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Sheaf models of type theory

Goal of the talk

Sheaf models of higher order logic have been fundamental for establishing
consistency of logical principles

E.g. consistency of Brouwer’s fan theorem

Or of the existence of the algebraic closure of a field (Joyal) or of some axioms
of non standard analysis (Moerdijk, Palmgren)

This also can be used to establish independence results

E.g. independence of the principle of countable choice

Origin: algebraic topology (Leray, Cartan) and logic (Beth, 1956)
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Sheaf models of type theory

Goal of the talk

Can we extend this notion of sheaf models to dependent type theory?

The problem is how to model the universes

⟨⟨The collection of sheaves don’t form a sheaf ⟩⟩

If we define F (V ) to be the collection of all U-sheaves on V then F is a
presheaf which is not a sheaf in general, since glueing will only be defined up to
isomorphism

This basic fact was the motivation for the notion of stacks
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Sheaf models of type theory

Goal of the talk

We present a possible version of the notion of sheaf model for dependent type
theory (“cubical” stacks)

It applies to type theory extended with the univalence axiom and higher
inductive types

Theorem 1: The principle of countable choice is independent of type theory
with the univalence axiom and propositional truncation

Theorem 2: Type theory with the univalence axiom and propositional
truncation is compatible with Brouwer’s fan theorem

This generalizes previous works with Bassel Mannaa and Fabian Ruch on the
groupoid model, and is the result of several discussions with Christian Sattler
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Sheaf models of type theory

Countable choice

Π(A ∶ N→ U) (Π(n ∶ N) ∥A n∥)→ ∥Π(n ∶ N)A n∥

In this statement ∥T ∥ denotes the propositional truncation of T

We are going to build a model with a particular family A where

-the hypothesis Π(n ∶ N) ∥A n∥ holds

-the conclusion ∥Π(n ∶ N)A n∥ does not hold
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Sheaf models of type theory

Presheaf model of type theory

We work in a (constructive) set theory with universes U0 ∈ U1 ∈ ⋅ ⋅ ⋅ ⊆ Uω

We have a base category C in U0

We write I, J,K, . . . the objects of C

Y o(I) denotes the presheaf represented by I

Define the set of contexts Γ,∆, . . . to be the set of Uω-presheaves on C

Typen(Γ) set of Un-presheaves on the category of elements of Γ

Elem(Γ,A) set of global sections of A ∈ Typen(Γ)
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Sheaf models of type theory

Presheaf model of type theory

Composition gives a substitution operation Aσ in Typen(∆) if σ ∶ ∆→ Γ

Similarly, we define aσ in Elem(∆,Aσ) if a is in Elem(Γ,A) and σ ∶ ∆→ Γ

We have a canonical context extension operation Γ.A for A in Typen(Γ)

p ∶ Γ.A→ Γ and q in Elem(Γ.A,Ap)

Any Un-presheaf F defines a constant family F ∈ Typen(Γ)
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Sheaf models of type theory

Presheaf model of type theory

We have a natural product operation

Π(A,B) ∈ Typen(Γ) if A ∈ Type(Γ) and B ∈ Type(Γ.A)

Furthermore Π(A,B)σ = Π(Aσ,B(σp, q))

We also have

an abstraction operation λ b ∈ Elem(Γ,Π(A,B)) for b ∈ Elem(Γ.A,B)

and an application operation app(c, a) in Elem(Γ,B[a]) whenever c is in
Elem(Γ,Π(A,B)) and a in Elem(Γ,A)

satisfying the required equations
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Sheaf models of type theory

Presheaf model of type theory: universes

Typen with substitution defines a presheaf on the category of contexts

It is continuous and hence representable by Un(I) = Typen(Y o(I))

We have natural bijections Typen(Γ) ≃ Γ→ Un ≃ Elem(Γ, Un)
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Sheaf models of type theory

Base category

There are several possible choices for the base category

We can take the Lawvere category associated to the equational theory of
bounded distributive lattices or de Morgan algebra, or Boolean algebra

The morphisms of the base category can be thought of as substitutions

We can also take the category of nonempty finite sets and arbitrary maps

In this case, we get symmetric simplicial sets
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Sheaf models of type theory

