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Infinite objects in constructive mathematics

Content of the tutorial

Lecture I: Hilbert’s program, prime ideals, Zariski spectrum, Alaoglu (unit ball
for the weak* topology), Hahn-Banach, spectrum of an lattice ordered group

Lecture II: Stone-Yosida representation theorem, Prüfer ring, space of
valuations, Riemann surfaces, cohomological definition of the genus of a curve

formal space = distributive lattice (almost)
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Infinite objects in constructive mathematics

Hilbert’s program

In mathematics, success of non effective methods to prove concrete statements

concrete: existence of a “finitary” object satisfying a decidable property

2



Infinite objects in constructive mathematics

Hilbert’s program

Examples: Dirichlet Theorem proved with complex analysis, or

Theorem (Krivine): If P ∈ Q[x1, . . . , xk] is > 0 on [0, 1]n then it can be
written as a polynomial in xi, 1− xi with rational positive coefficients

This is also proved with the Axiom of Choice

It is not true if P is only ≥ 0: take (2x− 1)2

(but it works for (2x− 1)2 + ε if ε > 0)
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Hilbert’s program

Whenever we use “ideal methods” to prove a concrete statement we should
be able to explain the use of these ideal methods and replace this argument by a
proof which has a direct algorithmic content

In particular, if we prove the existence of an object, this proof should give us
a way to find this object

“ideal methods”: Axiom of Choice, prime ideals
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Analogy with physics

Prime ideals were introduced by Kummer by analogy with chemistry

“These ideal complex numbers are comparable to hypothetical radicals that
do not exist by themselves, but only in their combinations.”

Kummer gave then an example of an element that, at the time, existed only
hypothetically comparable to a prime ideal (this element was isolated later)

We describe the elements/atoms (points) by their observable properties

They should be thought of as symbols
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Formal topology

Formal topology gives a way to precise the status of infinite/ideal objects in
constructive mathematics

Ideal objects form a formal space

This space is described as the logical theory of the observable properties of
these infinite objects; generalisation of domain theory
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Zariski spectrum

R commutative ring

The prime filters (classically complement of prime ideals) may be very difficult
to build (prime factorisation), but it is simple to describe their logical theory of
“observable” properties

Joyal’s definition: free distributive lattice generators D(a), thought of as a
pure symbols, and relations

D(0) = 0, D(1) = 1, D(ab) = D(a) ∧D(b), D(a + b) ≤ D(a) ∨D(b)
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Zariski spectrum

We have a complete description of this free lattice: this is the lattice of radical
of finitely generated ideals; we write D(a1, . . . , an) for D(a1) ∨ · · · ∨D(an)

It is always a distributive lattice; the product is also the intersection

In general the lattice of (finitely generated) ideals of a ring is not distributive:
take in Z[X, Y ] the ideals <X>, <Y > and <X + Y >

A ring is arithmetical iff its lattice of ideals is distributive
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Zariski spectrum, application

Gauss-Joyal identity: D(a1, . . . , an) ∧ D(b1, . . . , bm) = D(c1, . . . , cl) if
(ΣaiX

i)(ΣbjX
j) = ΣckX

k

Application: the product of primitive polynomials (ideal of coefficient is 1) if
primitive

More generally c(PQ) = c(P )c(Q) if c(a0 + · · ·+ anXn) = D(a0, . . . , an)

Other applications: Krull dimension, basic theory of finitely generated
projective modules (Serre 1958)
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Topological space

Classically the Zariski spectrum is the set of prime ideals with basic open

D(a) set of ideals which do not contain a

This is a space which is not Haussdorf in general

Introduced by Zariski; Serre showed it can be used for cohomology; used for
arbitrary rings by Grothendieck
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Points

A point of a lattice L is classically a lattice map Sp(L) = L → 2

Any map f : L1 → L2 defines by composition f∗ : Sp(L2) → Sp(L1)
f∗(φ) = φf

We do not get in this way all continuous maps Sp(L2) → Sp(L1)

Theorem: f∗ is surjective iff f is conservative, i.e. a ≤ b iff f(a) ≤ f(b)

