Infinite objects in constructive mathematics

Thierry Coquand

May 82007

Riesz space

Assume that the vector space E is an ordered space which is a lattice (automatically distributive) and that it contains a special element 1 which is a strong unit: for all $a \in E$, there exists n such that $a \leq n .1$

Example: $C([0,1])$
Then we can define $N(r)$ by $x \in N(p / q)$ iff $q x \leq p .1$ and $-q x \leq p .1$
No reason why $|x|=\inf \{r \mid x \in N(r)\}$ should computable (Dedekind real)
x is normable iff $|x|$ is a Dedekind real

Riesz space

We can define the space of integrals $I(E)$: points of $F n(E)$ such that $u(1)=1$

We can replace $u(a)<r$ by $0<u(r .1-a)$.
Generators $I(a)$ and relations $I(a)=0$ if $a \leq 0$ and
$I(a) \wedge I(-a)=0, \quad I(a+b) \leq I(a) \vee I(b), \quad I(1)=1$
$I(a)=\bigvee_{r>0} I(a-r .1)$

Spectrum of a Riesz space

We take the generators $D(a)$ and same relations
$D(a)=0$ if $a \leq 0$
$D(a) \wedge D(-a)=0, \quad D(a+b) \leq D(a) \vee D(b), \quad D(1)=1$
with the extra condition $D(a \vee b)=D(a) \vee D(b)$
We get a strongly normal lattice $\operatorname{Sp}(E)$,
We add the relation $D(a)=\vee_{r>0} D(a-r)$
We get a compact space $X=S p_{r}(E)$, subspace of $I(E)$. The space $I(E)$ can be thought of as the space of probability measure on X

Spectrum of a Riesz space

We have a complete description of $S p(E)$; notice that $a \in(p, q)$ is definable as $D(a-p .1) \wedge D(q .1-b)=D((a-p .1) \wedge(q .1-a))$

We take the set P elements that are ≥ 0 in E
We define the new relations $a \leq^{\prime} b$ iff there exists n such that $a \leq n . b$
P for this relation is a distributive lattice, and this is a concrete description of $S p(E)$

Corollary: We have $D(a)=1$ in $S p(E)$ iff there exists n such that $1 \leq n a$.

Real spectrum of a Riesz space

If $X=S p_{r}(E)$ then X is compact regular
There is a dense norm preserving injection $E \rightarrow C(X)$ (Stone-Weirstrass)
This is a representation theorem
X is overt iff all elements of E are normable i.e. for all $x \in E$ we have that $|x|$ is a Dedekind real

Using this, one can obtain a proof of Gelfand representation theorem (for commutative algebra of operators) in Bishop style mathematics, simpler than Bishop-Bridges' proof

Space of valuations

Let L be a field (constructively $x=0 \vee \exists y . x y=1$)
We want a formal space whose points are the valuation rings of L
$[x \in A] \wedge[y \in A] \leq[x+y \in A] \wedge[x y \in A]$
$1=[x \in A] \vee[1 / x \in A]$ if $x \neq 0$
Interpret $[x \in A]$ symbolically: take the distributive lattice generated by these conditions

This defines a formal spectral space $V(L)$

Space of valuations

More generally if R is a subring of L we define the space $V_{R}(L)$ of valuation rings containing R by the theory

$$
\begin{aligned}
& {[x \in A] \wedge[y \in A] \leq[x+y \in A] \wedge[x y \in A]} \\
& 1=[x \in A] \vee[1 / x \in A] \text { if } x \neq 0 \\
& 1=[x \in A] \text { if } x \in R
\end{aligned}
$$

Space of valuations

Theorem: We have $\left[x_{1} \in A\right] \wedge \cdots \wedge\left[x_{n} \in A\right] \leq[x \in A]$ in the space $V_{R}(L)$ iff x is integral over $R\left[x_{1}, \ldots, x_{n}\right]$

In term of points: the intersection of all valuation rings containing x_{1}, \ldots, x_{n} is the set of elements integral over $R\left[x_{1}, \ldots, x_{n}\right]$

Space of valuations and Zariski spectrum

Let R be an integral domain and $L=\operatorname{Frac}(R)$
Theorem: The lattice map $D(x) \longmapsto[1 / x \in A]$ for $x \neq 0$ from the lattice $\operatorname{Zar}(R)$ to the lattice $V_{R}(L)$ is conservative

This is called the center map
Theorem: If R is arithmetical the center map is an isomorphism
R arithmetical iff the lattice of ideals is distributive iff for any x, y we can find u, v, w such that $x u=y w, y(1-u)=x v$

