Infinite objects in constructive mathematics

Thierry Coquand

May 8 2007

Riesz space

Assume that the vector space E is an ordered space which is a lattice (automatically distributive) and that it contains a special element 1 which is a strong unit: for all $a \in E$, there exists n such that $a \le n.1$

Example: C([0,1])

Then we can define N(r) by $x \in N(p/q)$ iff $qx \le p.1$ and $-qx \le p.1$

No reason why $|x| = \inf \{r \mid x \in N(r)\}$ should computable (Dedekind real)

x is normable iff |x| is a Dedekind real

Riesz space

We can define the space of integrals I(E): points of Fn(E) such that u(1)=1

We can replace u(a) < r by 0 < u(r.1 - a).

Generators I(a) and relations I(a) = 0 if $a \le 0$ and

$$I(a) \wedge I(-a) = 0, \quad I(a+b) \le I(a) \vee I(b), \qquad I(1) = 1$$

$$I(a) = \bigvee_{r>0} I(a - r.1)$$

Spectrum of a Riesz space

We take the generators D(a) and same relations

$$D(a) = 0$$
 if $a \le 0$

$$D(a) \wedge D(-a) = 0, \quad D(a+b) \le D(a) \vee D(b), \quad D(1) = 1$$

with the extra condition $D(a \lor b) = D(a) \lor D(b)$

We get a strongly normal lattice Sp(E),

We add the relation $D(a) = \vee_{r>0} D(a-r)$

We get a compact space $X = Sp_r(E)$, subspace of I(E). The space I(E) can be thought of as the space of probability measure on X

Spectrum of a Riesz space

We have a complete description of Sp(E); notice that $a \in (p,q)$ is definable as $D(a-p.1) \wedge D(q.1-b) = D((a-p.1) \wedge (q.1-a))$

We take the set P elements that are ≥ 0 in E

We define the new relations $a \leq' b$ iff there exists n such that $a \leq n.b$

 ${\cal P}$ for this relation is a distributive lattice, and this is a concrete description of Sp(E)

Corollary: We have D(a) = 1 in Sp(E) iff there exists n such that $1 \le na$.

Real spectrum of a Riesz space

If $X = Sp_r(E)$ then X is compact regular

There is a dense norm preserving injection $E \to C(X)$ (Stone-Weirstrass)

This is a representation theorem

X is *overt* iff all elements of E are *normable* i.e. for all $x \in E$ we have that |x| is a Dedekind real

Using this, one can obtain a proof of Gelfand representation theorem (for commutative algebra of operators) in Bishop style mathematics, simpler than Bishop-Bridges' proof

Space of valuations

Let L be a field (constructively $x = 0 \lor \exists y.xy = 1$)

We want a formal space whose points are the valuation rings of L

$$[x \in A] \land [y \in A] \le [x + y \in A] \land [xy \in A]$$

$$1 = [x \in A] \vee [1/x \in A] \text{ if } x \neq 0$$

Interpret $[x \in A]$ symbolically: take the distributive lattice generated by these conditions

This defines a formal spectral space V(L)

Space of valuations

More generally if R is a subring of L we define the space $V_R(L)$ of valuation rings containing R by the theory

$$[x \in A] \land [y \in A] \le [x + y \in A] \land [xy \in A]$$

$$1 = [x \in A] \vee [1/x \in A] \text{ if } x \neq 0$$

$$1 = [x \in A] \text{ if } x \in R$$

Space of valuations

Theorem: We have $[x_1 \in A] \land \cdots \land [x_n \in A] \leq [x \in A]$ in the space $V_R(L)$ iff x is integral over $R[x_1, \ldots, x_n]$

In term of points: the intersection of all valuation rings containing x_1, \ldots, x_n is the set of elements integral over $R[x_1, \ldots, x_n]$

Space of valuations and Zariski spectrum

Let R be an integral domain and L = Frac(R)

Theorem: The lattice map $D(x) \longmapsto [1/x \in A]$ for $x \neq 0$ from the lattice Zar(R) to the lattice $V_R(L)$ is conservative

