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Introduction

Usual definitions of Dedekind domain are not well suited for an algorithmic treatment. Indeed,
the notion of Noetherian rings is subtle from a constructive point of view, and to be able to get
prime ideals involve strong hypotheses. For instance, if k is a field, even given explicitely, there
is in general no method to factorize polynomials in k[X].

The work [2] analyses the notion of Dedekind domain from a constructive point of view.
A first good constructive approximation of the notion of Dedekind domain is the notion of
coherent Prüfer ring1. We recall the required definitions. Classically, a ring R is arithmetical
iff any localisation Rp at any prime p of R is a valuation ring, i.e. such that the divisibility
relation is linear. A ring R is arithmetical iff its lattice of ideal is distributive iff for any pair of
elements x, y we can find u, v, w such that xv = yu and x(1− u) = yw. Yet another equivalent
definition, which can be seen as a formal version of the classical definition is that for any pair of
elements x, y we can find a covering D(w1), . . . , D(wn) of the Zariski spectrum of R such that
x divides y or y divides x in each localisation Rwi . We say that a ring is a Prüfer ring iff all its
ideal are flat iff it is arithmetical and reduced (if x2 = 0 then x = 0). One can then show that
a Prüfer ring is coherent (i.e. any finitely generated ideal is finitely presented) iff it is a pp-ring
(i.e. the annihilator of any element is generated by an idempotent)2. In particular any domain
which is arithmetical is a coherent Prüfer ring. However to assume the ring to be integral is too
strong constructively since we cannot decide irreducibility in general.

The goal of this paper is to show, in constructive mathematics, that if k is a discrete field
and f an arbitrary polynomial in k[x, y] then the localisation Rf ′

y
is always a coherent Prüfer

ring3, where R denotes the ring k[x, y] quotiented by f . (Computationally, this means in
particular that we have to solve the following problem: given g, h two elements of k[x, y] to
find u0 = g, v0 = h, u1, v1, . . . , un, vn in k[x, y] such that vig = uih modulo f for i = 0, . . . , n
and D(f ′y) is covered by D(u0), D(v0), . . . , D(un), D(vn) in the Zariski spectrum of R.) An
important corollary is that R is a coherent Prüfer ring whenever 1 = 〈f, f ′x, f ′y〉.

We first give a simple argument in the case where k is algebraically closed and f is irreducible.
As a preliminary to the general case, we present after a generalisation of the notion of Hasse-
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Schmidt derivatives, which has an interest on its own. We then explain what happens in general,
and conclude with a magma program which follows this argument and some examples.

1 The case where k is algebraically closed and f irreducible

If f is irreducible then R is a domain. In this case we show that Rf ′
y

is a Prüfer domain by
showing that any localisation Rp is a valuation ring, where p is a prime ideal not containing f ′y.

If k is algebraically closed, a non zero prime ideal p of R is on the form p = 〈x − a, y − b〉
where a, b are in k such that f(a, b) = 0. If f ′y is not in p this means that we have furthermore
f ′y(a, b) 6= 0. We simply follow the usual proof that Rp is a discrete valuation ring with x − a
as uniformising parameter.

For analysing this, we write in k[x, y]

f − f(a, b) = (x− a)u− (y − b)v

with u and v in k[x, y]. One can take v in k[y], in which case (y− b)v = −f(a, y) + f(a, b). We
have then v(a, b) = −f ′y(a, b) 6= 0 and, in R

0 = (x− a)u− (y − b)v

Similarly, for an arbitrary element g in k[x, y] we can write

g = g(a, b) + (x− a)p− (y − b)q

and hence in R
vg = vg(a, b) + (x− a)r1

with r1 = pv − qu. Doing the same operation with r1 instead of g we get similarly

v2g = v2g(a, b) + (x− a)vg1 + (x− a)2r2

with g1 = r1(a, b). In general, we have an equality

vng = vng(a, b) + (x− a)vn−1g1 + . . . + (x− a)n−1vgn−1 + (x− a)nrn

and we have gn = rn(a, b) and it is natural to write g0 = g(a, b).
If g 6= 0 in R then the resultant d = Resy(f, g) in k[x] is non zero. We can write d = σf +θg

