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Introduction

Give L an algebraic extension of k(x) where x is an indeterminate, we have defined a lattice
Val(L, k) which is a point-free description of the Riemann surface X associated to L/k. (The
topology is such that the open correspond to the cofinite sets. Furthermore there is an extra
point which corresponds to the trivial valuation ring L.)

We present here a fundamental algorithm which of L enumerates all places P where a given
non zero element f of L satisfies vP (f) > 0 (that is, all places P where f is zero). From
this algorithm follows for instance that the lattice Val(L, k) is decidable. It shows also how to
represent any divisor of X as a formal sum of places. (Surprisingly it does not seem possible
to associate a place to an arbitrary point of X.) We can also use this algorithm to define what
are the poles of a given differential over X.

To simplify we suppose that k is algebraically closed. Using the technique of [2] we know
how to make constructive sense of this assumption. In practice it means that when we have
a polynomial we introduce new symbols with constraints that they have to be a root of this
polynomial. These symbols are treated uniformely until some questions about them (for instance
are they also root of another polynomial?) partition them in smaller groups.

In [5, 6], Edwards does not assume the field of constants to be algebraically closed but
introduces instead extension when needed. It seems simpler to work from an algebraically
closed field and to interpret the computations over it in a dynamic way. Since all computations
are done in term of polynomials (without having to decide irreducibility but only computing
gcd) it seems likely that the main results (for instance decidability of the lattice Val(L, k)) hold
without the hypothesis that k is algebraically closed.

We assume that L is determined by an equation χ(x, y) = yn + p1(x)yn−1 + . . .+ pn(x) = 0
where χ(X,Y ) = Y n + p1(X)Y n−1 + . . . + pn(X) is a polynomial of k[X,Y ] irreducible in
k(X)[Y ].

1 What is a place?

A place of L is given by two parameters α, β of L such that L = k(α, β) and a polynomial
f(X,Y ) in k[X,Y ] such that f is irreducible in k(X)[Y ] and f(α, β) = 0 and, if we decompose
f in homogeneous component f = f0 + f1 + . . . we have f0 = 0 and f1 6= 0.

For instance for L given by x3 + y3− xy = 0 we have that α = x− 1/2, β = y− 1/2 satisfies
4α3 +6α2 +α+4β3 +6β2 +β−4αβ = 0 and this determines a place. But x, y with x3 +y3−xy
is not a place.

For L given by y2 = x4 − 1 we have that α = 1/x, β = −1 + y/x2 is a place with the
polynomial α4 + β2 + 2β.
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Any place P determines a discrete valuation function vP : L× → Z and a local parameter
t, that is a non zero element t of L such that vP (t) = 1 (which is α or β). To the function vP

is associated a valuation ring VP which is a point of X. We may write P instead of VP . For
computing vP we know that α or β is a local parameter. For instance if α is a local parameter
we can express β as an element of k[[α]] and we build in this way a map from L = k(α, β) in
k((α))1.

If P is a place given by α, β, we can write formally the open X − {P} as the open UP =
V (1/α, 1/β).

Theorem 1.1 VP is the set of elements z of L such that 1 = V (1/α, 1/β, z). Also vP (z) > 0
iff V (1/z) 6 V (1/α, 1/β).

Proof. We show that vP (1/z) > 0 iff 1 = V (1/α, 1/β, 1/z). The proof of the second statement
is similar.

If we have 1 = V (1/α, 1/β, 1/z) then we have a relation of the form pα+ qβ + rz = 1 with
p, q, r in k[α, β, z]. We have also vP (α) > 0 and vP (β) > 0. Since pα + qβ + rz = 1 we cannot
have vP (z) > 0 and hence vP (z) 6 0.

