Regular entailment relations

Introduction

If G is an ordered commutative group and we have a map $f: G \rightarrow L$ where L is a l-group, we can define a relation $A \vdash B$ between non empty finite sets of G by $\wedge f(A) \leqslant \vee f(B)$. This relation satisfies the conditions

1. $a \vdash b$ if $a \leqslant b$ in G
2. $A \vdash B$ if $A \supseteq A^{\prime}$ and $B \supseteq B^{\prime}$ and $A^{\prime} \vdash B^{\prime}$
3. $A \vdash B$ if $A, x \vdash B$ and $A \vdash B, x$
4. $A \vdash B$ if $A+x \vdash B+x$
5. $a+x, b+y \vdash a+b, x+y$

We call a regular entailment relation on an ordered group G any relation which satisfies these conditions. The remarkable last condition is called the regularity condition. Note that the converse relation of a regular entailment relation is a regular entailment relation.

Any relation satisfying the three first conditions define in a canonical way a (non bounded) distributive lattice L. The goal of this note is to show that this distributive lattice has a (canonical) l-group structure.

1 General properties

A first consequence of regularity is the following.

Proposition 1.1 We have $a, b \vdash a+x, b-x$ and $a+x, b-x \vdash a, b$. In particular, $a \vdash a+x, a-x$ and $a+x, a-x \vdash a$

Proof. By regularity we have $(-x+a+x),(b+2 x-2 x) \vdash(-x+b+2 x),(a+x-2 x)$. The other claim is symmetric.

Corollary $1.2 \wedge A \leqslant(\wedge A+x) \vee(\wedge A-x)$.
Proof. We can reason in the distributive lattice L defined by the given (non bounded) entailment relation and use Proposition 7.3.

Corollary 1.3 If we have $A, A+x \vdash B$ and $A, A-x \vdash B$ then $A \vdash B$. Dually, if $A \vdash B, B+x$ and $A \vdash B, B-x$ then $A \vdash B$.

Lemma 1.4 We have $A, A+x \vdash B$ iff $A \vdash B, B-x$
Proof. We assume $A, A+x \vdash B$ and we prove $A \vdash B, B-x$. By Corollary 1.3, it is enough to show $A, A-x \vdash B, B-x$ but this follows from $A, A+x \vdash B$ by translation by $-x$ and then weakening. The other direction is symmetric.

Lemma 1.5 If $0 \leqslant p \leqslant q$ then $a, a+q x \vdash a+p x$

Proof. We prove this by induction on q. This holds for $q=0$. If it holds for q, we note that we have $a, a+(q+1) x \vdash a+x, a+q x$ by regularity and since $a, a+q x \vdash a+x$ by induction we get $a, a+(q+1) x \vdash a+x$ by cut. By induction we have $a, a+q x \vdash a+p x$ for $p \leqslant q$ and hence $a+x, a+(q+1) x \vdash a+(p+1) x$. By cut with $a, a+(q+1) x \vdash a+x$ we get $a, a+(q+1) x \vdash a+(p+1) x$.

Given a regular entailment relation \vdash and an element x, we describe now the regular entailment relation \vdash_{x} where we force $0 \vdash_{x} x$.

We define by $A \vdash_{x} B$ iff there exists p such that $A, A+p x \vdash B$ iff (by Lemma 1.4) there exists p such that $A \vdash B, B-p x$, and we are going to show that this is the least regular entailment relation containing \vdash and such that $0 \vdash_{x} x$. We have $0 \vdash_{x} x$ since $0, x \vdash x$.

Note that, by using Lemma 1.5, if we have $A, A+p x \vdash B$, we also have $A, A+q x \vdash B$ for $q \geqslant p$.
Proposition 1.6 The relation \vdash_{x} is a regular entailment relation.
Proof. The only complex case is the cut rule. We assume $A, A+p x \vdash B, u$ and $A, A+q x, u, u+q x \vdash B$ and we prove $A \vdash_{x} B$. By Lemma 1.5, we can assume $p=q$. We write $y=p x$ and we have $A, A+y \vdash B, u$ and $A, A+y, u, u+y \vdash B$. We write $C=A, A+y, A+2 y$ and we prove $C \vdash B$.