in k[x, y] and so d = θg in R. If g0 = . . . = gn−1 = 0 we have in R

(∗) vnd = (x− a)nrnθ

Since f ′y(a, b) 6= 0 we have that x − a and f are relatively prime in k[x, y] and so x − a is
regular in R. (Otherwise x − a divides f and so divides f ′y and f ′y(a, b) = 0.) If we write
d = u0 + (x − a)u1 + . . ., with u0, u1 . . . in k, using the fact that x − a is regular in R, the
equality (∗) implies that ui = 0 for i < n and hence (x − a)n divides d in k[x]. It follows that
there exists n such that g0 = . . . = gn−1 = 0 and gn 6= 0. (We can have n = 0 in which case
g0 6= 0.) The integer n is the (discrete) valuation of g at p.

If g and h are two elements of k[x, y] that are non zero mod. 〈f〉 we have that g divides h
in Rp iff the valuation of g is 6 the valuation of h.
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2 A generalisation of Hasse-Schmidt derivatives

From now on, all our arguments are constructive, following [3, 4]. Let B a commutative ring,
and a, b two elements of B. We write δ0 : B[x, y] → B the evaluation δ0(t) = t(a, b). We may
write t0 instead of δ0(t). If f is a polynomial in B[x, y] we can write in B[x, y]

f − f0 = (x− a)u− (y − b)v

We are going to define a family of maps δn : B[x, y] → B so that, intuitively, the formal
power serie

∑∞
i=0 δi(g)ti represents the development of the function g w.r.t. the parameter

t = (x− a)/v = (y − b)/u. These functions will satisfy

δn(gh) = Σi+j=nδi(g)δj(h)

and can be seen as a generalisation of the notion of Hasse-Schmidt derivatives.
For an element g of B[x, y] we can write

g − δ0(g) = (x− a)p− (y − b)q

and hence define ∆(g) = pv − qu. This is well defined modulo f − f0. Indeed if we have also
g − δ0(g) = (x− a)p′ − (y − b)q′ then we can write p′ = p + (y − b)w, q′ = q + (x− a)w with w
in B[x, y] and then

p′v − q′u = pv − qu− w((x− a)u− (y − b)v) = (pv − qu)− w(f − f0)

Also if we have h = g + w(f − f0) and g − g0 = (x− a)p− (y − b)q then

h− h0 = (x− a)(p + wu)− (y − b)(q + wv)

and (p + wu)v − (q + wv)u is equal to pv − qu.

Hence we have defined a B-linear map ∆ : B[x, y]/〈f−f0〉 → B[x, y]/〈f−f0〉, g 7−→ pv−qu
(for g − g0 = (x− a)p− (y − b)q). We define δn : B[x, y]/〈f − f0〉 → B by

δn = δ0 ◦∆n

We show next that ∆(gh) = g∆(h) + δ0(h)∆(g) in B[x, y]/〈f − f0〉. For this, we write

g − g0 = (x− a)p− (y − b)q, h− h0 = (x− a)p′ − (y − b)q′

and
gh− g0h0 = (h− h0)g + (g − g0)h0 = (x− a)(gp′ + h0p)− (y − b)(gq′ + h0q)

so that

(gp′ + h0p)v − (gq′ + h0q)u = g(p′v − q′u) + h0(pv − qu) = g∆(h) + δ0(h)∆(g)

By symmetry we have as well ∆(gh) = h∆(g) + δ0(g)∆(h).

We can iterate the previous equality

∆2(gh) = g∆2(h) + δ1(h)∆(g) + δ0(h)∆2(g)

and more generally

∆n(gh) = g∆n(h) +
n∑

i=1

δn−i(h)∆i(g)

If we apply δ0 we get
δn(gh) =

∑
i+j=n

δi(g)δj(h)
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Lemma 2.1 We have h∆n(g) = g∆n(h) in B/〈f−f0〉modulo δ0(g), . . . , δn−1(g), δ0(h), . . . , δn−1(h).

Proof. The equality ∆n(gh) = g∆n(h) +
∑n

i=1 δn−i(h)∆i(g) gives

h∆n(g)− g∆n(h) =
n∑

i=1

δn−i(g)∆i(h)−
n∑

i=1

δn−i(h)∆i(g)

hence the result.

