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Introdution

This note deals with notation in type theory. The de�nition of a funtion by pattern mathing

is by now ommon, and quite important in pratie, in funtional programming languages (see

for instane [1℄). We try here to introdue suh de�nitions by pattern mathing in Martin-L�of's

logial framework.

1 Statement of the Problem

1.1 A Short Presentation of Martin-L�of's Logial Framework

For a more omplete presentation of Martin-L�of's logial framework, whih is implemented in

ALF, we refer to the book \Programming in Martin-L�of's Type Theory" [16℄, hapter 19 and

20. We reall that eah type T is of the form (x

1

: A

1

; : : : ; x

n

: A

n

)A where A is Set or of the

form El(a): If A is of the form El(a); we say that T is an small type, and it is a large type

otherwise if A is Set: If a type of a term is of the form (x

1

: A

1

; : : : ; x

n

: A

n

)A; we say that n

is the arity of this term. An instane of a term u of arity n is a term de�nitionally equal to a

term of the form u(v

1

; : : : ; v

n

):

A ontext is a list of type delaration � = x

1

: A

1

; : : : ; x

n

: A

n

: As in [19℄, we relativize

all judgements of type theory with respet to a ontext. An interpretation or ontextual

mapping between two ontexts � = x

1

: A

1

; : : : ; x

n

: A

n

and � = y

1

: B

1

; : : : ; y

m

: B

m

is a

simulateneous substitution S = fy

1

:= v

1

; : : : ; y

m

:= v

m

g suh that

v

1

: B

1

(�); v

2

: B

2

[v

1

℄ (�); : : : ; v

m

: B

m

[v

1

; : : : ; v

m�1

℄ (�)

1

:

We write in this ase S : � ! �: If M is an open expression in �; we write by simple

juxtaposition MS the result of the substitution S to M: Notie that if A is a type in � then

AS is a type in �; and if a : A (�); then aS : AS (�):

If T

1

: �

1

! � and T

2

: �

2

! �

1

we write T

2

;T

1

: �

2

! � the omposition of T

1

and T

2

:

Martin-L�of's logial framework is an open framework: the user an add new onstants and

new omputation rules.

�

oquand�s.halmers.se

1

If v

i

is de�nitionally equal to y

i

; we omit y

i

:= v

i

in the writing of the interpretation; thus, fx := 0g is a

ontextual mapping from y : N to x : N; y : N meaning fx := 0; y := yg.
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For instane, we get the � sets by delaring the onstants

2

:

� : (X : Set; (X)Set)Set

pair : (X : Set; Y : (X)Set) (x : X;Y (x))�(X;Y )

split : (X : Set; Y : (X)Set) (Z : (�(X;Y ))Set)

((x : X; y : Y (x))Z(pair(X;Y; x; y)))

(w : �(X;Y ))

Z(w)

and asserting the equality (whih an be read as a omputation rule):

split(A;B;Z; z; pair(A;B; a; b)) = z(a; b) : Z(pair(A;B; x; y))

where

A : Set;

B : (A)Set;

Z : (�(A;B))Set

a : A;

b : B(a)

z : (x : A; y : B(x))Z(pair(A;B; a; b))

The usual artesian produt is de�ned by

A�B = �(A; (x)B) : Set [A : Set; B : Set℄

The set of natural numbers is introdued by delaring the onstants:

N : Set

0 : N

su : (N)N

natre : (C : (x : N)Set; C(0); (x : N; y : C(x)C(su(x)); n : N)C(n)

and the equalities (whih an be read as omputation rules):

natre(C; x; z; 0) = x : C(0)

natre(C; x; z; su(a)) = z(a; natre(C; x; z; a))

where

C : (x : N)Set

x : C(0)

z : (x : N; y : C(x))C(su(x))

The omputation rules generate the de�nitional equality between terms.

2

We allow ourselves to write in general A instead of El(A).
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Quite important is the distintion between anonial and non-anonial onstants. In

the examples above, �; pair N; 0 and su are anonial onstants, but split; natre and � are

non anonial.