We have by weakening $C \vdash B, u$ and $C, u, u+y \vdash B$ and $C \vdash B+y, u+y$. By cut, we get $C, u \vdash B, B+y$. By Lemma 1.4, this is equivalent to $C, u, C-y, u-y \vdash B$. We also have $C, u, C+y, u+y \vdash B$ by weakening from $C, u, u+y \vdash B$. Hence by Lemma 1.3 we get $C, u \vdash B$. Since we also have $C \vdash B, u$ we get $C \vdash B$ by cut.

By Lemma 1.5 we have $A, A+2 y \vdash B$, which shows $A \vdash_{x} B$.
Proposition 1.7 If $A \vdash_{x} B$ and $A \vdash_{-x} B$ then $A \vdash B$
Proof. We have $A, A+p x \vdash B$ and $A, A-q x \vdash B$. Using Lemma 1.5 we can assume $p=q$ and then conclude by Lemma 7.3.

Proposition 1.7 implies that to prove an entailment involving some elements, we can always assume that these element are linearly ordered for the relation $a \vdash b$. Here are two direct applications.

Proposition 1.8 We have $A \vdash b_{1}, \ldots, b_{m}$ iff $A-b_{1}, \ldots, A-b_{m} \vdash 0$.
Thus $A \vdash B$ iff $A-B \vdash 0$ iff $0 \vdash B-A$.
Proposition 1.9 If $A+b_{1}, \ldots, A+b_{m} \vdash b_{j}$ for $j=1, \ldots, m$ then $A \vdash 0$.
It follows from Proposition 1.9 that if we consider the monoid of formal elements $\wedge A$, with the operation $\wedge A+\wedge B=\wedge(A+B)$, ordered by the relation $\wedge A \leqslant \wedge B$ iff $A \vdash b$ for all b in B, we have a cancellative monoid.

It follows then from Proposition 1.8 that the distributive lattice defined by the Grothendieck l-group associated to this cancellative monoid coincides with the distributive lattice defined by the relation \vdash.

Here is another consequence of the fact that we can always assume that these element are linearly ordered for the relation $a \vdash b$.

Corollary 1.10 If $a_{1}+\cdots+a_{n}=0$ then $a_{1}, \ldots, a_{n} \vdash 0$.
Corollary 1.11 If $a_{1}+\cdots+a_{n}=b_{1}+\cdots+b_{n}$ then $a_{1}, \ldots, a_{n} \vdash b_{1}, \ldots, b_{n}$.
Proof. We have $\Sigma_{i, j} a_{i}-b_{j}=0$ and we can apply the previous result.

2 Another presentation of regular entailment relations

It follows from Proposition 1.8 that the relation \vdash is completely determined by the predicate $A \vdash 0$ on non empty finite subsets of the group. Let us analyse what are the properties satisfied by this predicate $R(A)=A \vdash 0$. First, is satisfies
$\left(R_{1}\right) R(a)$ whenever $a \leqslant 0$ in G.
Then, it is monotone
$\left(R_{2}\right) R(A)$ holds if $R\left(A^{\prime}\right)$ and $A^{\prime} \subseteq A$
The cut-rule can be stated as $R(A-B)$ if $R(A-B, x-B)$ and $R(A-B, A-x)$, so we get the property (since we can assume $x=0$ by translation and replace B by $-B$)
$\left(R_{3}\right) R(A+B)$ if $R(A+B, A)$ and $R(A+B, B)$
Finally, the regularity condition gives $R(a-b, b-a, x-y, y-x)$ which simplifies using $\left(R_{2}\right)$ to $\left(R_{4}\right) R(x,-x)$

We get in this way another presentation of a regular entailment relation as a predicate satisfying the conditions $\left(R_{1}\right),\left(R_{2}\right),\left(R_{3}\right),\left(R_{4}\right)$. If R satisfies these properties and we define $A \vdash B$ by $R(A-B)$ then we get a regular entailment relation. (We have one less axiom since the translation property $A \vdash B$ if $A+x \vdash B+x$ is automatically satisfied.)