As said above, we can consider the map B[x, y]/〈f − f0〉 → B[[t]], g 7→
∑∞

i=0 δi(g)ti and the
equality δn(gh) =

∑
i+j=n δi(g)δj(h) shows that this is a map of B-algebras. One can ask when

this map is injective.

Lemma 2.2 If we have d in 〈f, g〉∩B[x] which is primitive, so that we can write d =
∑n

i=0 uix
i

with 1 = 〈u0, . . . , un〉 in B then D(δ0(f ′y)) is covered by D(δ0(f), δ0(g), . . . , δn(g)) in the Zariski
spectrum of B.

Proof. We can write d =
∑n

i=0 ci(x − a)i and we have 1 = 〈u0, . . . , un〉 = 〈c0, . . . , cn〉. We
have also in B[x, y] an equality of the form d = Af + Bg. This shows that c0 = δ0(d) is in
〈δ0(f), δ0(g)〉.

Using δn(gh) =
∑

i+j=n δi(g)δj(h) one shows by induction that δk((x−a)j) = 0 if j > k and
δk((x− a)k) = δ0(v)k = (−δ0(f ′y))

k. We have also δk(f) = 0 if k > 0.
We let C be the ring B quotiented by δ0(f), δ0(g), . . . , δn(g) and localised in δ0(f ′y). The

Lemma states that the ring C is trivial. We know already that c0 = 0 in C. If we apply δ1 to∑n
i=0 ci(x− a)i = Af + Bg we get c1 = 0 in C. Similarly we show c2 = . . . = cn = 0 in C and

hence 1 = 0 in C, as expected.

Notice that this reasoning shows actually that D(δ0(f ′y)) 6 D(δ0(f), δ0(g), . . . , δm(g)) as
soon as 1 = 〈u0, . . . , um〉.

3 The general case

We consider the case where k is a discrete field and f is an arbitrary polynomial in k[x, y].
An important result we use is that polynomial rings over fields are gcd domain [4] (which can
be seen as a constructive version of the fact that such rings are classically unique factorisation
domain). As before we write R for the ring k[x, y] quotiented by f . We let A be the localisation
Rf ′

y
. Given two elements g and h of k[x, y] we show how to build a finite covering of the Zariski

spectrum of A by elements D(w) such that g divides h or h divides g in each localisation Aw.
We shall need the following general result about Gröbner basis.

Lemma 3.1 Let k[a, x] = k[a1, . . . , am, x1, . . . , xn] with a monomial ordering � and I an
ideal of k[a] of initial monomial ideal init�(I) ⊆ k[a]. If J = Ik[a, x] we have init�(J) =
init�(I)k[a, x] = init�(I)k[x] and for f ∈ k[x] and r ∈ k[a, x] we have an equality of normal
form w.r.t. J

N(rf) = N(r)f

We explain first why the localisation A is a pp-ring.

Lemma 3.2 Each divisor h of f in k[x, y] determines an idempotent eh in A such that 〈h〉 =
〈eh〉 in A.
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Proof. We have f = hq and hence f ′y = h′yq + hq′y. In R we have hq = 0 and f ′yh = q′yh
2. In A

we have h = f ′y
−1q′yh

2 and eh = f ′y
−1q′yh is an idempotent such that 〈h〉 = 〈eh〉.

Proposition 3.3 A is a pp-ring.

Proof. If g is an element in k[x, y] then Ann(g) = 〈h〉 in R with h = f/gcd(f, g). Indeed since
h and g/gcd(f, g) are relatively prime in k[x, y]

f |wg ⇔ h|w g

gcd(f, g)
⇔ h|w

It follows that, in A, we have Ann(g) = 〈eh〉.

Let g be an element of k[x, y]. We can write g = k1 . . . kngn where each ki divides f and
gn, f are relatively prime in k[x, y]. For each ki we can find an idempotent ei of A such
that 〈ki〉 = 〈ei〉 in A by Lemma 3.2. Notice also that D(ei), D(1 − ei) is a partition of the
Zariski spectrum of A and that ki is invertible in Aei and zero in A1−ei . It follows that, in
the problem of finding a covering of the Zariski spectrum of A by elements D(w) such that on
each localisation Aw we have that g divides h or h divides g, we can as well suppose that the
polynomial g and f are relatively prime in k[x, y].