Base category

What matters is that we have a segment i.e. a presheaf I with two distinct
elements 0 and 1 satisfying

(1) I has a connection structure, i.e. maps (∧), (∨) ∶ I → × → I satisfying
x ∧ 1 = x = 1 ∧ x, x ∧ 0 = 0 = 0 ∧ x and x ∨ 1 = 1 = 1 ∨ x, x ∨ 0 = x = 0 ∨ x and

(2) We have a functor J+ on C with a natural isomorphism Y o(J+) ≃ Y o(J)×I

We get a notion of path by exponentiation to this interval I

In order to define a notion of ⟨⟨open boxes ⟩⟩, we need a further notion of
cofibrations
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Sheaf models of type theory

Complete Cisinski model structures

We can always take as cofibrations the monomorphisms m ∶ A→ B such that
each mI ∶ A(I)→ B(I) has decidable image

This corresponds to the choice F(J) = decidable sieves on J

Classically this is the same as taking all monomorphims as cofibrations

Given a notion of segment Cisinski has shown how to define a model structure
where cofibrations are monomorphisms

This does not use the hypotheses (1) and (2) on the segment
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Sheaf models of type theory

Complete Cisinski model structures

Christian Sattler has also shown (using what I will present next) how to define
another model structure, under the hypotheses (1) and (2), which has the same
notion of fibrant objects and (classically) cofibrations as the one of Cisinski model
structure

It follows that it coincides with Cisinski model structure and provides a proof
that this class of Cisinski model structures are complete

In general the notion of cofibration will be given by a subpresheaf of Ω

QUESTION: do some of these model structures represent the standard
homotopy theory of CW complexes?
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Sheaf models of type theory

⟨⟨ Inner ⟩⟩ models

Using the segment I and a notion of cofibrations, we can define a set of ⟨⟨filling
structures ⟩⟩ Fill(Γ,A)

An element of Fill(Γ,A) represents a generalized ⟨⟨path lifting ⟩⟩ operation for
the projection p ∶ Γ.A→ Γ

It expresses that the type of all path liftings is contractible (for a given path
in the base and starting point)

It can also be seen as a (generalized) open box filling operation

pA ∶ Γ.A→ Γ is a (naive) fibration if, and only if A has a filling structure
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Sheaf models of type theory

⟨⟨ Inner ⟩⟩ models

Define Fibn(Γ) in Un+1

Fibn(Γ) set of pairs (X,c) with X ∈ Typen(Γ) and c ∈ Fill(Γ,X)

ElemF(Γ, (X,c)) = Elem(Γ,X)

We get a new ⟨⟨proof relevant ⟩⟩ inner model of the presheaf model
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Sheaf models of type theory

⟨⟨ Inner ⟩⟩ models

We can lift the product operation at this level

π(cA, cB) ∈ Fill(Γ,Π(A,B)) if cA ∈ Fill(Γ,A) and cB ∈ Fill(Γ.A,B)

Furthermore π(cA, cB)σ = π(cAσ, cB(σp, q))

We can define a product operation for this new model

Π((A, cA), (B, cB)) = (Π(A,B), π(cA, cB))

We don’t need to change the abstraction and application operations

ElemF(Γ, (X,c)) = Elem(Γ,X) Γ.(X,c) = Γ.X
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Sheaf models of type theory

⟨⟨ Inner ⟩⟩ models

What about universes?

Fibn is continuous and hence representable by Fn(I) = Fibn(Y o(I))

We have a natural isomorphism Γ→ Fn ≃ Fibn(Γ)

We can then build cn in Fill(Γ, Fn)

In this way we define Un = (Fn, cn) in Fibn+1(Γ)

Theorem: We get a model of type theory with the univalence axiom and
higher inductive types
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Sheaf models of type theory

⟨⟨ Inner ⟩⟩ models

The definition of the set Fill(Γ,A) depends on the interval and of the notion
of cofibrations which can be seen as a subpresheaf F of Ω

If we take for F(I) all decidable sieves on I we get classically all
monomorphisms
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Sheaf models of type theory

Differences with the simplicial set model

A type in the new model is a presheaf together with a Kan operation

For this model Fib(Γ,A) is not a subset of Type(Γ,A)