Conversely we assume vP (z) 6 0 and we prove 1 = V (1/α, 1/β, 1/z). We know that we have
a relation aα+ bβ + g(α, β) = 0 where the multiplicity of g is > 1 with a 6= 0 or b 6= 0. Assume
for instance that b 6= 0. Using this relation and L = k(α, β) one can write any non zero element
of L, and in particular z on the form αl · (1 + fα/1 + gα) with f, g in k[α, β]. We have then
vP (z) = l > 0. It follows that zα−l(1 + gα) = 1 + fα and we have 1 = V (1/α, 1/β, 1/z).

It follows from this result that for any formal open U of Val(L, k) we have U 6 UP or
UP ∨ U = 1.

Notice that membership P ∈ V (f) is decidable since this is equivalent to vP (f) > 0.

2 A fundamental algorithm

Given a non zero element f of L we are going to determine all places P = P1, . . . , Pm such
that vP (f) < 0. Another statement is that V (f) = X − {P1, . . . , Pm} in the lattice Val(L, k).
Intuitively the places P1, . . . , Pm are the poles of the function f . Here is yet another (formal)
statement.

Theorem 2.1 For any non zero element f of L there exists P1, . . . , Pm places of L/k such that
V (f) = UP1 ∧ . . . ∧ UPm .

We can state a direct corollary.

Theorem 2.2 The lattice Val(L, k) is decidable.

Corollary 2.3 In the field L it is decidable if an element f belongs to the integral closure E(x)
of k[x].

Proof. Indeed this is the case iff we have vP (x) < 0 for all places P such that vP (f) < 0 and
we can compute all such places by Theorem 2.1. We then have V (f) = UP1 ∧ . . . ∧ UPm and
V (x) 6 UP1∧. . .∧UPm and hence V (x) 6 V (f) in Val(L, k). By the characterisation of Val(L, k)
this implies that f is integral over k[x].

1All this is finite and it might be interesting to have a finite construction which does not go via infinite formal
series.
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We proceed now to the proof of Theorem 2.1. The proof follows closely Abhyankar [1].
There seems to be some variations of the argument in [3, 4], which use Newton’s polygon, but
the algorithm itself and the proof of termination of the algorithm is much clearer in [1]. There
is a similar argument in [6], which uses also Newton’s polygon2. The argument of termination
in Edwards if the same as in [1] (and he points out that the proof of termination in another
standard reference, a book by Walker, is not constructive).

Since P ∈ V (f) is decidable it is enough to find P1, . . . , Pm places of L/k such that UP1∧. . .∧
UPm 6 V (f). Since 1 = V (x) ∨ V (1/x), it is enough to find P1, . . . , Pm places of L/k such that
V (x)∧UP1∧ . . .∧UPm 6 V (f) and Q1, . . . , Ql places of L/k such that V (1/x)∧UQ1∧ . . .∧UQl

6
V (f). We show how to find P1, . . . , Pm places of L/k such that V (x)∧UP1 ∧ . . .∧UPm 6 V (f),
the other problem being similar, changing x to 1/x and y to y/xn such that y/xn is integral
over k[1/x].

We write f = p(x, y)/q(x, y). It is then enough to find all places P where x is finite (that is
vP (x) > 0) and where q(x, y) = 0 (that is vP (q) > 0).

So we eliminate y between q(x, y) = 0 and χ(x, y) = 0 finding a polynomial φ(x) = 0 and
for all a in k such that φ(a) = 0 we compute the gcd ψa(Y ) of q(a, Y ) and χ(a, Y ). For all root
b of ψa(Y ) we must find all places P where x = a and y = b.

2.1 Main Lemma

Lemma 2.4 Given a, b in k such that χ(a, b) = 0 find all places P where x = a and y = b (that
is vP (x− a) > 0 and vP (y − b) > 0).

Proof. This is achieved by a tree algorithm. At each node of the tree we have two parameters
xl, yl such that k(xl, yl) = L. Furthermore we have f (l)(X,Y ) such that f (l)(0, 0) = 0 and
f (l) is irreducible in k(X)[Y ]. At the root of the tree we have x0 = x − a, y0 = y − b and
f (0)(X,Y ) = χ(a+X, b+ Y ). We stop as soon as 0, 0 is a simple zero of f (l)(X,Y ).