Lemma 3.4 Let g, h be two elements of k[x, y] such that g and f are relatively prime in k[x, y].
We can find u0 = g, v0 = h, u1, v1, . . . , un, vn in k[x, y] such that vig = uih for i = 0, . . . , n and
D(f ′y) is covered by D(u0), D(v0), . . . , D(un), D(vn) in the Zariski spectrum of R.

Proof. We consider now a, b as new indeterminates and consider the ring B = k[a, b] and fix a
monomial ordering on B[x, y] = k[a, b, x, y]. We use the notations and results of the previous
section. Given g and h in k[x, y] we write gi = δi(g), hi = δi(h) in B and ri = ∆i(g), si = ∆i(h)
in B[x, y]4. Let us write In for the sequence f0, g0, h0, . . . , gn−1, hn−1 of elements in B. By
Lemma 2.1, we have hrn = gsn modulo 〈f, In〉. This means that we have an equality of the
form rnh − sng = ft mod. 〈In〉 for some t in k[a, b, x, y]. Let us write N(p) the normal form
of an element p in k[a, b, x, y] w.r.t. a Gröbner basis of the ideal generated by In and let pn be
N(rn) and qn be N(sn). We have by Lemma 3.1 since f, g, h are in k[x, y]

N(rnh− sng) = pnh− qng = N(ft) = fN(t)

and hence in k[a, b, x, y]
pnh = qng mod. 〈f〉

In particular, if we write un = pn(x, y, x, y) and vn = qn(x, y, x, y) in k[x, y] (notice that
u0 = p0 = g and v0 = q0 = h)

unh = vng mod. 〈f〉
Also, by construction, we have pn = rn and qn = sn modulo 〈In〉. Hence, modulo 〈In〉

un(a, b) = δ0(rn) = gn

vn(a, b) = δ0(sn) = hn

It follows that, in the Zariski spectrum of R

D(g0(x, y), h0(x, y), . . . , gn(x, y), hn(x, y)) = D(u0, v0, . . . , un, vn)

and we have finished since, by Lemma 2.2, there exists n such that D(f ′y) is covered by
D(g0(x, y), . . . , gn(x, y)).

4More precisely, we take for ri and si a represent in B[x, y] of ∆i(g), ∆i(h), that are only defined modulo
f − f0.
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Theorem 3.5 The ring A = Rf ′
y

is a coherent Prüfer ring.

Corollary 3.6 If f is a polynomial in k[x, y] such that 1 = 〈f, f ′x, f ′y〉 then k[x, y]/〈f〉 is a
coherent Prüfer ring.

Proof. The ring R is arithmetical, reduced and coherent since each ring Rf ′
x

and Rf ′
y

is arith-
metical, reduced and coherent.

4 Examples

In all examples and in the program magma, we use the graded reverse lexicographical order on
k[a, b, x, y].

4.1 Example 1

We consider f = x2 + y2 − 1 and g = 2x2 − 1 and h = x− y. We write

f − f(a, b) = (x− a)(x + a) + (y − b)(y + b)

so that u = x + a and v = −(y + b). We have then

g = g0 + 2(x− a)(x + a), h = h0 + (x− a)− (y − b)

so that
r1 = −2(y + b)(x + a), s1 = −(x + y + a + b)

We compute the normal form of s1g and r1h mod. 〈f0, g0, h0〉.

p1 = −2xy − 2b(x + y)− 1, q1 = −(x + y + 2b)

and so
u1 = −2y2 − 4xy − 1, v1 = −(x + 3y)

We can check the identity gv1 = hu1 mod. f .

4.2 Example 2

We take f = y2 + x4 − 1 and g = x and h = 1− y. We write

f − f(a, b) = (x− a)(x3 + x2a + xa2 + a3) + (y − b)(y + b)

so that u = x3 + x2a + xa2 + a3 and v = −(y + b). We have then

g = g0 + x− a h = h0 − (y − b)

so that
r1 = −(y + b) s1 = −(x3 + x2a + xa2 + a3)

We compute the normal form of s1g and r1h mod. 〈f0, g0, h0〉.

p1 = −(y + 1) q1 = −x3

and so u1 = −(y + 1) and v1 = −x3.
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4.3 Example 3

We take f = y3x+x3 +y and g = y2x+x2 +y and h = xy. This is best done using the following
program in magma. The program finds the following identities mod. f

(x3y − x2y2 + y3 + 2x2 − y2 − 2x)h = (x3 − y)g

(y5 + x2y2 − y4 − x2y − x + 1)h = −(y3 + x2)g
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Implementation in magma
delta0 := function(q) // q in R[a,b,x,y, ...], retourne q(a,b,a,b, ...)