Thus extension theorems becomes formally conservativity results

11



Infinite objects in constructive mathematics

Hahn-Banach (Mulvey)

We consider a Q-vector space E

Normable in the following sense: we have subsets N(r) for r rational > 0
(intuitively x ∈ N(r) iff |x| < r, but |x| is not a Dedekind real)

The axioms are

∃r > 0.x ∈ N(r), x ∈ N(r) → ∃s < r.x ∈ N(s)

0 ∈ N(r), x ∈ N(r) → −x ∈ N(r)

x ∈ N(r) ∧ y ∈ N(s) → x + y ∈ N(r + s)
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Hahn-Banach

Free distributive lattice W (E) with generators [u(x) < r], symbols with
relations

[u(x + y) < r + s] ≤ [u(x) < r] ∨ [u(y) < s]

[u(x) < r] ∧ [u(−x) < −r] = 0

[u(x) < r] = 1 if x ∈ N(r)

We can then prove in this theory

[u(x) < r] ∧ [u(y) < s] ≤ [u(x + y) < r + s]
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Hahn-Banach

Theorem: If E1 ⊆ E2 then the map W (E1) → W (E2) is conservative

This is a simple consequence of the following result

Lemma: ∧[u(xi) < ri] ≤ ∨[u(yj) < sj] iff there exists rationals ai, bj ≥ 0
such that Σaixi = Σbjyj and Σairi ≤ Σbjsj and Σbj > 0
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From lattices to compact regular spaces

To get the formal space Fn(E) of the unit ball for the weak∗ topology we
need to add the further (infinitary) condition

[u(x) < r] =
∨

s<r[u(x) < s]

(We then restrict the space to the maximal points)

Definition: A lattice is normal iff whenever a ∨ b = 1 there exists x, y such
that x ∧ y = 0, a ∨ x = b ∨ y = 1. A lattice is strongly normal iff for any a, b
there exists x, y such that a ≤ b ∨ x and b ≤ a ∨ y

Lemma: A strongly normal lattice is normal
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From lattices to compact regular spaces

Proposition: The lattice W (E) is strongly normal

Enough to check the condition on generators of the lattice

Any normal lattice defines a compact regular space in a canonical way. If we
apply this construction to W (E) we get the space Fn(E)

Corollary: If E1 ⊆ E2 then the map Fn(E1) → Fn(E2) is conservative

This is the formal version of Hahn-Banach
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Geometric Hahn-Banach

K totally bounded subset of E

Theorem: If we have in the theory Fn(E) that [u(x) < r] ≤ ∨y∈K[u(y) < r]
then x belongs to the compact convex hull of K

This is the formal version of a geometrical form of Hahn-Banach’s Theorem
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Lattice group

Assume that the vector space E is an ordered space which is a lattice
(automatically distributive) and that it contains a special element 1 which is a
strong unit: for all a ∈ E, there exists n such that a ≤ n.1

Then we can define N(r)

We can define the space of integrals I(E): points of Fn(E) such that
u(1) = 1

We can replace u(a) < r by 0 < u(r.1− a).

Generators I(a) and relations I(a) = 0 if a ≤ 0 and

I(a) ∧ I(−a) = 0, I(a + b) ≤ I(a) ∨ I(b), I(1) = 1
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Spectrum of a lattice group

We take the generators D(a) and same relations

D(a) = 0 if a ≤ 0

D(a) ∧D(−a) = 0, D(a + b) ≤ D(a) ∨D(b), D(1) = 1

We get a strongly normal lattice Sp(E)

We add the relation D(a) = ∨r>0D(a− r)

We get a compact space X = Spr(E). The space I(E) can be thought of as
the space of probability measure on X
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Spectrum of a lattice group

We have a complete description of Sp(E)

We take the set P elements that are ≥ 0 in E

We define the new relations a ≤′ b iff there exists n such that a ≤ n.b

P for this relation is a distributive lattice, and this is a concrete description of
Sp(E)

Corollary: We have D(a) = 1 in Sp(E) iff there exists n such that 1 ≤ na.
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