At one node x, y, g we write g as a sum of homogeneous polynomials g = gd + gd+1 + . . .
with gd 6= 0. The number d is the multiplicity of the node. We know d > 0 and we stop if d = 1.
So we can assume d > 1.

We try first to find, among all places P such that vP (x) > 0, vP (y) > 0 all places P such
that x/y = 0 (and then all places P such that vP (y/x) > 0). So we do the quadratic change of
coordinate x = uy and compute

g(uy, y) = yd(gd(u, 1) + ygd+1(u, 1) + . . .)

and the new polynomial is h(u, y) = gd(u, 1) + ygd+1(u, 1) + . . . 3 We check if 0 is a root of the
polynomial h(U, 0) = gd(U, 1). Notice that a necessary condition for the multiplicity of the new
system u, y, h to not decrease is that gd(U, 1) = Ud (up to a multiplicative constant) and then
the new multiplicity is the same.

We try then to find among all places P where x = y = 0 all places P such that vP (y/x) > 0.
So we do the quadratic change of coordinate y = xt and compute

g(x, xt) = xd(gd(1, t) + xgd+1(1, t) + . . .) = xdg′(x, t)

and we look at all roots of g′(0, T ) = gd(1, T ). Let these roots be a1, . . . , ae with e 6 d. For
each i we form the new system x, t − ai, g

(i) = g′(X, ai + T ). A necessary for the multiplicity
2Let us cite Lagrange: “mais comme la méthode . . . dépend du parallélogramme de Newton, et par conséquent

ne peut être regardée que comme une méthode mécanique, je crois que les Géomètres seront bien aises de voir
comment on peut résoudre cette question par une méthode purement analytique.”

3It can be checked that h(U, Y ) is irreducible in k(U)[Y ].
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not to decrease is that gd(1, T ) = T d and that e = 1 and we have only one root a1. In this case
we have that g(1)

d (X,T ) of the form T d + . . .
This ends the description of the algorithm. We see that either the multiplicity decreases or

we have only one descendant. Furthermore if the multiplicity does not decrease we should have
gd(X,Y ) = Xd or gd(X,Y ) is of the form (Y − aX)d.

Thus they are two cases where the multiplicity does not decrease. In one case we have a
sequence of transformations

x = yx1, y = y1, x1 = y1x2, y1 = y2, x2 = y2x3, y2 = y3, . . .

and in other case we have a sequence of transformation of the form

x = x1, y = x(y1 + a1), x1 = x2, y1 = x1(y2 + a2), x2 = x3, y2 = x2(y3 + a3), . . .

We show that this has to stop in both cases. The argument is the same, so we look at the
second case (this termination argument appears in [1] and in other form in [5, 6].). We use here
that g(X,Y ) and g′Y (X,Y ) are such that there exists r(X,Y ), s(X,Y ), δ(X) such that

r(X,Y )g(X,Y ) + s(X,Y )g′Y (X,Y ) = δ(X)

with d non zero. This follows from the fact that g(X,Y ) is irreducible in k(X)[Y ]. We see also
that X2m divides g(X, a1X+a2X

2 + . . .+amX
m +XmY ) and Xm divides g′Y (X, a1X+a2X

2 +
. . .+amX

m +XmY ). If follows that Xm divides δ(X) and hence the number of steps is limited
a priori by the mutiplicity of 0 as a root of δ(X).

In this way we compute all places P such that vP (x− a) > 0 and vP (y − b) > 0.

2.2 Examples

2.2.1 Example 1

y2 = 1− x4: we find all places P where x = 0, y = 1
We first do the translation x = x0, y = y0 + 1. We get the equation 2y0 + y2

0 = 1 − x4
0 and

we stop. We have a place P with the local parameter x0. We have vP (y − 1) = 2, vP (x) = 1.

