
Pattern Mat
hing with Dependent Types

Thierry Coquand

�

Chalmers University

Preliminary version, June 1992 (This is an old version whi
h should be updated soon)

Introdu
tion

This note deals with notation in type theory. The de�nition of a fun
tion by pattern mat
hing

is by now 
ommon, and quite important in pra
ti
e, in fun
tional programming languages (see

for instan
e [1℄). We try here to introdu
e su
h de�nitions by pattern mat
hing in Martin-L�of's

logi
al framework.

1 Statement of the Problem

1.1 A Short Presentation of Martin-L�of's Logi
al Framework

For a more 
omplete presentation of Martin-L�of's logi
al framework, whi
h is implemented in

ALF, we refer to the book \Programming in Martin-L�of's Type Theory" [16℄, 
hapter 19 and

20. We re
all that ea
h type T is of the form (x

1

: A

1

; : : : ; x

n

: A

n

)A where A is Set or of the

form El(a): If A is of the form El(a); we say that T is an small type, and it is a large type

otherwise if A is Set: If a type of a term is of the form (x

1

: A

1

; : : : ; x

n

: A

n

)A; we say that n

is the arity of this term. An instan
e of a term u of arity n is a term de�nitionally equal to a

term of the form u(v

1

; : : : ; v

n

):

A 
ontext is a list of type de
laration � = x

1

: A

1

; : : : ; x

n

: A

n

: As in [19℄, we relativize

all judgements of type theory with respe
t to a 
ontext. An interpretation or 
ontextual

mapping between two 
ontexts � = x

1

: A

1

; : : : ; x

n

: A

n

and � = y

1

: B

1

; : : : ; y

m

: B

m

is a

simulateneous substitution S = fy

1

:= v

1

; : : : ; y

m

:= v

m

g su
h that

v

1

: B

1

(�); v

2

: B

2

[v

1

℄ (�); : : : ; v

m

: B

m

[v

1

; : : : ; v

m�1

℄ (�)

1

:

We write in this 
ase S : � ! �: If M is an open expression in �; we write by simple

juxtaposition MS the result of the substitution S to M: Noti
e that if A is a type in � then

AS is a type in �; and if a : A (�); then aS : AS (�):

If T

1

: �

1

! � and T

2

: �

2

! �

1

we write T

2

;T

1

: �

2

! � the 
omposition of T

1

and T

2

:

Martin-L�of's logi
al framework is an open framework: the user 
an add new 
onstants and

new 
omputation rules.

�


oquand�
s.
halmers.se

1

If v

i

is de�nitionally equal to y

i

; we omit y

i

:= v

i

in the writing of the interpretation; thus, fx := 0g is a


ontextual mapping from y : N to x : N; y : N meaning fx := 0; y := yg.

1



For instan
e, we get the � sets by de
laring the 
onstants

2

:

� : (X : Set; (X)Set)Set

pair : (X : Set; Y : (X)Set) (x : X;Y (x))�(X;Y )

split : (X : Set; Y : (X)Set) (Z : (�(X;Y ))Set)

((x : X; y : Y (x))Z(pair(X;Y; x; y)))

(w : �(X;Y ))

Z(w)

and asserting the equality (whi
h 
an be read as a 
omputation rule):

split(A;B;Z; z; pair(A;B; a; b)) = z(a; b) : Z(pair(A;B; x; y))

where

A : Set;

B : (A)Set;

Z : (�(A;B))Set

a : A;

b : B(a)

z : (x : A; y : B(x))Z(pair(A;B; a; b))

The usual 
artesian produ
t is de�ned by

A�B = �(A; (x)B) : Set [A : Set; B : Set℄

The set of natural numbers is introdu
ed by de
laring the 
onstants:

N : Set

0 : N

su

 : (N)N

natre
 : (C : (x : N)Set; C(0); (x : N; y : C(x)C(su

(x)); n : N)C(n)

and the equalities (whi
h 
an be read as 
omputation rules):

natre
(C; x; z; 0) = x : C(0)

natre
(C; x; z; su

(a)) = z(a; natre
(C; x; z; a))

where

C : (x : N)Set

x : C(0)

z : (x : N; y : C(x))C(su

(x))

The 
omputation rules generate the de�nitional equality between terms.

2

We allow ourselves to write in general A instead of El(A).

2



Quite important is the distin
tion between 
anoni
al and non-
anoni
al 
onstants. In

the examples above, �; pair N; 0 and su

 are 
anoni
al 
onstants, but split; natre
 and � are

non 
anoni
al.