If the type of a anonial onstant C is of the form (x

1

: A

1

; : : : ; x

n

: A

n

)Set; we say that C

is a onnetive. The meaning of a onnetive C is given by a set of anonial onstants of types

of the form (y

1

: B

1

; : : : ; y

m

: B

m

)El(C(a

1

; : : : ; a

n

)); that are alled onstrutors of C: (In the

ase of mutual indutive de�nitions, we an have a set of onnetives that are simultaneously

de�ned by a set of anonial onstants.) By extension, we onsider also that onnetives are

onstrutors of the type Set.

A anonial onstant whose type is a small type is onsidered to be a primitive notion, that

is self-justifying. In the example above, 0 and su are onsidered to be primitive notions, and

the anonial set N is de�ned by its set of onstrutors 0 and su:

We say that a term is in onstrutor form i� it is de�nitionally equal to a term of the form

(u

1

; : : : ; u

n

) where  is a onstrutor of arity n: The onstrutor  is then uniquely determined.

We say that a term t is diretly struturally smaller than a term u i�

� both u and v are of small types and of arity 0;

� u is of onstrutor form (a

1

; : : : ; a

n

) and t is de�nitionally equal to one a

j

of arity 0 or

one instane of one a

j

of arity > 0:

Being struturally smaller is de�ned by taking the transitive losure of this relation.

We use in an essential way the \no onfusion" property of onstrutors. This overs two

properties. The �rst is that a de�nitional equality between two terms of the form a(u

1

; : : : ; u

n

)

and b(v

1

; : : : ; v

m

) if a and b are two distint onstrutors, annot hold. The seond is that, if 

is a onstrutor of type (x

1

: A

1

; : : : ; x

n

: A

n

)A; then the equality (u

1

; : : : ; u

n

) = (v

1

; : : : ; v

n

) :

A[u

1

; : : : ; u

n

℄ implies

u

1

= v

1

: A

1

; : : : ; u

n

= v

n

: A

n

[u

1

; : : : ; u

n�1

℄:

The non anonial onstant � is expliitely de�ned in term of �:

The de�nitions of split and natre are not expliit, and we refer to these onstants as im-

pliitely de�ned onstants. The meaning of impliitely de�ned onstants is given by their

omputation rules.

It is an important problem to give some riteria that ensure the orretness of the addition

of new onstants and omputation rules. We try here to analyse this problem using the pattern

mathing notation introdued in funtional languages (see for instane [1℄).

1.2 Indutively de�ned onnetives

We shall onsider only onnetives that are indutively de�ned The relation of being struturally

smaller is then expeted to be well-founded. We shall take this well-foundedness property as

a fundamental assumption on the onstrutors, without trying to analyse it further here. We

simply mention that the onstrutors presented in [7, 8℄ satisfy this well-foundedness property.

Here are two ounter-examples.
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The set

V : Set;

with one onstrutor

� : ((A : Set)(A)A)V:

The polymorphi identity (A; x)x is of type (A : Set)(A)A; and hene the term �((A; x)x)

is of type V: This term is struturally smaller than itself. It follows that the relation of being

struturally smaller is not well-founded.

Likewise, the set

U : Set;

with one onstrutor

 : (Set)U;

has to be rejeted. The reason is however more subtle than for the previous ounter-example.

We notie �rst that, were this set aepted, so would be T : (U)Set by T ((X)) = X : Set: We

ould then introdue a set W : Set with only one onstrutor sup : (x : U)((T (x))W )W (whih

is indutively de�ned given U; T ). But then sup((W ); (x)x) is struturally smaller than itself.

The �rst example, suggested by a remark of Per Martin-L�of, shows that the well-foundedness

requirement on the relation of being struturally smaller is a stronger requirement than mere

normalisation. Indeed the set V is de�ned by a seond-order quanti�ation, and it an be

shown, by the usual reduibility method, that its addition to indutively de�ned sets preserves

the normalisation property.

1.3 Some diÆulties with the usual elimination shemas

It is known how to assoiate to any indutively de�ned onnetive an elimination onstant,

together with its omputation rules. This is desribed for instane in [6℄. One an hek that

all the examples of impliitely de�ned onstants and omputations rules desribed in [16℄ are

of this form. A �rst riterion for ensuring the orretness of the addition of new onstants and

omputation rules is to allow only the addition of suh elimination onstants. Experiments with

restriting the addition of impliitely de�ned onstants to be elimination onstants have shown

some drawbaks of this approah.