A := Parent(q) ;

return hom <A -> A | [a,b, a,b] cat [A.i : i in [5..Rank(A)]] >(q)

where a is A.1 where b is A.2 ;

end function ;

ab2xy := function(q) // q in R[a,b,x,y, ...], retourne q(x,y,x,y, ....)

A := Parent(q) ;

return hom <A -> A | [x,y] cat [A.i : i in [3..Rank(A)]]>(q)

where x is A.3 where y is A.4 ;

end function ;

Composantes := function(f) // f in R[a,b,x,y, ....]

// f(x,y) - f(a,b) = (x-a)*p - (y-b)*q

// p = p(a,b,x,y), q = q(a,b,y)

A := Parent(f) ; a := A.1 ; b := A.2 ; x := A.3 ; y := A.4 ;

fay := Evaluate(f, x, a) ; // f(a,b,a,y)

f0 := delta0(f) ;

// faire x = a pour determiner q qui ne depend pas de x

q := -ExactQuotient(fay - f0, y-b) ;

p := ExactQuotient(f - f0 + (y-b)*q, x-a) ;

assert f - f0 eq (x-a)*p - (y-b)*q ;

return p, q ;

end function ;

Delta := function(f, g) // f, g in R[a,b,x,y, ....]

A := Parent(f) ;

u, v := Composantes(f) ; p, q := Composantes(g) ;

r := p*v - q*u ;

assert v*g eq v*delta0(g) + (x-a)*r + q*(f-delta0(f)) where a is A.1 where x is A.3 ;

return r, q ;

end function ;

Developpement := function(f, g, N) // f, g in R[a,b,x,y, ...]

A := Parent(f) ; a := A.1 ; x := A.3 ;

_, v := Composantes(f) ; Df := f - delta0(f) ;

G := [A |] ; r := g ; q := 0 ;

for n := 1 to N do

// G of length n-1

assert v^(n-1) * g eq

&+[A| G[i]*(x-a)^(i-1) * v^(n-i) : i in [1..n-1]] + r*(x-a)^(n-1) + q*Df ;

Append(~G, delta0(r)) ; // G[n] = r(a,b, a,b)

old_r := r ;

r, q2 := Delta(f, r) ;

assert v*old_r eq v*G[n] + (x-a)*r + q2*Df ;

q := q2*(x-a)^(n-1) + v*q ;

end for ;

Append(~G, r) ;

assert #G eq N+1 ;

assert v^N * g eq &+[A| G[i+1]*(x-a)^i * v^(N-i) : i in [0..N]] + q*Df ;

return G, q ;

end function ;

Developpements := function(f, g, h, n)

// Retourne

// G = [g_0, g_1, ..., g_n], H = [h_0, h_1, ..., u_n]

// U = [u_0, u_1, ..., u_n], V = [v_0, v_1, ..., v_n]

// with g_i, h_i, u_i, v_i in k[x,y, ....]

// P = [p_0, p_1, ..., p_n], Q = [q_0, q_1, ..., q_n]

// with p_i, q_i in k[a,b,x,y, ...]

A := Parent(f) ; a := A.1 ; x := A.3 ;

f0 := delta0(f) ; // f0 := f(a,b)

_, w := Composantes(f) ;

// G, H, U, V, P, Q : polynomes in A

G := [A| ] ; H := [A| ] ; U := [A| ] ; V := [A| ] ; P := [A| ] ; Q := [A| ] ;

// r contains r_0, r_1, ... Idem s contains s_0, s_1, ...

r := g ; s := h ;

qg := 0 ; qh := 0 ;

for k := 0 to n do

// G = [g_0, ..., g_{k-1}], H = [h_0, ..., h_{k-1}],

// U = [u_0, ..., u_{k-1}], V = [v_0, ..., v_{k-1}]