If the type of a 
anoni
al 
onstant C is of the form (x

1

: A

1

; : : : ; x

n

: A

n

)Set; we say that C

is a 
onne
tive. The meaning of a 
onne
tive C is given by a set of 
anoni
al 
onstants of types

of the form (y

1

: B

1

; : : : ; y

m

: B

m

)El(C(a

1

; : : : ; a

n

)); that are 
alled 
onstru
tors of C: (In the


ase of mutual indu
tive de�nitions, we 
an have a set of 
onne
tives that are simultaneously

de�ned by a set of 
anoni
al 
onstants.) By extension, we 
onsider also that 
onne
tives are


onstru
tors of the type Set.

A 
anoni
al 
onstant whose type is a small type is 
onsidered to be a primitive notion, that

is self-justifying. In the example above, 0 and su

 are 
onsidered to be primitive notions, and

the 
anoni
al set N is de�ned by its set of 
onstru
tors 0 and su

:

We say that a term is in 
onstru
tor form i� it is de�nitionally equal to a term of the form


(u

1

; : : : ; u

n

) where 
 is a 
onstru
tor of arity n: The 
onstru
tor 
 is then uniquely determined.

We say that a term t is dire
tly stru
turally smaller than a term u i�

� both u and v are of small types and of arity 0;

� u is of 
onstru
tor form 
(a

1

; : : : ; a

n

) and t is de�nitionally equal to one a

j

of arity 0 or

one instan
e of one a

j

of arity > 0:

Being stru
turally smaller is de�ned by taking the transitive 
losure of this relation.

We use in an essential way the \no 
onfusion" property of 
onstru
tors. This 
overs two

properties. The �rst is that a de�nitional equality between two terms of the form a(u

1

; : : : ; u

n

)

and b(v

1

; : : : ; v

m

) if a and b are two distin
t 
onstru
tors, 
annot hold. The se
ond is that, if 


is a 
onstru
tor of type (x

1

: A

1

; : : : ; x

n

: A

n

)A; then the equality 
(u

1

; : : : ; u

n

) = 
(v

1

; : : : ; v

n

) :

A[u

1

; : : : ; u

n

℄ implies

u

1

= v

1

: A

1

; : : : ; u

n

= v

n

: A

n

[u

1

; : : : ; u

n�1

℄:

The non 
anoni
al 
onstant � is expli
itely de�ned in term of �:

The de�nitions of split and natre
 are not expli
it, and we refer to these 
onstants as im-

pli
itely de�ned 
onstants. The meaning of impli
itely de�ned 
onstants is given by their


omputation rules.

It is an important problem to give some 
riteria that ensure the 
orre
tness of the addition

of new 
onstants and 
omputation rules. We try here to analyse this problem using the pattern

mat
hing notation introdu
ed in fun
tional languages (see for instan
e [1℄).

1.2 Indu
tively de�ned 
onne
tives

We shall 
onsider only 
onne
tives that are indu
tively de�ned The relation of being stru
turally

smaller is then expe
ted to be well-founded. We shall take this well-foundedness property as

a fundamental assumption on the 
onstru
tors, without trying to analyse it further here. We

simply mention that the 
onstru
tors presented in [7, 8℄ satisfy this well-foundedness property.

Here are two 
ounter-examples.

3



The set

V : Set;

with one 
onstru
tor

� : ((A : Set)(A)A)V:

The polymorphi
 identity (A; x)x is of type (A : Set)(A)A; and hen
e the term �((A; x)x)

is of type V: This term is stru
turally smaller than itself. It follows that the relation of being

stru
turally smaller is not well-founded.

Likewise, the set

U : Set;

with one 
onstru
tor


 : (Set)U;

has to be reje
ted. The reason is however more subtle than for the previous 
ounter-example.

We noti
e �rst that, were this set a

epted, so would be T : (U)Set by T (
(X)) = X : Set: We


ould then introdu
e a set W : Set with only one 
onstru
tor sup : (x : U)((T (x))W )W (whi
h

is indu
tively de�ned given U; T ). But then sup(
(W ); (x)x) is stru
turally smaller than itself.

The �rst example, suggested by a remark of Per Martin-L�of, shows that the well-foundedness

requirement on the relation of being stru
turally smaller is a stronger requirement than mere

normalisation. Indeed the set V is de�ned by a se
ond-order quanti�
ation, and it 
an be

shown, by the usual redu
ibility method, that its addition to indu
tively de�ned sets preserves

the normalisation property.