One �rst drawbak is that we do not quite get the expeted omputational behaviour. If we

de�ne for instane add : (N;N)N by add(x; y) = natre(y; x; (u; v)su(v)); then add(x; su(y))

redues to su(natre(y; x; (u; v)su(v)) and one needs to fold bak this expression to get the

expeted su(add(x; y)):

One seond drawbak is readability. For instane, we want to onsider an objet suh as

half : (N)N de�ned by

half(0) = 0; half(su(0)) = 0; half(su(su(x))) = su(half(x));

as given diretly by these equations, rather than being given by an expliit de�nition whih is

a \oding" of this objet in term of natre:
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The seond drawbak is in pratie quite important. The pattern mathing notation is

essential in funtional programming languages

3

.

The next anomaly is the neessity to onsider higher \sets" for de�ning naturally a funtion

suh as inf : (N;N)N: It is quite surprising that, in order to justify the equations

inf(0; y) = 0; inf(su(x); 0) = 0; inf(su(x); su(y)) = su(inf(x; y));

one needs to introdue the set of numerial funtions.

Another problem appeared for indutively de�ned families. Given a onnetive with an

arity > 1; there are several possible elimination onstants depending on what arguments are

onsidered to be parameters. For instane, there are two di�erent elimination onstants for the

onnetive Id : (A : Set; x; y : A)Set of unique onstrutor re : (A : Set;x : A)Id(A; x; x): In this

ase, it is yet unknown if these two elimination onstants are equivalent.

The �rst and, in partiular, seond drawbaks are strong motivations for allowing the intro-

dution of impliitely de�ned onstants de�ned by omputation rules that are pattern mathing

equations. This seems to solve in general the third anomaly. In an unexpeted way, this seems

to have some bearing on the fourth problem, as we will try to explain below.

2 A General Presentation of Pattern Mathing

There are two independent requirements for the orretness of the introdution of one impliitely

de�ned onstant together with its omputation rules. These requirements are only suÆient in

ensuring that the onstant does de�ne a total funtion on the underlying datatype.

The �rst is the requirement that all de�nitions, that may be reursive, are well-founded.

The seond is that the equations over all possible ases of the arguments and do not

introdue ambiguities in the omputation. We ensure this by imposing the de�nitions to be

exhaustive and mutually exlusive.

2.1 Well-founded De�nitions

A simple ondition ensures the fat that all de�nitions are well-founded, and seems furthermore

suÆient in pratie. Let n be the arity of the impliitely de�ned onstant f to be de�ned.

The ondition is that there exists an index i � n suh that, for all equations f(u

1

; : : : ; u

n

) = e;

and all reursive all f(v

1

; : : : ; v

n

) of f in e; the onstant f does not our in v

1

; : : : ; v

n

and the

term v

i

is struturally smaller than the term u

i

:

It would be possible to give a less restritive ondition, by onsidering instead a lexiographi

extension of the strutural ordering. However, this restrition suÆes to reover the usual

elimination shemas. It is also quite simple to ensure that this ondition holds.

Notie that this ondition provides more general equations than the ones provided by the

usual primitive reursive shema. In the usual primitive reursive shema indeed, the parameters

annot vary in reursive alls. This is not required here.

3

The earliest, to our knowledge, mention of this notation appears in [2℄. A proposal of extending funtional

language with an \indutive" ase expression, whih hene ensures termination, is presented in [3℄.
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For instane, this will justify diretly the following kind of de�nitions of a a funtion f :

(N;N)N:

f(0;m) = g(m); f(su(n);m) = h(n;m; f(n; k(n;m)));

where g : (N)N; h : (N;N;N)N and k : (N;N)N are previously de�ned funtions. Notie that the

parameter m hanges to k(n;m) in the reursive all of f: This an be done only using the set

of numerial funtion if we restrit ourselves the usual shema of primitive reursion (see [4℄).

2.2 Covering

To analyse further the ondition that the de�nitions are exhaustive and mutually disjoint, we

introdue one notion reminisent of a notion used in Per Martin-L�of's representation of hoie

sequenes in type theory.

