* on a frame, i.e. a map such that $x \leq p(x)$ and p(1) = 1 and $p(x \wedge y) = p(x) \wedge p(y)$

The fixpoints of p form a frame

There is a least nucleus j such that $p \leq j$ and p and j have the same fixpoints

We are going to see a higher version of these results

First we show that the D-modal types form a model of type theory

Proposition 1: Family of stacks are preserved by **D**

 $T \rightarrow A$ family of stacks

$$D(T) \xrightarrow{\eta_{D(T)}} D^{2}(T)$$

$$D(\pi_{B}) \downarrow \qquad \qquad \downarrow D^{2}(\pi_{B})$$

$$D(A) \xrightarrow{\eta_{D(A)}} D^{2}(A)$$

should be homotopy pull-back

We know that this is the case for

$$D(T) \xrightarrow{D(\eta_T)} D^2(T)$$
$$D(\pi_B) \downarrow \qquad \qquad \downarrow D^2(\pi_B)$$
$$D(A) \xrightarrow{D(\eta_A)} D^2(A)$$

since D is lex and B is a family of stacks

Proposition 2: A is a stack iff η_A has a left homotopy inverse

We call such a left inverse a *patch* function

Theorem: The type $\mathcal{U}_S = \Sigma(X : \mathcal{U})$ is Stack(X) is a stack

We have a family of stacks $\pi_1 : \mathcal{U}_S \to \mathcal{U}$

Hence by Proposition 1, $D(\pi_1)$ is a family of \mathcal{U} -stacks over $D(\mathcal{U}_S)$

In this way we build a patch function $D(\mathcal{U}_S) \to \mathcal{U}_S$, using $L \circ \eta_U = D$

Application: left exact modality

D(A) may not be a stack in general

We define ${\it M}$ as a HIT

inc	1	$A \to M(A)$
patch	:	$D(M(A)) \to M(A)$
linv	:	$\Pi(x:M(A)) \operatorname{patch}(\eta_{M(A)}x) =_{M(A)} x$

Theorem: The pair M, isStack defines a left exact modality

This corresponds to the nucleus associated to a prenucleus obtained by (maybe) transfinite iteration

Application: left exact modality

Note that A is D-modal iff A is M-modal

Corresponds to the fact that, if j is the nucleus generated by a prenucleus p then p(x) = x iff j(x) = x

Application: left exact modality

We then get a model of univalent type theory

A type now a pair A, p where p is a proof that A is a stack

We can even interpret HIT, e.g. N is interpreted by

zero	:	N
SUCC	:	$N \rightarrow N$
patch	:	$D(N) \rightarrow N$
linv	:	$\Pi(x:N)$ patch $(\eta_N x) =_N x$

Consider a (cubical) presheaf model over a small category \mathcal{C}

We have defined $E(A)(X) = \prod_{f:Y \to X} A(Y)$

This defines a lex operation with a natural transformation $\eta: A \to E(A)$

 $(\eta a)(f) = af$ in A(Y) for $f: Y \to X$ and a in A(X)

In general, this might not define a *well-pointed* notion of descent data

We define D(A) from E(A)

An element u of D(A) is now a family $u(i_1, \ldots, i_n)$ in $E^{n+1}(A)$ which satisfies the *compatibility conditions*

We have v = u() in E(A) and then a path between ηv and $E(\eta) v$

 $u(0) = \eta v, u(1) = E(\eta) v$

Then we express the cocycle conditions between these paths

 $i = 0 \rightarrow u(i, j) = \eta u(j),$ $i = j \rightarrow u(i, j) = E(\eta)u(i),$ $j = 1 \rightarrow u(i, j) = E^2(\eta)u(i)$

and so on

```
This defines a new space D(A)
```

We get in this way an abstract notion of descent data

If we start instead from $E(A) = A^R$

What is an element an element of D(A)?

it should be a map $v : A \to R$ which is constant $v(r_1) = v(r_2)$ and with the cocycle conditions between these paths and so on

it is a coherently constant map, as defined in the PhD thesis of Nicolai Kraus,

hence to give such a map is to give an element of $||R|| \rightarrow A$

An element of $D^2(A)$ is a double sequence $v(\vec{i})(\vec{j})$

The proof that D is well-pointed is by defining

 $v_k(\vec{i})(\vec{j}) = u(k \wedge \vec{i}, k, k \vee \vec{j})$

a path between $D(\eta_A)(u)(\vec{i})(\vec{j})$ and $\eta_{D(A)}(u)(\vec{i})(\vec{j})$

We get in this way a model of univalent type theory on presheaves that are $D\-{\rm modals}$

For the "direct" presheaf model, it might be that each F(X) is contractible as a space but that F has no global point

An example: presheaves over $0 \le 1 \le 2 \le \ldots$

Let F(n) be the trivial groupoid on the set $n, n+1, n+2, \ldots$

The inclusion $F(n+1) \rightarrow F(n)$ is the restriction map

Then each F(n) is contractible but F has no global point

Another example over $G = \mathbb{Z}/2\mathbb{Z}$

Take the trivial groupoid $A = a \leftrightarrow b$ with a, b swapped by G

Then the map $A \rightarrow 1$ is an equivalence as a groupoid map

But A has no global points, so this is not a G-equivalence

Let A be a family of types over Γ in the presheaf model

Proposition: If each A(X) is a family of contractible types over $\Gamma(X)$ then D(A) has a section over Γ

Corollary: If each A(X) is a family of modal contractible types over $\Gamma(X)$ then A is contractible

Corollary: If A and B are D-modals and $\sigma : A \rightarrow B$ is a pointwise equivalence, then it is an equivalence

Application

Cf. the work of Matthew Weaver and Dan Licata

A Model of Type Theory with Directed Univalence in Bicubical Sets

Presheaf model

The obstacle there was precisely that a pointwise equivalence might not be in general a global equivalence

Hope: these new models solve this issue

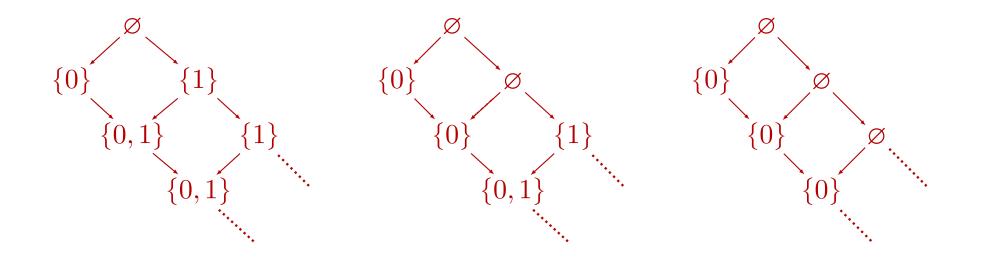
Application

Model of parametrised pointed type

This is the model over the walking retract

Example: Countable choice

We then can define a family of sets (stacks) A n, e.g. for A 0, A 1 and A 2



Example: Countable choice

 $\Pi(n:N)A \ n$ is (a proposition) is *not* globally inhabited and $||A \ n||$ is globally inhabited *because* of the stack condition