1.3 Some diÆ
ulties with the usual elimination s
hemas

It is known how to asso
iate to any indu
tively de�ned 
onne
tive an elimination 
onstant,

together with its 
omputation rules. This is des
ribed for instan
e in [6℄. One 
an 
he
k that

all the examples of impli
itely de�ned 
onstants and 
omputations rules des
ribed in [16℄ are

of this form. A �rst 
riterion for ensuring the 
orre
tness of the addition of new 
onstants and


omputation rules is to allow only the addition of su
h elimination 
onstants. Experiments with

restri
ting the addition of impli
itely de�ned 
onstants to be elimination 
onstants have shown

some drawba
ks of this approa
h.

One �rst drawba
k is that we do not quite get the expe
ted 
omputational behaviour. If we

de�ne for instan
e add : (N;N)N by add(x; y) = natre
(y; x; (u; v)su

(v)); then add(x; su

(y))

redu
es to su

(natre
(y; x; (u; v)su

(v)) and one needs to fold ba
k this expression to get the

expe
ted su

(add(x; y)):

One se
ond drawba
k is readability. For instan
e, we want to 
onsider an obje
t su
h as

half : (N)N de�ned by

half(0) = 0; half(su

(0)) = 0; half(su

(su

(x))) = su

(half(x));

as given dire
tly by these equations, rather than being given by an expli
it de�nition whi
h is

a \
oding" of this obje
t in term of natre
:

4



The se
ond drawba
k is in pra
ti
e quite important. The pattern mat
hing notation is

essential in fun
tional programming languages

3

.

The next anomaly is the ne
essity to 
onsider higher \sets" for de�ning naturally a fun
tion

su
h as inf : (N;N)N: It is quite surprising that, in order to justify the equations

inf(0; y) = 0; inf(su

(x); 0) = 0; inf(su

(x); su

(y)) = su

(inf(x; y));

one needs to introdu
e the set of numeri
al fun
tions.

Another problem appeared for indu
tively de�ned families. Given a 
onne
tive with an

arity > 1; there are several possible elimination 
onstants depending on what arguments are


onsidered to be parameters. For instan
e, there are two di�erent elimination 
onstants for the


onne
tive Id : (A : Set; x; y : A)Set of unique 
onstru
tor re
 : (A : Set;x : A)Id(A; x; x): In this


ase, it is yet unknown if these two elimination 
onstants are equivalent.

The �rst and, in parti
ular, se
ond drawba
ks are strong motivations for allowing the intro-

du
tion of impli
itely de�ned 
onstants de�ned by 
omputation rules that are pattern mat
hing

equations. This seems to solve in general the third anomaly. In an unexpe
ted way, this seems

to have some bearing on the fourth problem, as we will try to explain below.

2 A General Presentation of Pattern Mat
hing

There are two independent requirements for the 
orre
tness of the introdu
tion of one impli
itely

de�ned 
onstant together with its 
omputation rules. These requirements are only suÆ
ient in

ensuring that the 
onstant does de�ne a total fun
tion on the underlying datatype.

The �rst is the requirement that all de�nitions, that may be re
ursive, are well-founded.

The se
ond is that the equations 
over all possible 
ases of the arguments and do not

introdu
e ambiguities in the 
omputation. We ensure this by imposing the de�nitions to be

exhaustive and mutually ex
lusive.

2.1 Well-founded De�nitions

A simple 
ondition ensures the fa
t that all de�nitions are well-founded, and seems furthermore

suÆ
ient in pra
ti
e. Let n be the arity of the impli
itely de�ned 
onstant f to be de�ned.

The 
ondition is that there exists an index i � n su
h that, for all equations f(u

1

; : : : ; u

n

) = e;

and all re
ursive 
all f(v

1

; : : : ; v

n

) of f in e; the 
onstant f does not o

ur in v

1

; : : : ; v

n

and the

term v

i

is stru
turally smaller than the term u

i

:

It would be possible to give a less restri
tive 
ondition, by 
onsidering instead a lexi
ographi


extension of the stru
tural ordering. However, this restri
tion suÆ
es to re
over the usual

elimination s
hemas. It is also quite simple to ensure that this 
ondition holds.

Noti
e that this 
ondition provides more general equations than the ones provided by the

usual primitive re
ursive s
hema. In the usual primitive re
ursive s
hema indeed, the parameters


annot vary in re
ursive 
alls. This is not required here.

3

The earliest, to our knowledge, mention of this notation appears in [2℄. A proposal of extending fun
tional

language with an \indu
tive" 
ase expression, whi
h hen
e ensures termination, is presented in [3℄.

5



For instan
e, this will justify dire
tly the following kind of de�nitions of a a fun
tion f :

(N;N)N:

f(0;m) = g(m); f(su

(n);m) = h(n;m; f(n; k(n;m)));

where g : (N)N; h : (N;N;N)N and k : (N;N)N are previously de�ned fun
tions. Noti
e that the

parameter m 
hanges to k(n;m) in the re
ursive 
all of f: This 
an be done only using the set

of numeri
al fun
tion if we restri
t ourselves the usual s
hema of primitive re
ursion (see [4℄).

