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Infinite objects in constructive mathematics

Riesz space

Assume that the vector space E is an ordered space which is a lattice
(automatically distributive) and that it contains a special element 1 which is a
strong unit: for all a ∈ E, there exists n such that a ≤ n.1

Example: C([0, 1])

Then we can define N(r) by x ∈ N(p/q) iff qx ≤ p.1 and −qx ≤ p.1

No reason why |x| = inf {r | x ∈ N(r)} should computable (Dedekind real)

x is normable iff |x| is a Dedekind real
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Riesz space

We can define the space of integrals I(E): points of Fn(E) such that
u(1) = 1

We can replace u(a) < r by 0 < u(r.1− a).

Generators I(a) and relations I(a) = 0 if a ≤ 0 and

I(a) ∧ I(−a) = 0, I(a + b) ≤ I(a) ∨ I(b), I(1) = 1

I(a) =
∨

r>0 I(a− r.1)
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Spectrum of a Riesz space

We take the generators D(a) and same relations

D(a) = 0 if a ≤ 0

D(a) ∧D(−a) = 0, D(a + b) ≤ D(a) ∨D(b), D(1) = 1

with the extra condition D(a ∨ b) = D(a) ∨D(b)

We get a strongly normal lattice Sp(E),

We add the relation D(a) = ∨r>0D(a− r)

We get a compact space X = Spr(E), subspace of I(E). The space I(E)
can be thought of as the space of probability measure on X
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Spectrum of a Riesz space

We have a complete description of Sp(E); notice that a ∈ (p, q) is definable
as D(a− p.1) ∧D(q.1− b) = D((a− p.1) ∧ (q.1− a))

We take the set P elements that are ≥ 0 in E

We define the new relations a ≤′ b iff there exists n such that a ≤ n.b

P for this relation is a distributive lattice, and this is a concrete description of
Sp(E)

Corollary: We have D(a) = 1 in Sp(E) iff there exists n such that 1 ≤ na.
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Real spectrum of a Riesz space

If X = Spr(E) then X is compact regular

There is a dense norm preserving injection E → C(X) (Stone-Weirstrass)

This is a representation theorem

X is overt iff all elements of E are normable i.e. for all x ∈ E we have that
|x| is a Dedekind real

Using this, one can obtain a proof of Gelfand representation theorem (for
commutative algebra of operators) in Bishop style mathematics, simpler than
Bishop-Bridges’ proof
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Space of valuations

Let L be a field (constructively x = 0 ∨ ∃y.xy = 1)

We want a formal space whose points are the valuation rings of L

[x ∈ A] ∧ [y ∈ A] ≤ [x + y ∈ A] ∧ [xy ∈ A]

1 = [x ∈ A] ∨ [1/x ∈ A] if x 6= 0

Interpret [x ∈ A] symbolically: take the distributive lattice generated by these
conditions

This defines a formal spectral space V (L)

6



Infinite objects in constructive mathematics

Space of valuations

More generally if R is a subring of L we define the space VR(L) of valuation
rings containing R by the theory

[x ∈ A] ∧ [y ∈ A] ≤ [x + y ∈ A] ∧ [xy ∈ A]

1 = [x ∈ A] ∨ [1/x ∈ A] if x 6= 0

1 = [x ∈ A] if x ∈ R
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Space of valuations

Theorem: We have [x1 ∈ A] ∧ · · · ∧ [xn ∈ A] ≤ [x ∈ A] in the space VR(L)
iff x is integral over R[x1, . . . , xn]

In term of points: the intersection of all valuation rings containing x1, . . . , xn

is the set of elements integral over R[x1, . . . , xn]
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Space of valuations and Zariski spectrum

Let R be an integral domain and L = Frac(R)

Theorem: The lattice map D(x) 7−→ [1/x ∈ A] for x 6= 0 from the lattice
Zar(R) to the lattice VR(L) is conservative

This is called the center map

Theorem: If R is arithmetical the center map is an isomorphism

R arithmetical iff the lattice of ideals is distributive iff for any x, y we can find
u, v, w such that xu = yw, y(1− u) = xv
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Riemann surface

Dedekind-Weber (1882); one early point-free description of a space

Let L = Q(x, y) with y2 = 1− x4

We can consider the space X of valuation rings containing Q

This is a spectral space, and it has a formal covering X = U0 ∪ U1

U0 = [x ∈ A] U1 = [1/x ∈ A]
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Riemann surface

R0 integral closure of Q[x] in L

R1 integral closure of Q[1/x] in L

Theorem: R0 and R1 are arithmetical ring

Corollary: U0 ≡ Zar(R0) and U1 ≡ Zar(R1)
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Towards formal sheaf theory

Over a space Zar(R) we have a sheaf of rings, called the structure sheaf
O(D(a)) = R[1/a]

If R integral domain we have O(D(a1, . . . , an)) = R[1/a1] ∩ · · · ∩R[1/an]

The sheaf glueing property is what Henri calls the local-global principle

The structure Zar(R),O is called a (formal) affine scheme
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Towards formal sheaf theory

Over the space X of valuations there is a natural sheaf

F([u1 ∈ A] ∧ · · · ∧ [un ∈ A]) is the integral closure of Q[u1, . . . , un]

The fiber at the point A is the ring A itself!

Over the open U0 = [x ∈ A] the sheaf F reduces to the structure sheaf over
the ring R0

Over the open U1 = [1/x ∈ A] the sheaf F reduces to the structure sheaf
over the ring R1.

We have a most natural example of a scheme: glueing of two affine scheme
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Towards formal sheaf theory

Notice that the global sections of this sheaf are exactly the elements of Q
since O(U0) is elements integral over Q[x] and O(U1) are elements integral over
Q[1/x]

This shows that this sheaf is not isomorphic to a structure sheaf of a ring

Indeed the global sections over a structure sheaf Zar(R),O form a ring
isomorphic to R itself
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Towards formal (Cech) cohomology

If we have a space X with a covering X = U0 ∪ U1 and a sheaf F we can
consider the map

F(U0)⊕F(U1) → F(U0 ∩ U1)

(a0, a1) 7−→ a1|U0∩U1
− a0|U0∩U1

We define H1(U0, U1) the coker of this map

We say that X,F is acyclic iff H1(U0, U1) = 0 for any covering U0, U1: any
b ∈ O(U0 ∩ U1) can be written of the form a1|U0∩U1

− a0|U0∩U1
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Towards formal cohomology

Theorem: Any structure sheaf is acyclic

Theorem: If X = U0 ∪ U1 = V0 ∪ V1 and Ui, Vj are acyclic then H1(U0, U1)
and H1(V0, V1) are isomorphic (as abelian group)
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Towards formal cohomology

In this way one can define the genus of L = Q(x, y) as the dimension of the
Q vector space H1([x ∈ A], [1/x ∈ A]) = H1(X,O)

This is an invariant of L and is equal to 1 (y/x is a generator)

It does not depend on the choice of the parameter x

Theorem: Over the field K = Q(t) we have H1([t ∈ A], [1/t ∈ A]) = 0

Corollary: It is impossible to write L of the form Q(t) with t ∈ L
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