3 System of ideals

Let us use the same analysis for the notion of system of ideals, which is a relation $A \vdash x$ between non empty finite subsets of G and element x in G satisfying the conditions

1. $a \vdash x$ if $a \leqslant x$ in G
2. $A \vdash x$ if $A \supseteq A^{\prime}$ and $A^{\prime} \vdash x$
3. $A \vdash x$ if $A, y \vdash x$ and $A \vdash y$
4. $A \vdash x$ if $A+y \vdash x+y$

We consider the predicate $S(A)=A \vdash 0$. This predicate satisfies
$\left(R_{1}\right) S(a)$ if $a \leqslant 0$ in G
$\left(R_{2}\right) S(A)$ holds if $A \supseteq A^{\prime}$ and $S\left(A^{\prime}\right)$
$\left(R_{5}\right) S(A)$ holds if $S(A, u)$ and $S(A-u)$
Conversely if S satisfies $\left(R_{1}\right),\left(R_{2}\right)$ and $\left(R_{5}\right)$ and we define $A \vdash_{S} x$ by $S(A-x)$ then \vdash is a system of ideals.

Clearly to a system of ideals we can associate the relation $A \leqslant_{S} B$ by $A \vdash_{S} b$ for all b in B we define a preordered monoid, with $A+B$ as monoid operation. Conversely, any preorder on the monoid of finite non empty subset with $A \wedge B$ being A, B as meet operation and $A+B$ as monoid operation, defines a system of ideal $A \vdash b=\wedge A \leqslant b$.

4 Regularisation of a system of ideals

Note that both notions (reformulation of regular relations) and system of ideals are now predicates on nonempty finite subsets of G. We say that a system of ideals is regular if it satisfies $\left(R_{3}\right)$ and $\left(R_{4}\right)$.

The following proposition follows from Proposition 1.9.
Proposition 4.1 The preordered monoid \leqslant_{S} is cancellative if, and only if, S is regular.

Proof. If S is regular then \leqslant_{S} is cancellative by Proposition 1.9. Conversely, if \leqslant_{S} is conservative then the meet-semilattice it defines embeds in its Grothendieck group, which is a distributive lattice.

We always have the least system of ideals: $S_{0}(A)$ iff A contains an element $\leqslant 0$ in G. This clearly satisfies $\left(R_{1}\right)$ and $\left(R_{2}\right)$ and it satisfies $\left(R_{5}\right)$: if $S_{0}(A, u)$ then either $S_{0}(A)$ or $u \leqslant 0$ and if $u \leqslant 0$ then $S_{0}(A-u)$ implies $S_{0}(A)$.

Note also that systems of ideal are closed by arbitrary intersection and directed union.
Let S be a system of ideals. We define $T_{x}(S)$ to be the least system of ideals Q containing S and such that $Q(x)$. We have $T_{x} T_{y}=T_{y} T_{x}$ and $T_{x}\left(S \cap S^{\prime}\right)=T_{x}(S) \cap T_{x}\left(S^{\prime}\right)$ directly from this definition. Lorenzen found an elegant direct description of $T_{x}(S)$.

Proposition 4.2 $T_{x}(S)(A)$ iff there exists $k \geqslant 0$ such that $S(A, A-x, \ldots, A-k x)$.
Proof. If we have $A, A-x, \ldots, A-k x \leqslant S u$ and $A, A-x, \ldots, A-l x, u, u-x, \ldots, u-l x \leqslant_{S} v$ then we have by l cuts $A, A-x, \ldots, A-(k+l) x \leqslant_{S} v$.