Let us motivate briey what follows. We want to add a new impliitely de�ned onstant f

of type (x

1

: A

1

; : : : ; x

n

: A

n

)A; together with a set of omputation rules. Let � be the ontext

x

1

: A

1

; : : : ; x

n

: A

n

of arguments of f: We only onsider omputation rules for f of the form

f(a

1

; : : : ; a

n

) = e : A[a

1

; : : : ; a

n

℄ (�);

with a

1

: A

1

; : : : ; a

n

: A

n

[a

1

; : : : ; a

n�1

℄: We an think of a

1

; : : : ; a

n

as de�ning a ontextual

mapping S : � ! �; and this suggests to introdue the notation f(S) = e : AS (�) for suh a

omputation rule.

With this notation, the onditions on a system of omputation rules f(S

j

) = e

j

: AS

j

(�

j

)

will be expressed as onditions on a system of ontextual mappings S

j

: �

j

! �: We want to

express that suh a system de�nes a \partition of the spae de�ned by �:"

We are going to analyse this problem in the same way that pattern mathing in ordinary

funtional languages is redued to a suession of ase expressions over a variable (see [1℄).

We say �rst that a system of ontextual mappings S

1

: �

1

! �; : : : ; S

m

: �

m

! � over a

ommon ontext � = x

1

: A

1

; : : : ; x

n

: A

n

is an elementary overing of � i� there exists an

index i � n suh that

� all terms x

i

S

j

: A

i

S

j

(�

j

); for j �m; are in onstrutor form,

� if S : � ! � is a ontextual mapping suh that x

i

S is in onstrutor form, then there

exists one and only one j � m and T : �! �

j

suh that S = T ;S

j

:

This de�nition may look ompliated but it is a possible way of speifying what is a ase

expression over the ith argument. In the ase of a ontext with only non dependent types, we

reover the usual notion of ase expression as in [1℄. In the general ase however, we annot

keep the same notion of patterns of [1℄ (as the examples below will show, we need for instane

to onsider non linear patterns), and our abstrat de�nition seems neessary.

An instane is the elementary overing de�ned by x = 0 and x = su(y) (y : N) of the

ontext x : N:

A seond example is the empty set of ontextual maps over the ontext

� = p : Id(N; 0; su(0)):
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This is an elementary overing. Indeed, the only onstrutor of the onnetive Id is re; and

a term of the form re(A; u) annot be of type Id(N; 0; su(0)): Otherwise, we would have

Id(N; 0; su(0)) = Id(A; u; u);

and hene, beause Id is a onstrutor, 0 = u : N and su(0) = u : N: But this implies

0 = su(0) : N; whih does not hold, beause 0 and su are di�erent onstrutors.

A more elaborate example is for the ontext

� = x; y : N; p; q : Id(N; x; y):

It an be heked that, if we de�ne

� = x : N; p : Id(N; x; x);

then the unique ontextual mapping

fy := x; q := re(N; x)g : �! �;

de�nes an elementary overing of �: Indeed, this follows from the fat that re is the only

onstrutor of Id and that if re(N; u) is of type Id(N; v; w); we have

Id(N; u; u) = Id(N; v; w) : Set;

and hene, sine Id is a onstrutor, we have u = v : N and u = w : N:

We de�ne now what it means for a system of ontextual mapping S

i

: �

i

! � into a

ommon ontext � to be a overing of � :

� the identity interpretation �! � is a overing of �;

� if S

i

: �

i

! �; for i � p is an elementary overing of � and T

ij

: �

ij

! �

i

; for j � q

i

; is

a overing of �

i

; then T

ij

;S

i

: �

ij

! � is a overing of �:

For instane x = 0; together with x = su(0) and x = su(su(y)) (y : N) de�ne a

overing of x : N:

An example of overing of the ontext � = x : N; y : N is given by

� fx := 0g : (y : N)! �;

� fx := su(x

1

); y := 0g : (x

1

: N)! � and

� fx := su(x

1

); y := su(y

1

)g : (x

1

: N; y

1

: N)! �:

If we take again our last example of an elementary overing, it an be heked that the

unique ontextual mapping

fp := re(N; x)g : (x : N)! �;

is an elementary overing of �: Hene, the unique ontextual mapping

fy := x; p := re(N; x); q := re(N; x)g : (x : N)! �;
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is a overing of � = x; y : N; p; q : Id(N; x; y):

Following Per Martin-L�of's terminology, we all neighbourhood of a ontext any on-

textual map that is part of a overing of this ontext. The olletion of neighbourhoods of a

overing of a ontext an be thought of as de�ning a partition of the \spae" de�ned by this

ontext. This notion of neighbourhood orresponds to the notion of patterns used in funtional

programming languages: in the ase of a ontext with only non dependent types, we reover

exatly the notion of pattern mathing desribed in [3, 1℄.

