
An adequacy theorem for partial type theory

j.w.w. Simon Huber

Göteborg, May 11, 2017

An adequacy theorem for partial type theory

Goals

Agda as a total fragment of a partial type theory

When we write a function without the termination checker we are in the
〈〈partial fragment 〉〉

(1) Provide a denotational semantics, so that we can justify program
transformation at this level (cf. L. Augustsson’s PhD thesis on the semantics of
lazy ML)

(2) Prove subject reduction and inversion rules for this fragment, e.g.

` S M = S M ′ : N

`M = M ′ : N

` Π(x : A)B = Π(x : A′)B′

` A = A′ x : A ` B = B′

1

An adequacy theorem for partial type theory

Goals

This is part of an adequacy result

E.g. if [[M]] = 0 then M →∗ 0

If [[M]] = [[M ′]] then M and M ′ have the same observational behavior

In particular if a program transformation is justified semantically it will also
be correct operationally

2

An adequacy theorem for partial type theory

Type system

As in Constructive mathematics and computer programming but

-without the identity type and

-with typed abstraction λ(x : A)M

-we add an element ω : N with ω = S ω : N

Even without this element, it might be interesting to have a proof of subject
reduction in a weak metatheory

3

An adequacy theorem for partial type theory

Domain of values

D = [D → D] + Π D [D → D] + Uk + N + 0 + S D

Non lifted sum: abstraction is not a constructor

We define an application operation b(a) on D, e.g.

(Π c f)(a) =⊥ and 0(a) =⊥

4

An adequacy theorem for partial type theory

Finite elements

• ⊥ or

• Uk, N or 0 or

• S u where u is finite

• Π a f where a is finite and f is a finite function or

• a finite function

and a finite function is of the form ⊥ or (u1 7→ v1), . . . , (un 7→ vn)

5

An adequacy theorem for partial type theory

Finite elements

Among these finite elements we can define the consistent elements

E.g. (⊥7→ 0), (0 7→ S 0) is not consistent

We define a predorder relation and a compatibility predicate

We get a conditional sup semilattice

A (general) element of the domain D is an ideal of this semilattice

Abstraction is not a constructor

6

An adequacy theorem for partial type theory

Finite elements, examples

N finite element

⊥7→ 0 represents the constant function 0 (which does not look at its argument)

We can define a→ b as Π a (⊥7→ b)

⊥→ N and N→⊥ are compatible and the sup is N→ N

The strict constant function 0 will be an 〈〈 infinite 〉〉 element, sup of all

0 7→ 0, S 0 7→ 0, S (S 0) 7→ 0, . . .

7

An adequacy theorem for partial type theory

Typing rules

⊥: Un ⊥:⊥

Ui : Uj
i < j

N : Uj 0 : N

u : N

S u : N ⊥: N

a : Uj u1 : a t1 : Uj . . . un : a tn : Uj

Π a (u1 7→ t1) . . . (un 7→ tn) : Uj

u1 : a v1 : f(u1) . . . un : a vn : f(un)

(u1 7→ v1) . . . (un 7→ vn) : Π a f

8

An adequacy theorem for partial type theory

Typing rules

The relation t : a is decidable on finite elements

If t0 : a and t1 : a and t0, t1 compatible then t0 ∨ t1 : a

If a 6 b and t : a then t : b

We don’t always have u : a if u 6 v and v : a

E.g. we have (U1 7→ 0) 6 (⊥7→ 0) and ⊥7→ 0 : N→ N

but not U1 7→ 0 : N→ N

9

An adequacy theorem for partial type theory

Finitary projections

p : D → D such that

p ◦ p = p

p x 6 x

the image of p is a Scott domain, D(p) = {x ∈ D | p x = x}

This is exactly determined by a set S of finite elements such that if a and b
in S compatible then a ∨ b in S

10

An adequacy theorem for partial type theory

Finitary projections

We write D(p) CD

D(p) is a so-called subdomain of D

11

An adequacy theorem for partial type theory

Finitary projections

Any finite a defines a finitary projection

pa u =
∨
{x : a | x 6 u}

If we have a : Un and f : a → Un then Π a f : Un and we have an
isomorphism between D(Π a f) and Π(x ∈ D(a))D(f x)

We have u : a if, and only if, pa u = u

E.g. for a = N→ N we have pa (U3 7→ 0) =⊥ and pa (0 7→ 0) = (0 7→ 0)

12

An adequacy theorem for partial type theory

Finitary projections

If a : Uk we write D(a) for D(pa)

We have D(Un) CD(Un+1)

The union of all D(Un) is a subdomain Type CD

This is the domain of (partial) types

If a in Type we have D(a) CD domain of (partial) elements of type a

We define in this way the denotational model of type theory

13

An adequacy theorem for partial type theory

Semantics

[[x]]ρ = ρ(x) [[M N]]ρ = [[M]]ρ([[N]]ρ)

[[N]]ρ = N [[Ui]]ρ = Ui [[0]]ρ = 0 [[S M]]ρ = S ([[M]]ρ)

[[λ(x : A)M]]ρ = u 7→ [[M]](ρ, x : [[A]]ρ = u)

[[Π(x : A)B]]ρ = Π([[A]]ρ) (u 7→ [[B]](ρ, x : [[A]]ρ = u))

where ρ, x : a = u means ρ, x = pa u.