This is called the *center* map

Theorem: If R is arithmetical the center map is an isomorphism

R arithmetical iff the lattice of ideals is distributive iff for any x,y we can find u,v,w such that $xu=yw,\ y(1-u)=xv$

Riemann surface

Dedekind-Weber (1882); one early point-free description of a space

Let
$$L = \mathbb{Q}(x, y)$$
 with $y^2 = 1 - x^4$

We can consider the space X of valuation rings containing $\mathbb Q$

This is a spectral space, and it has a formal covering $X=U_0\cup U_1$

$$U_0 = [x \in A] \quad U_1 = [1/x \in A]$$

Riemann surface

 R_0 integral closure of $\mathbb{Q}[x]$ in L

 R_1 integral closure of $\mathbb{Q}[1/x]$ in L

Theorem: R_0 and R_1 are arithmetical ring

Corollary: $U_0 \equiv Zar(R_0)$ and $U_1 \equiv Zar(R_1)$

Towards formal sheaf theory

Over a space Zar(R) we have a sheaf of rings, called the *structure* sheaf $\mathcal{O}(D(a))=R[1/a]$

If R integral domain we have $\mathcal{O}(D(a_1,\ldots,a_n))=R[1/a_1]\cap\cdots\cap R[1/a_n]$

The sheaf glueing property is what Henri calls the local-global principle

The structure Zar(R), \mathcal{O} is called a (formal) *affine* scheme

Towards formal sheaf theory

Over the space X of valuations there is a natural sheaf

$$\mathcal{F}([u_1 \in A] \land \cdots \land [u_n \in A])$$
 is the integral closure of $\mathbb{Q}[u_1, \ldots, u_n]$

The fiber at the point A is the ring A itself!

Over the open $U_0=[x\in A]$ the sheaf ${\mathcal F}$ reduces to the structure sheaf over the ring R_0

Over the open $U_1 = [1/x \in A]$ the sheaf \mathcal{F} reduces to the structure sheaf over the ring R_1 .

We have a most natural example of a scheme: glueing of two affine scheme

Towards formal sheaf theory

Notice that the global sections of this sheaf are exactly the elements of \mathbb{Q} since $\mathcal{O}(U_0)$ is elements integral over $\mathbb{Q}[x]$ and $\mathcal{O}(U_1)$ are elements integral over $\mathbb{Q}[1/x]$

This shows that this sheaf is not isomorphic to a structure sheaf of a ring

Indeed the global sections over a structure sheaf $Zar(R), \mathcal{O}$ form a ring isomorphic to R itself

Towards formal (Cech) cohomology

If we have a space X with a covering $X=U_0\cup U_1$ and a sheaf $\mathcal F$ we can consider the map

$$\mathcal{F}(U_0) \oplus \mathcal{F}(U_1) \to \mathcal{F}(U_0 \cap U_1)$$

$$(a_0, a_1) \longmapsto a_{1|U_0 \cap U_1} - a_{0|U_0 \cap U_1}$$

We define $H^1(U_0, U_1)$ the coker of this map

We say that X, \mathcal{F} is acyclic iff $H^1(U_0, U_1) = 0$ for any covering U_0, U_1 : any $b \in \mathcal{O}(U_0 \cap U_1)$ can be written of the form $a_1|_{U_0 \cap U_1} - a_0|_{U_0 \cap U_1}$

Towards formal cohomology

Theorem: Any structure sheaf is acyclic

Theorem: If $X = U_0 \cup U_1 = V_0 \cup V_1$ and U_i, V_j are acyclic then $H^1(U_0, U_1)$ and $H^1(V_0, V_1)$ are isomorphic (as abelian group)

Towards formal cohomology

In this way one can define the *genus* of $L=\mathbb{Q}(x,y)$ as the dimension of the \mathbb{Q} vector space $H^1([x\in A],[1/x\in A])=H^1(X,\mathcal{O})$

This is an *invariant* of L and is equal to 1 (y/x) is a generator

It does not depend on the choice of the parameter x

Theorem: Over the field $K = \mathbb{Q}(t)$ we have $H^1([t \in A], [1/t \in A]) = 0$

Corollary: It is impossible to write L of the form $\mathbb{Q}(t)$ with $t \in L$