
Regular entailment relations

Introduction

If G is an ordered commutative group and we have a map f : G→ L where L is a l-group, we can define
a relation A ` B between non empty finite sets of G by ∧f(A) 6 ∨f(B). This relation satisfies the
conditions

1. a ` b if a 6 b in G

2. A ` B if A ⊇ A′ and B ⊇ B′ and A′ ` B′

3. A ` B if A, x ` B and A ` B, x

4. A ` B if A+ x ` B + x

5. a+ x, b+ y ` a+ b, x+ y

We call a regular entailment relation on an ordered group G any relation which satisfies these condi-
tions. The remarkable last condition is called the regularity condition. Note that the converse relation
of a regular entailment relation is a regular entailment relation.

Any relation satisfying the three first conditions define in a canonical way a (non bounded) distributive
lattice L. The goal of this note is to show that this distributive lattice has a (canonical) l-group structure.

1 General properties

A first consequence of regularity is the following.

Proposition 1.1 We have a, b ` a+ x, b− x and a+ x, b− x ` a, b. In particular, a ` a+ x, a− x and
a+ x, a− x ` a

Proof. By regularity we have (−x+ a+ x), (b+ 2x− 2x) ` (−x+ b+ 2x), (a+ x− 2x). The other claim
is symmetric.

Corollary 1.2 ∧A 6 (∧A+ x) ∨ (∧A− x).

Proof. We can reason in the distributive lattice L defined by the given (non bounded) entailment relation
and use Proposition 7.3.

Corollary 1.3 If we have A,A + x ` B and A,A − x ` B then A ` B. Dually, if A ` B,B + x and
A ` B,B − x then A ` B.

Lemma 1.4 We have A,A+ x ` B iff A ` B,B − x

Proof. We assume A,A + x ` B and we prove A ` B,B − x. By Corollary 1.3, it is enough to show
A,A− x ` B,B − x but this follows from A,A+ x ` B by translation by −x and then weakening. The
other direction is symmetric.

Lemma 1.5 If 0 6 p 6 q then a, a+ qx ` a+ px
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Proof. We prove this by induction on q. This holds for q = 0. If it holds for q, we note that we have
a, a+(q+1)x ` a+x, a+qx by regularity and since a, a+qx ` a+x by induction we get a, a+(q+1)x ` a+x
by cut. By induction we have a, a+ qx ` a+ px for p 6 q and hence a+ x, a+ (q + 1)x ` a+ (p+ 1)x.
By cut with a, a+ (q + 1)x ` a+ x we get a, a+ (q + 1)x ` a+ (p+ 1)x.

Given a regular entailment relation ` and an element x, we describe now the regular entailment
relation `x where we force 0 `x x.

We define by A `x B iff there exists p such that A,A+ px ` B iff (by Lemma 1.4) there exists p such
that A ` B,B−px, and we are going to show that this is the least regular entailment relation containing
` and such that 0 `x x. We have 0 `x x since 0, x ` x.

Note that, by using Lemma 1.5, if we have A,A+ px ` B, we also have A,A+ qx ` B for q > p.

Proposition 1.6 The relation `x is a regular entailment relation.

Proof. The only complex case is the cut rule. We assume A,A+ px ` B, u and A,A+ qx, u, u+ qx ` B
and we prove A `x B. By Lemma 1.5, we can assume p = q. We write y = px and we have A,A+y ` B, u
and A,A+ y, u, u+ y ` B. We write C = A,A+ y,A+ 2y and we prove C ` B.

We have by weakening C ` B, u and C, u, u+y ` B and C ` B+y, u+y. By cut, we get C, u ` B,B+y.
By Lemma 1.4, this is equivalent to C, u,C−y, u−y ` B. We also have C, u,C+y, u+y ` B by weakening
from C, u, u+ y ` B. Hence by Lemma 1.3 we get C, u ` B. Since we also have C ` B, u we get C ` B
by cut.

By Lemma 1.5 we have A,A+ 2y ` B, which shows A `x B.

Proposition 1.7 If A `x B and A `−x B then A ` B

Proof. We have A,A + px ` B and A,A − qx ` B. Using Lemma 1.5 we can assume p = q and then
conclude by Lemma 7.3.

Proposition 1.7 implies that to prove an entailment involving some elements, we can always assume
that these element are linearly ordered for the relation a ` b. Here are two direct applications.

Proposition 1.8 We have A ` b1, . . . , bm iff A− b1, . . . , A− bm ` 0.

Thus A ` B iff A−B ` 0 iff 0 ` B −A.

Proposition 1.9 If A+ b1, . . . , A+ bm ` bj for j = 1, . . . ,m then A ` 0.

It follows from Proposition 1.9 that if we consider the monoid of formal elements ∧A, with the
operation ∧A + ∧B = ∧(A + B), ordered by the relation ∧A 6 ∧B iff A ` b for all b in B, we have a
cancellative monoid.