14

An adequacy theorem for partial type theory

Semantics and typing system

We could define the semantics of terms without typing rules

We consider now typing system with judgements Γ ` M : A and Γ ` M =
M ′ : A

If `M : A then [[M]] : [[A]]

If `M = M ′ : A then [[M]] = [[M ′]]

15

An adequacy theorem for partial type theory

Semantics and typing system

The use of finitary projections takes care of eta-conversion

[[λ(x : N→ N)x]] = [[λ(x : N→ N)λ(y : N)x y]]

Abstraction cannot be a constructor if we want to validate the rule

` f : Π(x : A)B ` g : Π(x : A)B x : A ` f x = g x : B

` f = g : Π(x : A)B

16

An adequacy theorem for partial type theory

Adequacy theorem

We define the relation M →M ′ (weak-head reduction)

E.g. (λ(x : A)M) N →M(x/N)

This is defined at the level of pure expressions (no need of typing)

We define M →A M ′ to mean M →M ′ and M = M ′ : A

We define M →type M
′ to mean M →M ′ and M = M ′ type

17

An adequacy theorem for partial type theory

Semantics and typing system

By induction on a finite element in Type we define a predicate A|a on type
expressions

We also define an equivalence relation A = A′|a on the corresponding subset

If we have A|a and u finite in D(a) we define a predicate M : A|u : a on
expressions of type A

and an equivalence relation M = M ′ : A|u : a on the corresponding subset

E.g. A| ⊥ means that A is a type expression (no information)

18

An adequacy theorem for partial type theory

Semantics and typing system

A|N means A→∗type N

A = A′|N means A→∗Un
N and A′ →∗type N

M : A|u : N is defined by induction on u

M : A|0 : N means M →∗A 0

M : A|S u : N means M →∗A S M ′ and M ′ : A|u : N

For instance we have ω : N|Sk ⊥: N for all k

19

An adequacy theorem for partial type theory

Semantics and typing system

If a = Π b f then A|a means that

-A→∗type Π(x : B)F and

-B|b and N : B|v : b implies F (x/N)|f(v) and

-N0 = N1 : B|v : b implies F (x/N0) = F (x/N1)|f(v)

20

An adequacy theorem for partial type theory

Semantics and typing system

In this case, we define M : A|w : a to mean

-N : B|v : b implies M N : F (x/N)|w(v) : f(v) and

-N0 = N1 : B|v : b implies M N0 = M N1 : F (x/N0)|w(v) : f(v)

and we define M0 = M1 : A|w : a to mean

-N : B|v : b implies M0 N = M1 N : F (x/N)|w(v) : f(v).

21

An adequacy theorem for partial type theory

Semantics and typing system

For instance a = Π N (0 7→ N, S 0 7→ U3)

A|a means that A→∗type Π(x : B)F

with B|N that is B →∗type N

and if M →∗N 0 and M ′ →∗N 0 then F (x/M) = F (x/M ′)|N

and if M →∗N S 0 and M ′ →∗N S 0 then F (x/M) = F (x/M ′)|U3

22

An adequacy theorem for partial type theory

Semantics and typing system

The main properties of this relation are of the form

If b 6 a in Type and A|a then A|b

If b 6 a in Type and A|a and u in D(b) then M : A|u : b if, and only if,
M : A|u : a

If A|a and A|a′ and a and a′ are compatible then A|a ∨ a′

23

An adequacy theorem for partial type theory

Semantics and typing system

It follows from this that we can extend the relations A|a and A = A′|a and
M : A|u : a and M = M ′ : A|u : a to a and u infinite element

This defines a logical relation between the initial/term model and the
denotational model

Hence we have A|[[A]] if A is a type expression and M : A|[[M]] : [[A]] if M : A
and M = M ′ : A|[[M]] : [[A]] if M = M ′ : A

24

An adequacy theorem for partial type theory

Applications

Corollary: If S M = S M ′ : N then M = M ′ : N

We can do the same reasoning in an arbitrary, but fixed context

We interpret the variables of this context by ⊥

We get first that if Γ ` Π(x : A)B = Π(x : A′)B′ then Γ ` A = A′ and
Γ `M : A implies Γ ` B(x/M) = B′(x/M)

but the context is arbitrary so we also get

Corollary: If Γ ` Π(x : A)B = Π(x : A′)B′ then Γ ` A = A′ and
Γ, x : A ` B = B′

25

An adequacy theorem for partial type theory

Applications and refinement

Subject reduction follows from the fact that Π is one-to-one

We can refine the semantics by adding a token T, with T(a) = T

It represents the information: to reduce to a neutral term

26

An adequacy theorem for partial type theory

Applications and refinement

We add the following typing rule

T : Um

Π a f : Un

T : Π a f

T : N T : T

27

An adequacy theorem for partial type theory

Applications and refinement

We define M = M ′ : A|T : a to mean that M and M ′ reduce to neutral
terms of the 〈〈same shape 〉〉

Using subject reduction, and reasoning in an arbitrary context one can then
show

if M = M ′ : A then M and M ′ have the same Böhm tree

If we are in the total fragment of type theory, the Böhm trees are finite and
we get a decision algorithm for conversion

Note that all this can be done in a 〈〈weak 〉〉 metatheory (all definitions are by
induction on the finite element of the domain D)

28

