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Formal Topology

For our purpose, it is enough to say that the main idea is to reverse the
traditional conceptual order of definitions in topology and define points as
particular filters of neighbourhoods, rather than opens as particular sets of
points

G. Sambin, Intuitionistic Formal Spaces, A first communication, 1986
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Formal Topology

Analogy with some approach in physics, e.g. to thermodynamics, which
consists in considering only observable notions

Measure of a physical quantity (real number)
Only rational approximations are known in general
One can observe that this real number is contained in a rational interval
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Formal Topology

(topos theory) has also a role to play in suggesting what constructive
mathematics ought to be – what results one should aim for, and even how
one should try to prove them . . . even the message that constructive
general topology ought to be about locales and not spaces . . . has had
little impact on any of the traditional schools of constructive mathematics

Johnstone, Open locales and exponentiation, 1984

author-in-footnote, univ 3/29



Formal Topology

Solves many problems of constructive analysis: definition of continuous
functions, proof of Heine-Borel, of Tychonoff’s Theorem, simpler
statement and proof of Hahn-Banach, Gelfand representation theorem

Problem of composition of continuous functions in Bishop’s framework:
inverse function (0,∞)→ R and f : [0, 1]→ (0,∞), is the composition
continuous? (E. Palmgren)

In algebra, definition of Zariski spectrum, with good properties, Krull
dimension
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Some precursors

Dedekind-Weber 1882 algebraic definition of Riemann surfaces

Kreisel 1959 neighbourhoods system; Scott information system 1982

P. Martin-Löf Notes on Constructive Mathematics, 1968
Cantor space, real line described as formal spaces, but in the context of
recursive mathematics, e.g. a collection of neighbourhoods has to be given
by a recursively enumerable sequence
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Formal Topology

Developped in Type Theory, in a predicative setting (by opposition to the
theory of locales developped in topos theory)

A set S of basic open and a relation a C U between elements of S and
subsets of S , represented by predicates on S . Intuitively: the basic open is
a subset of the union of the basic open in U

Important difference of nature between elements a, b, . . . of S and subsets
U,V , . . . of S

Basic open are (most often) concrete, syntactical, discrete objects

Notation U C V means a C V for all aεU
where aεU means U(a)
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Formal Topology

We only use two rules

Transitivity rule: if a C U and U C V then a C V

Reflexivity rule: a C U if aεU
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Formal Topology

If D is a distributive lattice take S = D and define a C U by

∃a1, . . . , anεU. a 6 a1 ∨ · · · ∨ an

If R is a commutative ring, take S = R and define a C U if and only if a
power of a is in the ideal generated by U

In both cases all basic open are compact: if a C U then there exists
a1, . . . , anεU such that a C a1, . . . , an
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Example: real line

Proof theoretic approach to topology

Example R: the basic open are rational intervals (r , s)
Deduction rules

(r , s) C U
(r , s)εU

(r ′, s ′) C U

(r , s) C U

where r ′ 6 r < s 6 s ′

(r , s ′) C U (r ′, s) C U

(r , s) C U

where r < r ′ < s ′ < s
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Example: real line

Defines a finitary covering relation (r , s) Cω U

Any derivation is a finite tree

If (r , s) Cω U then

(r , s) ⊆
⋃

(p,q)εU

(p, q)

in R but the converse may not be valid
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Formal Topology

One should add the infinitary rule

. . . (r ′, s ′) C U . . .

(r , s) C U
(r < r ′ < s ′ < s)

Classically, one has (r , s) C U if and only if (r , s) ⊆
⋃

(p,q)εU(p, q) in R

Theorem: (r , s) C U if and only if for all r < r ′ < s ′ < s we have
(r ′, s ′) Cω U

This means that one can always put the infinitary rule at the end and use
it at most once

Heine-Borel is a simple corollary
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Formal points

A point α will be a predicate on basic open

We write α ∈ a for α(a) and α ∈ U for ∃aεU.α ∈ a

We should have α ∈ U if α ∈ a and a C U

What are the points in R? Dedekind reals

(r , s) C U ↔ ∀α. α ∈ (r , s)→ α ∈ U

is equivalent to Brouwer’s Fan Theorem
It does not hold in Type Theory

The definition of (p, q) C U captures the “right” covering notion
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Positivity

Notion only interesting in a constructive framework

We want to express constructively that an open is inhabited

pos(a) if and only if ∃α. α ∈ a
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Positivity Predicate