2.2.2 Example 2

x3 + y3 = xy: we find all places P where x = 0, y = 0
We first change x = yu and look for places where u = 0. We get the equation u = y(u3 +1).

We have a place P1 such that vP1(y) = 1, vP1(x) = 2 and u, y are local parameters.
We try next y = xt. We get the equation t = x(t3 + 1). We have a place P2 such that

vP2(x) = 1, vP2(y) = 2 and x, t are local parameters.

2.2.3 Example 3

y3 = x2(1− x): we find all places P where x = 0, y = 0
We first change x = yu and look for places where u = 0. We get the equation y = u2(1−yu).

We have a place P1 with local parameter u and such that vP1(y) = 2, vP1(x) = 3.
We try next y = xt. We get the equation xt3 = 1 − x and there are no places such that

vP (t) > 0, vP (x) > 0, vP (y) > 0.

4



2.2.4 Example 4

(x2 + y2)3 = 4x2y2: we find all places P where x = 0, y = 0
(This example is given at the beginning of [3].) We first change x = yu and look for places

where u = 0. We get the equation y2(1 + u2)3 = 4u2. We then do the change y = u(2 + z) and
find (4 + 4z+ z2)(1 + 3u2 + 3u4 + 1) = 4. Hence we have a place P1 determined by u = 0, z = 0
with a local parameter u. We have vP1(y) = 1 and vP1(x) = 2. We have another place P2 with
the change y = u(−2 + z).

By symmetry we find two other place P3, P4 such that vPi(x) = 1 and vPi(y) = 2.
Since this algorithm proceeds only by simple quadratic transformations, it seems more “prim-

itive” than the algorithms in [3, 6, 4] that use Newton’s algorithm. Furthermore it computes
at the same time a local parameter.

3 Application: integral basis

We consider now the case where k is the algebraic closure of Q.
We want to show that the integral closure E(x) of k[x] in L is a free module over k[x]. We

follow the algorithm in [6]. We compute the determinant of the matrix trx(yi−1yj−1) which
is a polynomial in x and find its square factors q(x)2. We then look at elements p0 + . . . +
pn−1y

n−1/q that are integrals with deg(pi) < deg(q). For this we compute all places P such
that vP (x) > 0 and vP (q) > 0 and a local parameter at each such place. For the element
f = p0 + . . . + pn−1y

n−1/q to be in E(x) the condition is that vP (f) > 0 for all such places.
This condition is a linear system of equations in term of the coefficient of p0, . . . , pn−1.

For instance for the equation x3 + y3 = xy, we find q = x (cf. Example 1 of Essay 4.5 [6]).
We have then to decide when f = a+ by + cy2/x is integral over k[x]. We have computed the
two places P1, P2 such that vP (x) > 0. The place P1 is given by u = x/y, y and y is a local
parameter with x = uy = y2(1+u3). We have vP1(f) > 0 iff a = b = 0. For P2 we have t = y/x
and x local parameters and y = x2(1 + t3). Thus vP2(f) > 0 iff a = 0. In conclusion, a basis of
E(x) over k[x] is 1, y, y2/x.

Another example if the Klein curve y3 + x3y + x = 0 (cf. Example 2 of Essay 4.5 [6]). Here
also q = x and we have to decide when f = a + by + cy2/x is integral over k[x]. There is
only one place P such that vP (x) > 0 and it is given by x, y and y is a local parameter with
x = −y3 − yx3. Thus vP (f) > 0 iff a = b = c = 0 and a basis of E(x) over k[x] is 1, y, y2.

Conclusion

It should now be possible to reconstruct all the main results of [5] Chapter 3. We can define
the order of a differential at a place P and define a differential ω to be holomorphic if we
have vP (ω) > 0 at all places. This definition should be shown equivalent with the more global
definition in term of traces. There should be no obstacles also to obtain Riemann-Roch’s
Theorem with its usual formulation.
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