For the simplicial set model

-to be a Kan fibration is a property and not a structure

-axiom of choice seems needed to prove that the universe of Kan types is Kan
(at least all known arguments so far use choices)
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Sheaf models of type theory

Differences with the simplicial set model

An element of Fill(Γ,A) can be thought of as an explicit filling operation

It fills a given open box in A over a filled box in Γ

If A,B are in Type(Γ) with given filling operations there is thus a notion of
structure preserving maps w ∶ A→ B which is a property of such a map

We are going next to use the Kan structure to define a new notion of stacks
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Sheaf models of type theory

Presheaf extension of the cubical set model

The cubical set model generalizes automatically to any presheaf extensions

Given another category D in U0 with objects X,V,L, . . . we now define a
context as being a Uω-presheaf on D × C

A context Γ is given by a family of sets Γ(X ∣I) in Uω with restriction maps

Given X we can consider the cubical set Γ(X) ∶ I ↦ Γ(X ∣I)
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Sheaf models of type theory

Presheaf extension of the cubical set model

ID(X ∣J) = I(J) defines a segment

There are several choices for the cofibrations FD

We can take

CHOICE 1: FD(X ∣J) = F(J)

CHOICE 2: FD(X ∣J) all decidable sieves on X ∣J
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Sheaf models of type theory

Two basic examples

Sierpinski’s space

X A(X)

V

6

A(V )

?

To analyse the notion of presheaf
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Sheaf models of type theory

Two basic examples

X A(X)

V0

-

V1

�

A(V0)
�

A(V1)
-

V01

-
�

A(V01)
�

-

To analyse the notion of sheaf
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Sheaf models of type theory

Example 0

Sierpinski’s space

X A(X)

V

6

A(V )

?

A diagram and an associated “cubical presheaf”
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Sheaf models of type theory

Example 0

For CHOICE 1, a Kan structure for A consists in

-a Kan structure for each cubical set A(X),A(V )

-the property that each restriction maps are structure preserving

Note that, for CHOICE 1, the map A(X) → A(V ) does not need to be a
fibration (i.e. may not have a fibration structure)

Presheafs with such Kan structures still form a model of type theory with
univalence and higher inductive types
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Sheaf models of type theory

Example 0

For CHOICE 2 we add the new open box of (X,J) × I

(V,J) × I ∪ (X,J ∣ψ) × I ∪ (X,J) × 0

and this implies that A(X)→ A(V ) is a fibration
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Sheaf models of type theory

Example 0

The nerve of any groupoid has a filling structure for CHOICE 1

X 0

V

6

0↶
À

1
?

The nerve of this particular groupoid has no filling structure for CHOICE 2

27



Sheaf models of type theory

Example 1

X A(X)

V0

-

V1

�

A(V0)
�

A(V1)
-

V01

-
�

A(V01)
�

-

A diagram and an associated “cubical presheaf”

Restriction maps are cubical set maps; it is natural to write these maps as
u↦ u∣V0, A(X)→ A(V0) with (u∣V0)∣V01 = (u∣V1)∣V01 = u∣V01
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Sheaf models of type theory

Example 1

In both CHOICES 1 and 2, A Kan structure for A will define

-a Kan structure for each cubical set A(X),A(V0),A(V1),A(V01)

-the property that each restriction maps are structure preserving

with for CHOICE 2, some extra conditions: the square has to be reedy fibrant

Presheafs with such Kan structures still form a model of type theory with
univalence and inductive types

29



Sheaf models of type theory

Descent data

We now want to express that X is covered by V0 and V1

We first define the presheaf of descent data D(A)

An element of D(A)(X ∣I) is of the form (u0, u1, u01) with u0 ∈ A(V0∣I) and
u1 ∈ A(V1∣I) and u01 a path u0∣V01 → u1∣V01

Note that we only require a path between u0 and u1 and not a strict equality
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Sheaf models of type theory

Descent data and stacks

Christian Sattler noticed that we have a canonical isomorphism D(A) ≃ AF

where F is the cubical presheaf

∅

{0}
�

{1}
-

I�
-

This provides a simple proof that D lifts at the level of Kan structure
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Sheaf models of type theory