Note that it does not seem that we can simplify this condition to $S(A, A-k x)$ in general.
We next define $U_{x}(S)=T_{x}(S) \cap T_{-x}(S)$. We have $U_{x} U_{y}=U_{y} U_{x}$.
Lemma 4.3 If S is a system of ideals such that $U_{x}(S)=S$ for all x then S is regular.
Proof. We show that conditions $\left(R_{3}\right)$ and $\left(R_{4}\right)$ hold.
We have $S(x,-x)$ since we have both $T_{x}(S)(x,-x)$ and $T_{-x}(S)(x,-x)$. This shows $\left(R_{3}\right)$.
Let us show $\left(R_{4}\right)$. We assume $\wedge(A+B) \wedge \wedge B \leqslant_{S} 0$ and $\wedge(A+B) \wedge \wedge A \leqslant_{S} 0$ and we show $\wedge(A+B) \leqslant S$

Note that we have $T_{a}(S)(A+B)$ for any a in A by monotonicity: if we force $a \leqslant_{S} 0$ then $\wedge(A+$ $B) \leqslant_{T_{a}(S)} \wedge B$ and so $\wedge(A+B) \leqslant_{T_{a}(S)} 0$ follows from $\wedge(A+B) \wedge \wedge B \leqslant_{T_{a}(S)} 0$. Let T be the composition of all T_{-a} for a in A; we force $0 \leqslant_{S} a$ for all a in A. We have $\wedge B \leqslant_{T(S)} \wedge(A+B)$ and so $\wedge B \leqslant_{T(S)} 0$ follows from $\wedge(A+B) \wedge \wedge B \leqslant_{T(S)} 0$. This implies $\wedge(A+B) \leqslant_{T(S)} \wedge A$ and so $\wedge(A+B) \leqslant_{T(S)} 0$ follows from $\wedge(A+B) \wedge \wedge A \leqslant_{T(S)} 0$.

We have $\wedge(A+B) \leqslant T_{a}(S) 0$ for all a in A and $\wedge(A+B) \leqslant T(S) 0$, so we get $\wedge(A+B) \leqslant 0$ as desired.

It follows that if we define $L(S)$ to be the (directed) union of all $U_{x_{1}} \ldots U_{x_{n}}(S)$ we have that $L(S)$ is the least regular system containing S, so is the regular closure of S.

5 Constructive version of Lorenzen-Dieudonné Theorem

In particular, we can start from the least system of ideal. In this case, we have $L\left(S_{0}\right)(A)$ iff there exists x_{1}, \ldots, x_{n} such that for any choice $\epsilon_{1}, \ldots, \epsilon_{n}$ for $-1,1$ we can find $k_{1}, \ldots, k_{n} \geqslant 0$ and a in A such that $a+\Sigma \epsilon_{i} k_{i} x_{i} \leqslant 0$. We clearly have by elimination: if $L\left(S_{0}\right)(a)$ then $n a \leqslant 0$ for some $n>0$. We can then deduce from this a constructive version of Lorenzen-Dieudonné Theorem.

Theorem 5.1 For any commutative ordered group G we can build a l-group L and a map $f: G \rightarrow L$ such that $f(a) \geqslant 0$ iff there exists $n>0$ such that $n a \geqslant 0$. More generally, we have $f\left(a_{1}\right) \wedge \cdots \wedge f\left(a_{k}\right) \geqslant 0$ iff there exists $n_{1}, \ldots, n_{k} \geqslant 0$ such that $\Sigma n_{i} a_{i} \geqslant 0$ and and $\Sigma n_{i}>0$.

6 Prüfer's definition of the regular closure

Prüfer found the following direct definition of the regular closure P, which follows directly from Proposition 4.1.

Theorem 6.1 The regular closure R of a system of ideals S can be defined by $R(A)$ iff there exists B such that $A+B \leqslant_{S} B$.