2.3 SuÆient Conditions For Corretness

The suÆient onditions ensuring the orretness of the addition of a new impliitely de�ned

onstant f of type (x

1

: A

1

; : : : ; x

n

: A

n

)A; of argument ontext � = x

1

: A

1

; : : : ; x

n

: A

n

and

of omputation rules of the form f(S

j

) = e

j

: AS

j

(�

j

) are that:

� there is no nested ourene of f in e

j

; and all reursive all of f are done on struturally

smaller arguments than the lefthandside arguments (whih an be ensured as desribed

above),

� the system of ontextual maps S

j

: �

j

! � is a overing of �:

2.4 Some omments on this method

The method followed here an be desribed as follows. When justifying a rule

f : (x

1

: A

1

; : : : ; x

n

: A

n

)A;

we analyse exhaustively the possible forms S of the arguments of f; and in eah possible ase

S; we build a term e

S

of type AS; using onstrutors and already de�ned onstants.

We allow reursive alls of the onstant we are de�ning, provided these alls are on stru-

turally smaller arguments.

Naturally assoiated to this justi�ation of an impliitely de�ned onstant

f : (x

1

: A

1

; : : : ; x

n

: A

n

)A

is the following omputation rule for f: If a given argument (a

1

; : : : ; a

n

) is an instane of the ase

S; then the value of f(a

1

; : : : ; a

n

) is the value of the orresponding instane of e

S

: Otherwise,

the argument list of f is not \instantiated enough", and f(a

1

; : : : ; a

n

) annot be head redued.

2.5 Some Examples

The funtion inf : (N;N)N whih is de�ned impliitely by:

inf(0; y) = 0; inf(su(x); 0) = 0; inf(su(x); su(y)) = su(inf(x; y)):

The reursive all is justi�ed by the fat that it is struturally smaller on the �rst (or the

seond) argument.

It is standard how to redue suh a de�nition to the usual elimination rules over the type

N; by using the set of numerial funtions.
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By ontrast, it is not lear how to represent the following omputation rule in term of the

usual elimination rules

4

. We have seen that the unique ontextual mapping

fy := x; p := re(N; x); q := re(N; x)g : (x : N)! �;

is a overing of � = x; y : N; p; q : Id(N; x; y): It follows that it is orret to add a new onstant

f : (x; y : N; p; q : Id(N; x; y))Id(Id(N; x; y); p; q) together with the omputation rule

f(x; x; re(N; x); re(N; x)) = re(Id(N; x; x); re(N; x)) (x : N)

The next example still onerns the onnetive Id: As we said before, there are two possi-

ble elimination rules over this onnetive, depending on what arguments are onsidered to be

parameters.

The �rst one, with the �rst argument is a parameter, is

F : (A : Set;C : (x; y : A; Id(A; x; y))Set;

d : (x : A)C(x; x; re(A; x)); a; b : A;  : Id(A; a; b))

C(a; b; )

of omputation rule

F (A;C; d; a; a; re(A; a)) = d(a) : C(a; a; re(A; a));

where

A : Set; C : (x; y : A; Id(A; x; y))Set; d : (x : A)C(x; x; re(A; x)); a : A:

The seond one, with the �rst two arguments are parameters, is

G : (A : Set; a : A;C : (y : A; Id(A; a; y))Set;

d : C(a; re(A; a)); b : A;  : Id(A; a; b))

C(b; )

of omputation rule

G(A; a;C; d; a; re(A; a)) = d : C(a; re(A; a));

where

A : Set; a : A; C : (y : A; Id(A; a; y))Set; d : C(a; re(A; a)):

It an be heked that both onstants satisfy the suÆient onditions for orretness given

above. Only the overing ondition has to be heked, beause there is no reursive all.