Rules for pos(a)

a C U pos(a)

pos(U)
monotonicity

pos(a)→ a C U

a C U
positivity
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Positivity Predicate

a C U pos(a)

pos(U)
monotonicity

∃α.α ∈ a ∀α. α ∈ a→ α ∈ U

∃α.α ∈ U

pos(a)→ a C U

a C U
positivity

(∃α.α ∈ a)→ ∀α. α ∈ a→ α ∈ U

∀α. α ∈ a→ α ∈ U

Are these rules complete?
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Positivity Predicate

Write a+ the subset {a | pos(a)}

a C a+ because pos(a)→ a C a+ because a C a by reflexivity

Conversely if a C a+ then we have positivity

Notice that pos(a)→ a C U can be written as a+ C U and we have

a+ C U

a C U

if a C a+ by transitivity
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Positivity Predicate

Theorem: The following are equivalent

(1) the positivity rule
pos(a)→ a C U

a C U

(2) the rule
a+ C U

a C U

(3) a C a+

(4) the rule
a C U

a C U+

(5) U C U+ where U+ = {bεU | pos(b)}
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Positivity Predicate

Classically we can define pos(a) by ¬(a C ∅)

We have a C a+ in both cases a C ∅ or ¬(a C ∅)

So classically any formal space has a positivity predicate
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Positivity Predicate

Impredicatively one can try to define POS(a) as

∀U. a C U → ∃b.bεU

This may not satisfy monotonicity and positivity

If we have a C {a | POS(a)} then POS is a positivity predicate in an
impredicative framework (Fourman-Grayson)

A locale having this property is called open or overt
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Positivity Predicate

Theorem: (P. Aczel) If there exists a positivity predicate pos then
pos(a)↔ POS(a)

This shows that pos if it exists, is uniquely determined by C

pos(a)→ POS(a) by monotonicity
POS(a)→ pos(a) since a C a+
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Positivity

Assume that S is such that any basic open is compact

Reflexivity rule

a C U
aεU

Transistivity rule
a C U U C V

a C V

Compactness: if a C U then a C a1, . . . , an for some a1, . . . , anεU
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Positivity

With compactness we can prove

Lemma: We have POS(a)↔ ¬(a C ∅)

Theorem: S has a positivity predicate if and only if a C ∅ is decidable and
then pos(a)↔ ¬(a C ∅)

Proof: since a C a+ by compactness either a C ∅ or pos(a)
We cannot have both pos(a) and a C ∅ by monotonicity
So for any a we have a C ∅ or ¬(a C ∅)

This provides examples of formal spaces without positivity predicate
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Positivity predicate

Lemma: (Townsend-Thorensen Lemma, Johnstone 1984)
If a� b then a C ∅ or pos(b)

where a� b means that if b C U then there exists b1, . . . , bnεU such that
a C b1, . . . , bn

Proof: We have b C b+ hence a C ∅ (if n = 0) or pos(b)

This property characterizes locally compact spaces with a positivity
predicate
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Reals

For the real line any basic open (r , s) with r < s is positive

By proof tree induction, if (r , s) C U then U is inhabited
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Compact regular space

Do we need the positivity predicate?

If f : X → R and X is compact
Then there exists N such that X = f −1(−N,N)
We can compute sup f only if X has a positivity predicate

The right notion of compact Hausdorff space seems to be

compact regular space with a positivity predicate
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Non decidable pos

Let R be a divisible lattice ordered abelian group with a strong unit 1
For any a in R there exists n such that |a| 6 n where |a| = a ∨ (−a)
a is normable if and only if there exists ||a|| in R such that

||a|| < s ↔ ∃r > 0. |a| 6 s − r

A representation σ : R → R is a map preserving ∨,+ and the unit 1
cf. Stone A General Theory of Spectra, N.A.S. 1940
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Non decidable pos

We define the spectrum of R by the rules

D(a + b) 6 D(a) ∨ D(b) D(1) = 1

D(a) ∧ D(−a) = 0 D(a ∨ b) = D(a) ∨ D(b)

and
D(a) =

∨
r>0

D(a− r)

Intuitively
D(a) = {σ ∈ R → R | σ(a) > 0}

where σ : R → R is a representation of R
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Non decidable pos

Theorem: The spectrum of R has a posivity predicate iff any element of
R is normable

We define pos(a) by ||a|| > 0

In Bishop mathematics, if any element of R is normable and R has a dense
countable subset, then for any a such that ||a|| > 0 we can find a
representation σ : R → R such that σ(a) > 0
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Intuitionistic notions

Three important notions that are only relevant in an intitionistic framework

Positivity

Normability

Locatedness
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