Descent data and stacks

We have a canonical map mA ∶ A→D(A)

A stack structure for A is then an equivalence structure for this map

Remark: D defines a (strict) monad, which is idempotent in the sense that
mD(A) and D(mA) are path equal

This is a (new) example of a left exact modality as studied by Egbert Rijke,
Mike Shulman and Bas Spitters
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Sheaf models of type theory

Descent data and stacks

∅ ∅

{0}
�

{1}
-

{0}
�

{1}
-

0↶
À

1
�

-

{0,1}
�

-

The first example is not a stack, the second example is a stack (a set)
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Sheaf models of type theory

Descent data and stacks

The notion of stack structure is internally defined S(A) = isEquiv mA

A stack structure is an element of ElemF(Γ, S(A))

Stack structures lift to dependent products and sums (can be proved internally)
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Sheaf models of type theory

Descent data and stacks

Also we can prove S(Σ(X ∶ Un)S(X))

The proof uses univalence in an essential way

We can define a map Ln ∶D(Un)→ Un (dependent product) which satisfies

Ln(mUn(A)) =D(A)

This implies that Ln is a left inverse of m on types that have a stack structure,
since then D(A) and A are equal by univalence, and hence that Ln is homotopy
inverse of m since D is idempotent
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Sheaf models of type theory

Stack model

Define Stackn(Γ) to be the set of pairs (A,s)

A ∈ Fib(Γ) and s ∈ ElemF(Γ, S(A))

Define ElemS(Γ, (A,s)) to be ElemF(Γ,A)

We get in this way a model of type theory

This model still satisfies univalence and interprets higher inductive types

This works both for CHOICES 1 and 2
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Sheaf models of type theory

Stack model

The following constant presheaf is a stack

N

N
�

N
-

N
�

-
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Sheaf models of type theory

Example 2: Countable choice

We now consider the following space, where Xn is covered by Ln and Xn+1

X0

L0

-

X1

�

L1

-
�

X2

�

L2

-
� .........

.........
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Sheaf models of type theory

Example 2: Countable choice

We now have a family of idempotent monads, indexed by the coverings

We have a presheaf Cov on the given space X

We have a family Dc of idempotent monads over Cov

The notion of stacks generalize and form a model of type theory

39



Sheaf models of type theory

Example 2: Countable choice

We then can define a family of sets (stacks) A n, e.g. for A 0, A 1 and A 2

∅ ∅ ∅

{0}
�

{1}
-

{0}
�

∅

-

{0}
�

∅

-

{0,1}
�

-

{1}
-

{0}
�

-

{1}
-

{0}
�

-

∅

-

{0,1}
�

-
........

{0,1}
�

-
........

{0}
�

-

..........
.........

.........
........

40



Sheaf models of type theory

Example 2: Countable choice

Π(n ∶ N)A n is (a proposition) is not globally inhabited and ∥A n∥ is globally
inhabited because of the stack condition

∅

{0}
�

∅

-

{0}
�

-

∅

-

{0}
�

-
..........

........
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Sheaf models of type theory

Example 2: Countable choice

This model provides thus an explicit counter-example to countable choice

Note the use of a non well-founded diagram

Not clear how this can be adapted (classically) to the setting of simplicial sets
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Sheaf models of type theory

Example 3: Markov principle

Let C be the Boolean algebra corresponding to Cantor space

The base category is the poset of nonzero elements of C

A covering is a partition of unity. Note that all covering are disjoint (no
compatibility conditions), and that Dc(A) ≃ AFc where each Fc is a subsingleton
of the presheaf model

Theorem: Markov’s principle does not hold in the corresponding stack model
of type theory. Actually, its negation holds (Bassel Mannaa).

Corollary: Markov’s principle cannot be proved in type theory with univalence
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Sheaf models of type theory

Example 4: Fan theorem

Let Dop be a full subcategory of the category of Boolean algebra having for
objects localizations of finite power of C

A covering of an object is given by a partition of unity and corresponding
localizations (Zariski topology)

Lemma: 2(B∣J) = B and 2N is represented by (C,∅)

Theorem: Brouwer’s fan theorem holds in the corresponding stack model of
type theory
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