// P = [p_0, ..., p_{k-1}], Q = [q_0, ..., q_{k-1}]

// r = r_k, s = s_k

G0 := [delta0(gi) : gi in G] ; H0 := [delta0(hi) : hi in H] ;

assert w^k * g eq

&+[A| G0[i+1]*(x-a)^i*w^(k-i) : i in [0..k-1]] + r*(x-a)^k + qg*(f-f0) ;

assert w^k * h eq

&+[A| H0[i+1]*(x-a)^i*w^(k-i) : i in [0..k-1]] + s*(x-a)^k + qh*(f-f0) ;

// Calcul de u_k et v_k

I := ideal < A | f0, G0, H0 > ;

p := NormalForm(r,I) ; q := NormalForm(s,I) ;

Append(~P, p) ; Append(~Q, q) ;

u := ab2xy(p) ; v := ab2xy(q) ;

assert IsDivisibleBy(v*g - u*h, f) ;

// Calcul de g_k et h_k

Append(~U, u) ; Append(~V, v) ;

Append(~G, ab2xy(r)) ; Append(~H, ab2xy(s)) ;

assert [U[k+1]-G[k+1], V[k+1]-H[k+1]] subset ideal <A | f,G[1..k],H[1..k]> ;

assert ideal <A | f, G, H> eq ideal <A | f, U, V> ;

8



// Computation of r_{k+1} et s_{k+1}

r, qr := Delta(f, r) ; s, qs := Delta(f, s) ;

qg := qr*(x-a)^k + w*qg ; qh := qs*(x-a)^k + w*qh ;

// G = [g_0, ..., g_k], H = [h_0, ..., h_k],

// U = [u_0, ..., u_k], V = [v_0, ..., v_k]

// P = [p_0, ..., p_k], Q = [q_0, ..., q_k]

// r = r_{k+1}, s = s_{k+1}

end for ;

G0 := [delta0(gi) : gi in G] ; H0 := [delta0(hi) : hi in H] ;

assert w^(n+1) * g eq

&+[A| G0[i+1]*(x-a)^i * w^(n+1-i) : i in [0..n]] + r*(x-a)^(n+1) + qg*(f-f0) ;

assert w^(n+1) * h eq

&+[A| H0[i+1]*(x-a)^i * w^(n+1-i) : i in [0..n]] + s*(x-a)^(n+1) + qh*(f-f0) ;

return G, H, U, V, P, Q ;

end function ;

// the first example

load "PlaneCurveTools.magma" ;

k := RationalField() ; kabxy<a,b,x,y> := PolynomialRing(k, 4) ;

f := x^2 + y^2 - 1 ;

Composantes(f) ;

g := 2*x^2 - 1 ; h := x - y ;

g0, r1 := Explode(Developpement(f, g, 1)) ;

g0, r1 ;

h0, s1 := Explode(Developpement(f, h, 1)) ;

h0, s1 ;

G, H, U, V, P, Q := Developpements(f, g, h, 1) ;

1 in ideal < kabxy | f, G> ;

1 in ideal < kabxy | f, H> ;

1 in ideal < kabxy | f, U> ;

1 in ideal < kabxy | f, V> ;

> f := x^2 + y^2 - 1 ;

> Composantes(f) ;

a + x

-b - y

> g := 2*x^2 - 1 ; h := x - y ;

> g0, r1 := Explode(Developpement(f, g, 1)) ;

> g0, r1 ;

2*a^2 - 1

-2*a*b - 2*a*y - 2*b*x - 2*x*y

> h0, s1 := Explode(Developpement(f, h, 1)) ;

> h0, s1 ;

a - b

-a - b - x - y

>

> G, H, U, V, P, Q := Developpements(f, g, h, 1) ;

> 1 in ideal < kabxy | f, G> ;

true

> 1 in ideal < kabxy | f, H> ;

true

> 1 in ideal < kabxy | f, U> ;

false

> 1 in ideal < kabxy | f, V> ;

true

> G ;

[

2*x^2 - 1,

-8*x*y

]

> H ;

[

x - y,

-2*x - 2*y

]

> U ;

[

2*x^2 - 1,

-4*x*y - 2*y^2 - 1

]

> V ;