2.2 Covering

To analyse further the 
ondition that the de�nitions are exhaustive and mutually disjoint, we

introdu
e one notion reminis
ent of a notion used in Per Martin-L�of's representation of 
hoi
e

sequen
es in type theory.

Let us motivate brie
y what follows. We want to add a new impli
itely de�ned 
onstant f

of type (x

1

: A

1

; : : : ; x

n

: A

n

)A; together with a set of 
omputation rules. Let � be the 
ontext

x

1

: A

1

; : : : ; x

n

: A

n

of arguments of f: We only 
onsider 
omputation rules for f of the form

f(a

1

; : : : ; a

n

) = e : A[a

1

; : : : ; a

n

℄ (�);

with a

1

: A

1

; : : : ; a

n

: A

n

[a

1

; : : : ; a

n�1

℄: We 
an think of a

1

; : : : ; a

n

as de�ning a 
ontextual

mapping S : � ! �; and this suggests to introdu
e the notation f(S) = e : AS (�) for su
h a


omputation rule.

With this notation, the 
onditions on a system of 
omputation rules f(S

j

) = e

j

: AS

j

(�

j

)

will be expressed as 
onditions on a system of 
ontextual mappings S

j

: �

j

! �: We want to

express that su
h a system de�nes a \partition of the spa
e de�ned by �:"

We are going to analyse this problem in the same way that pattern mat
hing in ordinary

fun
tional languages is redu
ed to a su

ession of 
ase expressions over a variable (see [1℄).

We say �rst that a system of 
ontextual mappings S

1

: �

1

! �; : : : ; S

m

: �

m

! � over a


ommon 
ontext � = x

1

: A

1

; : : : ; x

n

: A

n

is an elementary 
overing of � i� there exists an

index i � n su
h that

� all terms x

i

S

j

: A

i

S

j

(�

j

); for j �m; are in 
onstru
tor form,

� if S : � ! � is a 
ontextual mapping su
h that x

i

S is in 
onstru
tor form, then there

exists one and only one j � m and T : �! �

j

su
h that S = T ;S

j

:

This de�nition may look 
ompli
ated but it is a possible way of spe
ifying what is a 
ase

expression over the ith argument. In the 
ase of a 
ontext with only non dependent types, we

re
over the usual notion of 
ase expression as in [1℄. In the general 
ase however, we 
annot

keep the same notion of patterns of [1℄ (as the examples below will show, we need for instan
e

to 
onsider non linear patterns), and our abstra
t de�nition seems ne
essary.

An instan
e is the elementary 
overing de�ned by x = 0 and x = su

(y) (y : N) of the


ontext x : N:

A se
ond example is the empty set of 
ontextual maps over the 
ontext

� = p : Id(N; 0; su

(0)):

6



This is an elementary 
overing. Indeed, the only 
onstru
tor of the 
onne
tive Id is re
; and

a term of the form re
(A; u) 
annot be of type Id(N; 0; su

(0)): Otherwise, we would have

Id(N; 0; su

(0)) = Id(A; u; u);

and hen
e, be
ause Id is a 
onstru
tor, 0 = u : N and su

(0) = u : N: But this implies

0 = su

(0) : N; whi
h does not hold, be
ause 0 and su

 are di�erent 
onstru
tors.

A more elaborate example is for the 
ontext

� = x; y : N; p; q : Id(N; x; y):

It 
an be 
he
ked that, if we de�ne

� = x : N; p : Id(N; x; x);

then the unique 
ontextual mapping

fy := x; q := re
(N; x)g : �! �;

de�nes an elementary 
overing of �: Indeed, this follows from the fa
t that re
 is the only


onstru
tor of Id and that if re
(N; u) is of type Id(N; v; w); we have

Id(N; u; u) = Id(N; v; w) : Set;

and hen
e, sin
e Id is a 
onstru
tor, we have u = v : N and u = w : N:

We de�ne now what it means for a system of 
ontextual mapping S

i

: �

i

! � into a


ommon 
ontext � to be a 
overing of � :

� the identity interpretation �! � is a 
overing of �;

� if S

i

: �

i

! �; for i � p is an elementary 
overing of � and T

ij

: �

ij

! �

i

; for j � q

i

; is

a 
overing of �

i

; then T

ij

;S

i

: �

ij

! � is a 
overing of �:

For instan
e x = 0; together with x = su

(0) and x = su

(su

(y)) (y : N) de�ne a


overing of x : N:

An example of 
overing of the 
ontext � = x : N; y : N is given by

� fx := 0g : (y : N)! �;

� fx := su

(x

1

); y := 0g : (x

1

: N)! � and

� fx := su

(x

1

); y := su

(y

1

)g : (x

1

: N; y

1

: N)! �:

If we take again our last example of an elementary 
overing, it 
an be 
he
ked that the

unique 
ontextual mapping

fp := re
(N; x)g : (x : N)! �;

is an elementary 
overing of �: Hen
e, the unique 
ontextual mapping

fy := x; p := re
(N; x); q := re
(N; x)g : (x : N)! �;

7



is a 
overing of � = x; y : N; p; q : Id(N; x; y):

Following Per Martin-L�of's terminology, we 
all neighbourhood of a 
ontext any 
on-

textual map that is part of a 
overing of this 
ontext. The 
olle
tion of neighbourhoods of a


overing of a 
ontext 
an be thought of as de�ning a partition of the \spa
e" de�ned by this


ontext. This notion of neighbourhood 
orresponds to the notion of patterns used in fun
tional

programming languages: in the 
ase of a 
ontext with only non dependent types, we re
over

exa
tly the notion of pattern mat
hing des
ribed in [3, 1℄.

2.3 SuÆ
ient Conditions For Corre
tness

The suÆ
ient 
onditions ensuring the 
orre
tness of the addition of a new impli
itely de�ned


onstant f of type (x

1

: A

1

; : : : ; x

n

: A

n

)A; of argument 
ontext � = x

1

: A

1

; : : : ; x

n

: A

n

and

of 
omputation rules of the form f(S

j

) = e

j

: AS

j

(�

j

) are that:

� there is no nested o

uren
e of f in e

j

; and all re
ursive 
all of f are done on stru
turally

smaller arguments than the lefthandside arguments (whi
h 
an be ensured as des
ribed

above),

� the system of 
ontextual maps S

j

: �

j

! � is a 
overing of �:

2.4 Some 
omments on this method

The method followed here 
an be des
ribed as follows. When justifying a rule

f : (x

1

: A

1

; : : : ; x

n

: A

n

)A;

we analyse exhaustively the possible forms S of the arguments of f; and in ea
h possible 
ase

S; we build a term e

S

of type AS; using 
onstru
tors and already de�ned 
onstants.

We allow re
ursive 
alls of the 
onstant we are de�ning, provided these 
alls are on stru
-

turally smaller arguments.

Naturally asso
iated to this justi�
ation of an impli
itely de�ned 
onstant

f : (x

1

: A

1

; : : : ; x

n

: A

n

)A

is the following 
omputation rule for f: If a given argument (a

1

; : : : ; a

n

) is an instan
e of the 
ase

S; then the value of f(a

1

; : : : ; a

n

) is the value of the 
orresponding instan
e of e

S

: Otherwise,

the argument list of f is not \instantiated enough", and f(a

1

; : : : ; a

n

) 
annot be head redu
ed.

2.5 Some Examples

The fun
tion inf : (N;N)N whi
h is de�ned impli
itely by:

inf(0; y) = 0; inf(su

(x); 0) = 0; inf(su

(x); su

(y)) = su

(inf(x; y)):

The re
ursive 
all is justi�ed by the fa
t that it is stru
turally smaller on the �rst (or the

se
ond) argument.

It is standard how to redu
e su
h a de�nition to the usual elimination rules over the type

N; by using the set of numeri
al fun
tions.

8



By 
ontrast, it is not 
lear how to represent the following 
omputation rule in term of the

usual elimination rules

4

. We have seen that the unique 
ontextual mapping

fy := x; p := re
(N; x); q := re
(N; x)g : (x : N)! �;

is a 
overing of � = x; y : N; p; q : Id(N; x; y): It follows that it is 
orre
t to add a new 
onstant

f : (x; y : N; p; q : Id(N; x; y))Id(Id(N; x; y); p; q) together with the 
omputation rule

f(x; x; re
(N; x); re
(N; x)) = re
(Id(N; x; x); re
(N; x)) (x : N)

The next example still 
on
erns the 
onne
tive Id: As we said before, there are two possi-

ble elimination rules over this 
onne
tive, depending on what arguments are 
onsidered to be

parameters.