This gives another proof that if we have $L\left(S_{0}\right)(a)$ then $n a \leqslant 0$ for some $n>0$: if we have B such that $a+B \leqslant S_{0} B$ then we have a cycle $a+b_{2} \leqslant b_{1}, \ldots, a+b_{1} \leqslant b_{n}$ and then $n a \leqslant 0$.

7 Non commutative version

If G is an ordered group non necessarily commutative, we use a multiplicative notation and we define a regular entailment relation by the conditions

1. $a \vdash b$ if $a \leqslant b$ in G
2. $A \vdash B$ if $A \supseteq A^{\prime}$ and $B \supseteq B^{\prime}$ and $A^{\prime} \vdash B^{\prime}$
3. $A \vdash B$ if $A, x \vdash B$ and $A \vdash B, x$
4. $A \vdash B$ if $x A y \vdash x B y$
5. $x a, b y \vdash x b, a y$

If \vdash is a regular entailment relation, and V is the corresponding distributive lattice then we have a left and right action of G on V.

We define $\leqslant_{a, b}$ to be the least lattice quotient on V with left and right action of G such that $b \leqslant_{a, b} a$.
We define $u \leqslant^{a, b} v$ by $x a \wedge u y \leqslant x b \vee v y$ for all x and y in G.
Lemma 7.1 We have $x a \wedge b y \leqslant x b \vee a y$ for all a and b in V and all x and y in G.
Proof. For instance, if we have $x a_{1} \wedge b y \leqslant x b \vee a_{1} y$ and $x a_{1} \wedge b y \leqslant x b \vee a_{2} y$ then we get $x a \wedge b y \leqslant x b \vee a y$ for $a=a_{1} \wedge a_{2}$ and for $a=a_{1} \vee a_{2}$.

Proposition $7.2 \leqslant{ }^{a, b}$ defines a lattice quotient on V with left and right action of G on V such that $b \leqslant^{a, b} a$ if a and b are in G.

Proof. We have $b \leqslant \leqslant^{a, b} a$ since $x a \wedge b y \leqslant x b \vee a y$ for all x and y by the previous Lemma.
If we have $u \leqslant^{a, b} v$ and $v \leqslant^{a, b} w$ then $x a \wedge u y \leqslant x b \vee v y$ and $x a \wedge v y \leqslant x b \vee w y$ for all x and y By cut, we get $x a \wedge u y \leqslant x b \vee w y$ for all x and y that is $u \leqslant^{a, b} w$. This shows that the relation $\leqslant^{a, b}$ is transitive. This relation is also reflexive since $x a \wedge u y \leqslant x b \vee u y$ for all x and y in G.

Finally, if we have $u \leqslant^{a, b} v$ that is $x a \wedge u y \leqslant x b \vee v y$ for all x and y in G, we also have $z u t \leqslant^{a, b} z v t$ that is $x a \wedge z u t y \leqslant x b \vee z v t y$ for all x and y in G since we have $z^{-1} x a \wedge u t y \leqslant z^{-1} x b \vee v t y$ for all x and y in G.

By definition $u \leqslant_{a, b} v$ implies $u \leqslant^{a, b} v$ since $\leqslant_{a, b}$ is the least invariant order relation forcing $a \leqslant_{a, b} b$. Also by definition, note that we have $u \leqslant^{a, b} v$ iff $a \leqslant^{u, v} b$.

Proposition $7.3 u \leqslant_{a, b} v$ and $u \leqslant_{b, a} v$ imply $u \leqslant v$.
Proof. Indeed $u \leqslant_{a, b} v$ implies $u \leqslant^{a, b} v$ which implies $a \leqslant^{u, v} b$. Together with $u \leqslant_{b, a} v$ this implies $u \leqslant{ }^{u, v} v$ and so $x u \wedge u y \leqslant x v \vee v y$ for all x, y. In particular, for $x=y=1$ we have $u \leqslant v$.

It follows from this that V admits a group structure which extends the one on G. Indeed, Proposition 7.3 reduces the verification of the required equations to the case where G is totally ordered and $V=G$ in this case.