The last example is the well-founded set onnetive:

W : (A : Set; B : (A)Set)Set;

of unique onstrutor

sup : (A : Set; B : (A)Set; a : A; u : (B(a))W(A;B))W(A;B):

4

This problem has been independently suggested by Thomas Streiher.
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We an introdue the impliitely de�ned onstant

wre : (A : Set; B : (A)Set; C : (W(A;B))Set;

f : (a : A; u : (B(a))W(A;B); (x : B(a))C(u(x)))C(sup(A;B; u)); t : W(A;B))C(t)

with the omputation rule

wre(A;B;C; f; sup(A;B; a; u)) = f(a; u; (x)wre(A;B;C; f; u(x)));

where

A : Set; B : (A)Set; C : (W(A;B))Set; f : (a : A; u : (B(a))W(A;B); (x : B(a))C(u(x))):

This is justi�ed sine u(x) is struturally smaller than sup(A;B; a; u):

3 How to build overings

3.1 Uni�ation Problem

If � is a ontext, A a type in �; and u; v two terms in � of type A; we de�ne a solution of the

uni�ation problem

u = v : A (�)

to be a �nite system of ontextual mappings S

j

: �

j

! � suh that

� for all j; we have uS

j

= vS

j

: AS

j

(�

j

); and

� if S : �! � is a ontextual mapping suh that uS = vS : AS (�); then there exists one

and only one j and T : �! �

j

suh that T ;S

j

= S:

For a desription of the uni�ation problem with dependent types, see [18℄ and [9℄. Sine

this problem ontains already the similar problem for simply typed lambda-alulus, desribed

in [13℄, we annot expet to have a general algorithm to solve it. It is however possible to

desribe a simple algorithm

5

, that has three possible outputs

� the system with no ontextual mapping (this ensures that the uni�ation problem has no

solution),

� a system with exatly one ontextual mapping (this ensures that the uni�ation problem

has a most general solution),

� the algorithm fails (whih orresponds to a diÆult uni�ation problem).

5

This algorithm is similar to the �rst-order uni�ation algorithm, using the fundamental fat that onstrutors

are one-to-one funtion.
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3.2 Splitting Contexts

We give �rst a way to build elementary overings, as it is implemented in ALF. We annot ensure

that this generates all possible elementary overings, but it is not lear yet how to extend this

algorithm, and whether suh an extension is needed or not in pratie.

Given a ontext

� = x

1

: A

1

; : : : ; x

n

: A

n

;

and an index i � n suh that A

i

is a small type, we desribe an operation alled splitting the

ontext � along i: This is an algorithm that tries to produe an elementary overing of � :

� if A

i

is of arity > 0; or if A

i

is not in onstrutor form, then the algorithm fails to produe

any overing,

� otherwise, A

i

is of the form El(C(u

1

; : : : ; u

n

)) and we an list all the onstrutors of the

onnetives C: For eah suh onstrutor  of type (y

1

: B

1

; : : : ; y

m

: B

m

)El(C(v

1

; : : : ; v

m

));

we apply the previous uni�ation algorithm for the equation

C(u

1

; : : : ; u

n

) = C(v

1

; : : : ; v

n

) : Set (x

1

: A

1

; : : : ; x

i�1

: A

i�1

; y

1

: B

1

; : : : ; y

m

: B

m

);

and we ollet all the solutions.

Given the fundamental \no onfusion" property of onstrutor, this produes in ase of

suess an elementary overing of �:

3.3 General Coverings

General overings an now be built interatively. Given a ontext �; the user hooses an index

i and tries to split � along i: If the system answers by giving an elementary overing, the user

an then hoose to split some of the new produed ontexts, and so on, until the user stops

eventually produing by omposition a overing of �:

This interative way of building overings has been implemented in ALF, and seems in

pratie to be quite onvenient for the user in ensuring that no ases have been forgotten during

the de�nition of a funtion by pattern mathing. This is in ontrast with the usual presentation

in funtional languages, where one should write the possible ases, and the ompiler warns the

user that some ases have been forgotten.