The �rst one, with the �rst argument is a parameter, is

F : (A : Set;C : (x; y : A; Id(A; x; y))Set;

d : (x : A)C(x; x; re
(A; x)); a; b : A; 
 : Id(A; a; b))

C(a; b; 
)

of 
omputation rule

F (A;C; d; a; a; re
(A; a)) = d(a) : C(a; a; re
(A; a));

where

A : Set; C : (x; y : A; Id(A; x; y))Set; d : (x : A)C(x; x; re
(A; x)); a : A:

The se
ond one, with the �rst two arguments are parameters, is

G : (A : Set; a : A;C : (y : A; Id(A; a; y))Set;

d : C(a; re
(A; a)); b : A; 
 : Id(A; a; b))

C(b; 
)

of 
omputation rule

G(A; a;C; d; a; re
(A; a)) = d : C(a; re
(A; a));

where

A : Set; a : A; C : (y : A; Id(A; a; y))Set; d : C(a; re
(A; a)):

It 
an be 
he
ked that both 
onstants satisfy the suÆ
ient 
onditions for 
orre
tness given

above. Only the 
overing 
ondition has to be 
he
ked, be
ause there is no re
ursive 
all.

The last example is the well-founded set 
onne
tive:

W : (A : Set; B : (A)Set)Set;

of unique 
onstru
tor

sup : (A : Set; B : (A)Set; a : A; u : (B(a))W(A;B))W(A;B):

4

This problem has been independently suggested by Thomas Strei
her.

9



We 
an introdu
e the impli
itely de�ned 
onstant

wre
 : (A : Set; B : (A)Set; C : (W(A;B))Set;

f : (a : A; u : (B(a))W(A;B); (x : B(a))C(u(x)))C(sup(A;B; u)); t : W(A;B))C(t)

with the 
omputation rule

wre
(A;B;C; f; sup(A;B; a; u)) = f(a; u; (x)wre
(A;B;C; f; u(x)));

where

A : Set; B : (A)Set; C : (W(A;B))Set; f : (a : A; u : (B(a))W(A;B); (x : B(a))C(u(x))):

This is justi�ed sin
e u(x) is stru
turally smaller than sup(A;B; a; u):

3 How to build 
overings

3.1 Uni�
ation Problem

If � is a 
ontext, A a type in �; and u; v two terms in � of type A; we de�ne a solution of the

uni�
ation problem

u = v : A (�)

to be a �nite system of 
ontextual mappings S

j

: �

j

! � su
h that

� for all j; we have uS

j

= vS

j

: AS

j

(�

j

); and

� if S : �! � is a 
ontextual mapping su
h that uS = vS : AS (�); then there exists one

and only one j and T : �! �

j

su
h that T ;S

j

= S:

For a des
ription of the uni�
ation problem with dependent types, see [18℄ and [9℄. Sin
e

this problem 
ontains already the similar problem for simply typed lambda-
al
ulus, des
ribed

in [13℄, we 
annot expe
t to have a general algorithm to solve it. It is however possible to

des
ribe a simple algorithm

5

, that has three possible outputs

� the system with no 
ontextual mapping (this ensures that the uni�
ation problem has no

solution),

� a system with exa
tly one 
ontextual mapping (this ensures that the uni�
ation problem

has a most general solution),

� the algorithm fails (whi
h 
orresponds to a diÆ
ult uni�
ation problem).

5

This algorithm is similar to the �rst-order uni�
ation algorithm, using the fundamental fa
t that 
onstru
tors

are one-to-one fun
tion.

10



3.2 Splitting Contexts

We give �rst a way to build elementary 
overings, as it is implemented in ALF. We 
annot ensure

that this generates all possible elementary 
overings, but it is not 
lear yet how to extend this

algorithm, and whether su
h an extension is needed or not in pra
ti
e.

Given a 
ontext

� = x

1

: A

1

; : : : ; x

n

: A

n

;

and an index i � n su
h that A

i

is a small type, we des
ribe an operation 
alled splitting the


ontext � along i: This is an algorithm that tries to produ
e an elementary 
overing of � :

� if A

i

is of arity > 0; or if A

i

is not in 
onstru
tor form, then the algorithm fails to produ
e

any 
overing,

� otherwise, A

i

is of the form El(C(u

1

; : : : ; u

n

)) and we 
an list all the 
onstru
tors of the


onne
tives C: For ea
h su
h 
onstru
tor 
 of type (y

1

: B

1

; : : : ; y

m

: B

m

)El(C(v

1

; : : : ; v

m

));

we apply the previous uni�
ation algorithm for the equation

C(u

1

; : : : ; u

n

) = C(v

1

; : : : ; v

n

) : Set (x

1

: A

1

; : : : ; x

i�1

: A

i�1

; y

1

: B

1

; : : : ; y

m

: B

m

);

and we 
olle
t all the solutions.