It follows then from Proposition 1.8 that the distributive lattice defined by the Grothendieck l-group
associated to this cancellative monoid coincides with the distributive lattice defined by the relation `.

Here is another consequence of the fact that we can always assume that these element are linearly
ordered for the relation a ` b.

Corollary 1.10 If a1 + · · ·+ an = 0 then a1, . . . , an ` 0.

Corollary 1.11 If a1 + · · ·+ an = b1 + · · ·+ bn then a1, . . . , an ` b1, . . . , bn.

Proof. We have Σi,jai − bj = 0 and we can apply the previous result.
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2 Another presentation of regular entailment relations

It follows from Proposition 1.8 that the relation ` is completely determined by the predicate A ` 0 on
non empty finite subsets of the group. Let us analyse what are the properties satisfied by this predicate
R(A) = A ` 0. First, is satisfies

(R1) R(a) whenever a 6 0 in G.

Then, it is monotone

(R2) R(A) holds if R(A′) and A′ ⊆ A

The cut-rule can be stated as R(A − B) if R(A − B, x − B) and R(A − B,A − x), so we get the
property (since we can assume x = 0 by translation and replace B by −B)

(R3) R(A+B) if R(A+B,A) and R(A+B,B)

Finally, the regularity condition gives R(a− b, b− a, x− y, y − x) which simplifies using (R2) to

(R4) R(x,−x)

We get in this way another presentation of a regular entailment relation as a predicate satisfying the
conditions (R1), (R2), (R3), (R4). If R satisfies these properties and we define A ` B by R(A−B) then
we get a regular entailment relation. (We have one less axiom since the translation property A ` B if
A+ x ` B + x is automatically satisfied.)

3 System of ideals

Let us use the same analysis for the notion of system of ideals, which is a relation A ` x between non
empty finite subsets of G and element x in G satisfying the conditions

1. a ` x if a 6 x in G

2. A ` x if A ⊇ A′ and A′ ` x

3. A ` x if A, y ` x and A ` y

4. A ` x if A+ y ` x+ y

We consider the predicate S(A) = A ` 0. This predicate satisfies

(R1) S(a) if a 6 0 in G

(R2) S(A) holds if A ⊇ A′ and S(A′)

(R5) S(A) holds if S(A, u) and S(A− u)

Conversely if S satisfies (R1), (R2) and (R5) and we define A `S x by S(A− x) then ` is a system of
ideals.

Clearly to a system of ideals we can associate the relation A 6S B by A `S b for all b in B we define
a preordered monoid, with A+B as monoid operation. Conversely, any preorder on the monoid of finite
non empty subset with A ∧ B being A,B as meet operation and A + B as monoid operation, defines a
system of ideal A ` b = ∧A 6 b.

4 Regularisation of a system of ideals

Note that both notions (reformulation of regular relations) and system of ideals are now predicates on
nonempty finite subsets of G. We say that a system of ideals is regular if it satisfies (R3) and (R4).

The following proposition follows from Proposition 1.9.

Proposition 4.1 The preordered monoid 6S is cancellative if, and only if, S is regular.
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Proof. If S is regular then 6S is cancellative by Proposition 1.9. Conversely, if 6S is conservative then
the meet-semilattice it defines embeds in its Grothendieck group, which is a distributive lattice.

We always have the least system of ideals: S0(A) iff A contains an element 6 0 in G. This clearly
satisfies (R1) and (R2) and it satisfies (R5): if S0(A, u) then either S0(A) or u 6 0 and if u 6 0 then
S0(A− u) implies S0(A).

Note also that systems of ideal are closed by arbitrary intersection and directed union.

Let S be a system of ideals. We define Tx(S) to be the least system of ideals Q containing S and
such that Q(x). We have TxTy = TyTx and Tx(S ∩ S′) = Tx(S) ∩ Tx(S′) directly from this definition.
Lorenzen found an elegant direct description of Tx(S).

Proposition 4.2 Tx(S)(A) iff there exists k > 0 such that S(A,A− x, . . . , A− kx).

Proof. If we have A,A− x, . . . , A− kx 6S u and A,A− x, . . . , A− lx, u, u− x, . . . , u− lx 6S v then we
have by l cuts A,A− x, . . . , A− (k + l)x 6S v.

Note that it does not seem that we can simplify this condition to S(A,A− kx) in general.

We next define Ux(S) = Tx(S) ∩ T−x(S). We have UxUy = UyUx.

Lemma 4.3 If S is a system of ideals such that Ux(S) = S for all x then S is regular.

Proof. We show that conditions (R3) and (R4) hold.

We have S(x,−x) since we have both Tx(S)(x,−x) and T−x(S)(x,−x). This shows (R3).

Let us show (R4). We assume ∧(A + B) ∧ ∧B 6S 0 and ∧(A + B) ∧ ∧A 6S 0 and we show
∧(A+B) 6S 0.