[

x - y,

-x - 3*y

]

> P ;

[

2*x^2 - 1,

-2*b*x - 2*b*y - 2*x*y - 1

]

> Q ;

[

x - y,

-2*b - x - y

]

// Example 2

load "PlaneCurveTools.magma" ;

k := RationalField() ; kabxy<a,b,x,y> := PolynomialRing(k, 4) ;

f := y^2 + x^4 - 1 ;

Composantes(f) ;

g := x ; h := 1-y ;
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g0, r1 := Explode(Developpement(f, g, 1)) ;

g0, r1 ;

h0, s1 := Explode(Developpement(f, h, 1)) ;

h0, s1 ;

G, H, U, V, P, Q := Developpements(f, g, h, 1) ;

1 in ideal < kabxy | f, G> ;

1 in ideal < kabxy | f, H> ;

1 in ideal < kabxy | f, U> ;

1 in ideal < kabxy | f, V> ;

1 in ideal < kabxy | f, U, V> ;

> f := y^2 + x^4 - 1 ;

> Composantes(f) ;

a^3 + a^2*x + a*x^2 + x^3

-b - y

> g := x ; h := 1-y ;

> g0, r1 := Explode(Developpement(f, g, 1)) ;

> g0, r1 ;

a

-b - y

> h0, s1 := Explode(Developpement(f, h, 1)) ;

> h0, s1 ;

-b + 1

-a^3 - a^2*x - a*x^2 - x^3

>

> G, H, U, V, P, Q := Developpements(f, g, h, 1) ;

> 1 in ideal < kabxy | f, G> ;

true

> 1 in ideal < kabxy | f, H> ;

false

> 1 in ideal < kabxy | f, U> ;

false

> 1 in ideal < kabxy | f, V> ;

false

> 1 in ideal < kabxy | f, U, V> ;

true

> G ;

[

x,

-2*y

]

> H ;

[

-y + 1,

-4*x^3

]

> U ;

[

x,

-y - 1

]

> V ;

[

-y + 1,

-x^3

]

> P ;

[

x,

-y - 1

]

> Q ;

[

-y + 1,

-x^3

]

// Example 3

// Here, Z is the base ring

load "PlaneCurveTools.magma" ;

Z := IntegerRing() ; Zabxy<a,b,x,y> := PolynomialRing(Z, 4) ;

f := y^3*x + x^3 + y ;

g := y^2*x + x^2 + y ; h := x*y ;

G, H, U, V := Developpements(f, g, h, 2) ;

1 in ideal < Zabxy | f, G> ;

3 in ideal < Zabxy | f, G> ;

1 in ideal < Zabxy | f, H> ;

3 in ideal < Zabxy | f, U> ;

1 in ideal < Zabxy | f, V> ;

1 in ideal < Zabxy | f, U, V> ;

> f := y^3*x + x^3 + y ;

> g := y^2*x + x^2 + y ; h := x*y ;

> G, H, U, V := Developpements(f, g, h, 2) ;

> 1 in ideal < Zabxy | f, G> ;

false

> 3 in ideal < Zabxy | f, G> ;

true

> 1 in ideal < Zabxy | f, H> ;

false

> 3 in ideal < Zabxy | f, U> ;

false

> 1 in ideal < Zabxy | f, V> ;

false

> 1 in ideal < Zabxy | f, U, V> ;

true

> G ;
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[

x^2 + x*y^2 + y,

6*x^3*y - 6*x^2*y^2 + 3*x^2 - x*y^4 - 2*x + y^3 - y^2,

9*x^5 - 18*x^4*y - 21*x^3*y^3 + 3*x^2*y^4 - 12*x^2*y - 2*x*y^6 + 6*x*y^2 -

3*x + 3*y^5 - 2*y^4 + 1

]

> H ;

[

x*y,

3*x^3 - 2*x*y^3 - y,

-18*x^3*y^2 - 6*x^2 - 3*x*y^5 - y^3

]

> U ;

[

x^2 + x*y^2 + y,

x^3*y - x^2*y^2 + 2*x^2 - 2*x + y^3 - y^2,

x^2*y^2 - x^2*y - x + y^5 - y^4 + 1

]

> V ;

[

x*y,

x^3 - y,

-x^2 - y^3

]
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