Given the fundamental \no 
onfusion" property of 
onstru
tor, this produ
es in 
ase of

su

ess an elementary 
overing of �:

3.3 General Coverings

General 
overings 
an now be built intera
tively. Given a 
ontext �; the user 
hooses an index

i and tries to split � along i: If the system answers by giving an elementary 
overing, the user


an then 
hoose to split some of the new produ
ed 
ontexts, and so on, until the user stops

eventually produ
ing by 
omposition a 
overing of �:

This intera
tive way of building 
overings has been implemented in ALF, and seems in

pra
ti
e to be quite 
onvenient for the user in ensuring that no 
ases have been forgotten during

the de�nition of a fun
tion by pattern mat
hing. This is in 
ontrast with the usual presentation

in fun
tional languages, where one should write the possible 
ases, and the 
ompiler warns the

user that some 
ases have been forgotten.

The following is a semi-algorithm that 
he
ks whether or not a system of 
ontextual map-

pings S

j

: �

j

! � is a 
overing

6

(thanks to G. Huet).

First, the system with only the identity mapping is a 
overing. Otherwise, 
hoose an index

i su
h that all x

i

S

j

are in 
onstru
tor form. Then, if possible, split � along i: If the answer

is an elementary 
overing T

i

: �

i

! � of �; this indu
es a partition of the original system

S

j

: �

j

! � into a system of mappings �

j

! �

i

: We then re
ursively 
he
k that ea
h of these

systems is a 
overing.

6

If we think of a 
overing as a 
olle
tion of disjoint \pie
es" that form a partition of a spa
e, this semi-

algorithm solves a typi
al \puzzle" problem. We are given some \pie
es" of a spa
e (
ontextual mapping), and

we try to see whether or not they form a partition of this spa
e.

11



4 Addition of Subsets

Kent Petersson, and independently A. Salvesen, suggested the following notion of subsets whi
h

seems to �t ni
ely with the present notion of impli
itely de�ned 
onstants. We limit here

ourselves to the des
ription of a simple example.

The meaning of a 
onne
tive, su
h as N : Set; is given by the set of its 
onstru
tors

0 : N; su

 : (N)N:

It is quite natural to allow the introdu
tion of (dire
t) subsets of N; that we get simply

by sele
ting a subset of this set of 
onstru
tors. For instan
e, we 
an introdu
e the subset

ISZERO : Set with the only 
onstru
tor 0; and the subset POS : Set with the only 
onstru
tor

su

:

This notion of subsets �ts well with the present way of de�ning a fun
tion by pattern

mat
hing, where one important step is to list the 
onstru
tors of a given 
onne
tive.

For instan
e, the unique 
omputation rule de�nes then 
orre
tly an impli
itely de�ned

fun
tion p : (POS)N:

p(su

(x

1

)) = x

1

(x

1

: N);

be
ause the 
ontext x : POS is 
overed by the 
ontextual mapping x = su

(x

1

) : N (x

1

: N):

We 
an dually allow the introdu
tion of (dire
t) supersets of N; that we get by adding new


onstru
tors. Typi
ally, the set of ordinals Ord : Set extends the set N by the addition of one


onstru
tor

lim : ((N)Ord)Ord:

The following 
omputation rules de�ne then 
orre
tly an impli
itely de�ned fun
tion g :

(Ord)N:

g(0) = 0; g(su

(x)) = su

(x); g(lim(u)) = g(u(0)):

This de�nition is justi�ed sin
e u(0) is stru
turally smaller than lim(u):

We 
an then de�ne a general in
lusion relation between 
onne
tives, by taking the transitive


losure of the dire
t in
lusion relation de�ned by the introdu
tion of subsets and supersets. This

is a de
idable relation.

As the last example shows, the addition of subsets and supersets introdu
es some overloading

fa
ilities. These do not however 
ompromise the de
idability of the following problems:

� is the expression A a 
orre
t type in the 
ontext �?

� given a type A in the 
ontext �; is the expression a a 
orre
t term of type A in the 
ontext

�?

as we 
an 
onvin
e ourselves by noting that the usual algorithm for these problems apply almost

without 
hanges (using the de
idability of the in
lusion relation between 
onne
tives).

It is hoped that, with these new operations, one 
an represent rather faithfully the example

presented in [15℄.

A more elaborate notion of subtypings appears in [11℄.

12



Con
lusion

As an experiment of using pattern mat
hing, we have done in ALF the Gilbreath Tri
k, presented

by G. Huet last year [14℄, whi
h is a non trivial indu
tive proof. This example shows well the

gain in readibility that the pattern mat
hing notation brings. While doing other experiments,

it appeared that a quite useful extension of the system would be the introdu
tion of 
ase

expressions for proofs, where the 
ase is over a term that may not be in variable form. More

generally, the goal seems to be to develop ni
e enough notations that will hopefully help the

analysis of indu
tive arguments.