Note that we have Ta(S)(A + B) for any a in A by monotonicity: if we force a 6S 0 then ∧(A +
B) 6Ta(S) ∧B and so ∧(A+B) 6Ta(S) 0 follows from ∧(A+B)∧∧B 6Ta(S) 0. Let T be the composition
of all T−a for a in A; we force 0 6S a for all a in A. We have ∧B 6T (S) ∧(A + B) and so ∧B 6T (S) 0
follows from ∧(A+B)∧∧B 6T (S) 0. This implies ∧(A+B) 6T (S) ∧A and so ∧(A+B) 6T (S) 0 follows
from ∧(A+B) ∧ ∧A 6T (S) 0.

We have ∧(A + B) 6Ta(S) 0 for all a in A and ∧(A + B) 6T (S) 0, so we get ∧(A + B) 6 0 as
desired.

It follows that if we define L(S) to be the (directed) union of all Ux1
. . . Uxn

(S) we have that L(S) is
the least regular system containing S, so is the regular closure of S.

5 Constructive version of Lorenzen-Dieudonné Theorem

In particular, we can start from the least system of ideal. In this case, we have L(S0)(A) iff there exists
x1, . . . , xn such that for any choice ε1, . . . , εn for −1, 1 we can find k1, . . . , kn > 0 and a in A such that
a+ Σεikixi 6 0. We clearly have by elimination: if L(S0)(a) then na 6 0 for some n > 0. We can then
deduce from this a constructive version of Lorenzen-Dieudonné Theorem.

Theorem 5.1 For any commutative ordered group G we can build a l-group L and a map f : G → L
such that f(a) > 0 iff there exists n > 0 such that na > 0. More generally, we have f(a1)∧· · ·∧f(ak) > 0
iff there exists n1, . . . , nk > 0 such that Σniai > 0 and and Σni > 0.

6 Prüfer’s definition of the regular closure

Prüfer found the following direct definition of the regular closure P , which follows directly from Propo-
sition 4.1.

Theorem 6.1 The regular closure R of a system of ideals S can be defined by R(A) iff there exists B
such that A+B 6S B.
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This gives another proof that if we have L(S0)(a) then na 6 0 for some n > 0: if we have B such
that a+B 6S0

B then we have a cycle a+ b2 6 b1, . . . , a+ b1 6 bn and then na 6 0.

7 Non commutative version

If G is an ordered group non necessarily commutative, we use a multiplicative notation and we define a
regular entailment relation by the conditions

1. a ` b if a 6 b in G

2. A ` B if A ⊇ A′ and B ⊇ B′ and A′ ` B′

3. A ` B if A, x ` B and A ` B, x

4. A ` B if xAy ` xBy

5. xa, by ` xb, ay

If ` is a regular entailment relation, and V is the corresponding distributive lattice then we have a
left and right action of G on V .

We define 6a,b to be the least lattice quotient on V with left and right action of G such that b 6a,b a.
We define u 6a,b v by xa ∧ uy 6 xb ∨ vy for all x and y in G.

Lemma 7.1 We have xa ∧ by 6 xb ∨ ay for all a and b in V and all x and y in G.

Proof. For instance, if we have xa1∧ by 6 xb∨a1y and xa1∧ by 6 xb∨a2y then we get xa∧ by 6 xb∨ay
for a = a1 ∧ a2 and for a = a1 ∨ a2.

Proposition 7.2 6a,b defines a lattice quotient on V with left and right action of G on V such that
b 6a,b a if a and b are in G.

Proof. We have b 6a,b a since xa ∧ by 6 xb ∨ ay for all x and y by the previous Lemma.
If we have u 6a,b v and v 6a,b w then xa∧uy 6 xb∨vy and xa∧vy 6 xb∨wy for all x and y By cut,

we get xa∧uy 6 xb∨wy for all x and y that is u 6a,b w. This shows that the relation 6a,b is transitive.
This relation is also reflexive since xa ∧ uy 6 xb ∨ uy for all x and y in G.

Finally, if we have u 6a,b v that is xa ∧ uy 6 xb ∨ vy for all x and y in G, we also have zut 6a,b zvt
that is xa ∧ zuty 6 xb ∨ zvty for all x and y in G since we have z−1xa ∧ uty 6 z−1xb ∨ vty for all x and
y in G.

By definition u 6a,b v implies u 6a,b v since 6a,b is the least invariant order relation forcing a 6a,b b.
Also by definition, note that we have u 6a,b v iff a 6u,v b.

Proposition 7.3 u 6a,b v and u 6b,a v imply u 6 v.

Proof. Indeed u 6a,b v implies u 6a,b v which implies a 6u,v b. Together with u 6b,a v this implies
u 6u,v v and so xu ∧ uy 6 xv ∨ vy for all x, y. In particular, for x = y = 1 we have u 6 v.

It follows from this that V admits a group structure which extends the one on G. Indeed, Proposition
7.3 reduces the verification of the required equations to the case where G is totally ordered and V = G
in this case.
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