Riemann surface

Dedekind-Weber (1882); one early point-free description of a space
Let $L=\mathbb{Q}(x, y)$ with $y^{2}=1-x^{4}$
We can consider the space X of valuation rings containing \mathbb{Q}
This is a spectral space, and it has a formal covering $X=U_{0} \cup U_{1}$
$U_{0}=[x \in A] \quad U_{1}=[1 / x \in A]$

Riemann surface

R_{0} integral closure of $\mathbb{Q}[x]$ in L
R_{1} integral closure of $\mathbb{Q}[1 / x]$ in L
Theorem: R_{0} and R_{1} are arithmetical ring
Corollary: $U_{0} \equiv \operatorname{Zar}\left(R_{0}\right)$ and $U_{1} \equiv \operatorname{Zar}\left(R_{1}\right)$

Towards formal sheaf theory

Over a space $\operatorname{Zar}(R)$ we have a sheaf of rings, called the structure sheaf $\mathcal{O}(D(a))=R[1 / a]$

If R integral domain we have $\mathcal{O}\left(D\left(a_{1}, \ldots, a_{n}\right)\right)=R\left[1 / a_{1}\right] \cap \cdots \cap R\left[1 / a_{n}\right]$
The sheaf glueing property is what Henri calls the local-global principle
The structure $\operatorname{Zar}(R), \mathcal{O}$ is called a (formal) affine scheme

Towards formal sheaf theory

Over the space X of valuations there is a natural sheaf
$\mathcal{F}\left(\left[u_{1} \in A\right] \wedge \cdots \wedge\left[u_{n} \in A\right]\right)$ is the integral closure of $\mathbb{Q}\left[u_{1}, \ldots, u_{n}\right]$
The fiber at the point A is the ring A itself!
Over the open $U_{0}=[x \in A]$ the sheaf \mathcal{F} reduces to the structure sheaf over the ring R_{0}

Over the open $U_{1}=[1 / x \in A]$ the sheaf \mathcal{F} reduces to the structure sheaf over the ring R_{1}.

We have a most natural example of a scheme: glueing of two affine scheme

Towards formal sheaf theory

Notice that the global sections of this sheaf are exactly the elements of \mathbb{Q} since $\mathcal{O}\left(U_{0}\right)$ is elements integral over $\mathbb{Q}[x]$ and $\mathcal{O}\left(U_{1}\right)$ are elements integral over $\mathbb{Q}[1 / x]$

This shows that this sheaf is not isomorphic to a structure sheaf of a ring
Indeed the global sections over a structure sheaf $\operatorname{Zar}(R), \mathcal{O}$ form a ring isomorphic to R itself

Towards formal (Cech) cohomology

If we have a space X with a covering $X=U_{0} \cup U_{1}$ and a sheaf \mathcal{F} we can consider the map

$$
\begin{aligned}
& \mathcal{F}\left(U_{0}\right) \oplus \mathcal{F}\left(U_{1}\right) \rightarrow \mathcal{F}\left(U_{0} \cap U_{1}\right) \\
& \left(a_{0}, a_{1}\right) \longmapsto a_{1 \mid U_{0} \cap U_{1}}-a_{0 \mid U_{0} \cap U_{1}}
\end{aligned}
$$

We define $H^{1}\left(U_{0}, U_{1}\right)$ the coker of this map
We say that X, \mathcal{F} is acyclic iff $H^{1}\left(U_{0}, U_{1}\right)=0$ for any covering U_{0}, U_{1} : any $b \in \mathcal{O}\left(U_{0} \cap U_{1}\right)$ can be written of the form $a_{1 \mid U_{0} \cap U_{1}}-a_{0 \mid U_{0} \cap U_{1}}$

Towards formal cohomology

Theorem: Any structure sheaf is acyclic
Theorem: If $X=U_{0} \cup U_{1}=V_{0} \cup V_{1}$ and U_{i}, V_{j} are acyclic then $H^{1}\left(U_{0}, U_{1}\right)$ and $H^{1}\left(V_{0}, V_{1}\right)$ are isomorphic (as abelian group)

Towards formal cohomology

In this way one can define the genus of $L=\mathbb{Q}(x, y)$ as the dimension of the \mathbb{Q} vector space $H^{1}([x \in A],[1 / x \in A])=H^{1}(X, \mathcal{O})$

This is an invariant of L and is equal to $1(y / x$ is a generator)
It does not depend on the choice of the parameter x
Theorem: Over the field $K=\mathbb{Q}(t)$ we have $H^{1}([t \in A],[1 / t \in A])=0$
Corollary: It is impossible to write L of the form $\mathbb{Q}(t)$ with $t \in L$