The method we follow here has some similarities with Lars Halln�as notion of partial indu
tive

de�nitions (see [12, 10℄), and with the way proofs are represented in Elf [17℄. What we do seems

to 
orrespond to a suggestion of [12℄ to use this notion as a \basis for a logi
al framework".

These 
onne
tions have to be made pre
ise.

In the present analysis of pattern mat
hing, a 
ru
ial rôle is played by the \no 
onfusion"

property of 
onstru
tors. In \Language and Philosophi
al Problems," [20℄, p. 163 - 167, S.

Stenlund emphasizes from a philosophi
al perspe
tive the importan
e of this property.

From a proof-theoreti
 viewpoint, our treatment 
an be 
hara
terized as �xing the meaning

of a logi
al 
onstant by its introdu
tion rules. This possibility is dis
ussed in [5℄, and 
onstrasted

to the dual possibility, whi
h is to �x the meanings of a logi
al 
onstant by its elimination rule.

Referen
es

[1℄ Augustsson, L. \Compiling Pattern Mat
hing." In Compiling Lazy Fun
tional Languages

Part II, Ph. D. Thesis, Chalmers, 1987.

[2℄ Burstall, R.M. \Proving properties of programs by stru
tural indu
tion." Computer Jour-

nal 12(1), p. 41 { 48, 1969.

[3℄ Burstall, R.M. \Indu
tively De�ned Fun
tions in Fun
tional Programming Languages."

Journal of Computer and System S
ien
es, vol. 34, p. 409 { 421, 1987.

[4℄ Colson, L. \About Primitive Re
ursive Algorithms." LNCS 372, p. 194 { 206, 1989.

[5℄ Dummett, M. (1991) The Logi
al Basis of Metaphysi
s. Du
kworth ed.

[6℄ Dybjer, P. \Indu
tive Sets and Families in Martin-L�of's Type Theory" Chalmers Report

62, also p. 280-306 in Logi
al Frameworks, eds. G. Huet and G. Plotkin, Cambridge Uni-

versity Press, 1991.

[7℄ Dybjer, P. \An inversion prin
iple for Martin-L�of 's type theory." Pro
eedings of the

Workshop on Programming Logi
 in Bastad, May 1989, Programming Methodology Group

Report 54, p. 177-190.

[8℄ Dybjer, P. \Universes and a General Notion of Simultaneous Indu
tive-Re
ursive De�ni-

tion in Type Theory." in these pro
eedings.

[9℄ Elliott, C. M. \Higher-Order Uni�
ation with Dependent Fun
tion Types." p. 121 { 136,

Pro
. Rewriting Te
hniques and Appli
ations

13



[10℄ Eriksson, L.H. \A Finitary Version of the Cal
ulus of Partial Indu
tive De�nitions." SICS

resear
h report, also to be published in LNCS, Pro
eedings of the Se
ond Workshop on

Extensions of Logi
 Programming.

[11℄ Freeman, T. and Pfenning, F. \Re�nement Types for ML." to appear in ACM SIGPLAN

1991, Conferen
e on Programming Language Design and Implementation.

[12℄ Halln�as, L. \Partial Indu
tive De�nitions." Theoreti
al Computer S
ien
e 87, 1991, p. 115

- 142.

[13℄ Huet, G. \A uni�
ation algorithm for typed �-
al
ulus." Theoreti
al Computer S
ien
e,

p. 27 { 57, 1975.

[14℄ Huet, G. \The Gilbreath Tri
k: A Case Study in Axiomatization and Proof Development

in the COQ Proof Assistant." Te
hni
al Report 1511, INRIA, September, 1991.

[15℄ Kahn, G. \Natural Semanti
s." INRIA Te
hni
al report, 601, 1987.

[16℄ Nordstr�om B., Petersson K., Smith. J. M. (1990), Programming in Martin-L�of Type The-

ory. Oxford S
ien
e Publi
ations, Clarendon Press, Oxford.

[17℄ Pfenning, F. \Logi
 Programming in the LF logi
al framework" in G.Huet and G. Plotkin,

Logi
al Frameworks, Cambridge University Press.

[18℄ Pym, D. Proofs, Sear
h and Computation in General Logi
. Thesis, University of Edin-

burgh, November 1990.

[19℄ Ranta. A. (1988), \Constru
ting possible worlds," Mimeographed, University of Sto
k-

holm, to appear in Theoria.

[20℄ Stenlund, S. (1991), Language and Philosophi
al Problems. Routledge ed.

14