The following is a semi-algorithm that heks whether or not a system of ontextual map-

pings S

j

: �

j

! � is a overing

6

(thanks to G. Huet).

First, the system with only the identity mapping is a overing. Otherwise, hoose an index

i suh that all x

i

S

j

are in onstrutor form. Then, if possible, split � along i: If the answer

is an elementary overing T

i

: �

i

! � of �; this indues a partition of the original system

S

j

: �

j

! � into a system of mappings �

j

! �

i

: We then reursively hek that eah of these

systems is a overing.

6

If we think of a overing as a olletion of disjoint \piees" that form a partition of a spae, this semi-

algorithm solves a typial \puzzle" problem. We are given some \piees" of a spae (ontextual mapping), and

we try to see whether or not they form a partition of this spae.
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4 Addition of Subsets

Kent Petersson, and independently A. Salvesen, suggested the following notion of subsets whih

seems to �t niely with the present notion of impliitely de�ned onstants. We limit here

ourselves to the desription of a simple example.

The meaning of a onnetive, suh as N : Set; is given by the set of its onstrutors

0 : N; su : (N)N:

It is quite natural to allow the introdution of (diret) subsets of N; that we get simply

by seleting a subset of this set of onstrutors. For instane, we an introdue the subset

ISZERO : Set with the only onstrutor 0; and the subset POS : Set with the only onstrutor

su:

This notion of subsets �ts well with the present way of de�ning a funtion by pattern

mathing, where one important step is to list the onstrutors of a given onnetive.

For instane, the unique omputation rule de�nes then orretly an impliitely de�ned

funtion p : (POS)N:

p(su(x

1

)) = x

1

(x

1

: N);

beause the ontext x : POS is overed by the ontextual mapping x = su(x

1

) : N (x

1

: N):

We an dually allow the introdution of (diret) supersets of N; that we get by adding new

onstrutors. Typially, the set of ordinals Ord : Set extends the set N by the addition of one

onstrutor

lim : ((N)Ord)Ord:

The following omputation rules de�ne then orretly an impliitely de�ned funtion g :

(Ord)N:

g(0) = 0; g(su(x)) = su(x); g(lim(u)) = g(u(0)):

This de�nition is justi�ed sine u(0) is struturally smaller than lim(u):

We an then de�ne a general inlusion relation between onnetives, by taking the transitive

losure of the diret inlusion relation de�ned by the introdution of subsets and supersets. This

is a deidable relation.

As the last example shows, the addition of subsets and supersets introdues some overloading

failities. These do not however ompromise the deidability of the following problems:

� is the expression A a orret type in the ontext �?

� given a type A in the ontext �; is the expression a a orret term of type A in the ontext

�?

as we an onvine ourselves by noting that the usual algorithm for these problems apply almost

without hanges (using the deidability of the inlusion relation between onnetives).

It is hoped that, with these new operations, one an represent rather faithfully the example

presented in [15℄.

A more elaborate notion of subtypings appears in [11℄.
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Conlusion

As an experiment of using pattern mathing, we have done in ALF the Gilbreath Trik, presented

by G. Huet last year [14℄, whih is a non trivial indutive proof. This example shows well the

gain in readibility that the pattern mathing notation brings. While doing other experiments,

it appeared that a quite useful extension of the system would be the introdution of ase

expressions for proofs, where the ase is over a term that may not be in variable form. More

generally, the goal seems to be to develop nie enough notations that will hopefully help the

analysis of indutive arguments.

The method we follow here has some similarities with Lars Halln�as notion of partial indutive

de�nitions (see [12, 10℄), and with the way proofs are represented in Elf [17℄. What we do seems

to orrespond to a suggestion of [12℄ to use this notion as a \basis for a logial framework".

These onnetions have to be made preise.

In the present analysis of pattern mathing, a ruial rôle is played by the \no onfusion"

property of onstrutors. In \Language and Philosophial Problems," [20℄, p. 163 - 167, S.

Stenlund emphasizes from a philosophial perspetive the importane of this property.

From a proof-theoreti viewpoint, our treatment an be haraterized as �xing the meaning

of a logial onstant by its introdution rules. This possibility is disussed in [5℄, and onstrasted

to the dual possibility, whih is to �x the meanings of a logial onstant by its elimination rule.
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