Regular entailment relations

Introduction

If G is an ordered commutative group and we have a map f : G — L where L is a [-group, we can define
a relation A F B between non empty finite sets of G by Af(A) < Vf(B). This relation satisfies the
conditions

l.atbifa<bin G

2. AFBif AD A" and BDO B and A’ + B’
3. A Bif Ajz+ B and A B,x

4. ArBifA+z+-B+zx

5. a+xz,b+yta+bz+y

We call a regular entailment relation on an ordered group G any relation which satisfies these condi-
tions. The remarkable last condition is called the regularity condition. Note that the converse relation
of a regular entailment relation is a regular entailment relation.

Any relation satisfying the three first conditions define in a canonical way a (non bounded) distributive
lattice L. The goal of this note is to show that this distributive lattice has a (canonical) I-group structure.

1 General properties

A first consequence of regularity is the following.

Proposition 1.1 We have a,bta+z,b —x and a+ x,b —x - a,b. In particular, a - a + z,a — x and
a+zx,a—zxhka

Proof. By regularity we have (—z +a+x), (b+ 2z — 2z) F (—z + b+ 2x), (a +  — 2z). The other claim
is symmetric. U

Corollary 1.2 ANA < (AN + 1) V (A — ).

Proof. We can reason in the distributive lattice L defined by the given (non bounded) entailment relation
and use Proposition 7.3. O

Corollary 1.3 If we have A/ A+ x+ B and A,A—x + B then A+ B. Dually, if A+ B,B + x and
A+ B,B—z then A+ B.

Lemma 1.4 We have AJ/A+zx+- Bif A- B,B—=x

Proof. We assume A, A+ x + B and we prove A F B, B — z. By Corollary 1.3, it is enough to show
A,A—x+ B,B — x but this follows from A, A+ x + B by translation by —z and then weakening. The
other direction is symmetric. O

Lemma 1.5 If0 < p < q then a,a+ qr F a + px



Proof. We prove this by induction on ¢. This holds for ¢ = 0. If it holds for ¢, we note that we have
a,a+(q+1)z F a+x, a+qz by regularity and since a, a+qx b a+a by induction we get a, a+(g+1)z - a+x
by cut. By induction we have a,a + gz F a + px for p < g and hence a + z,a+ (¢+ )z Fa+ (p + 1)x.
By cut with a,a+ (¢+ )z - a+ x we get a,a+ (¢+ 1)z Fa+ (p+ 1)z O

Given a regular entailment relation - and an element x, we describe now the regular entailment
relation F, where we force 0 I, x.

We define by A+, B iff there exists p such that A, A+ px + B iff (by Lemma 1.4) there exists p such
that A+ B, B—px, and we are going to show that this is the least regular entailment relation containing
F and such that 0 -, x. We have 0 -, x since 0,z F x.

Note that, by using Lemma 1.5, if we have A, A + pz - B, we also have A, A+ qx + B for g > p.

Proposition 1.6 The relation t, is a regular entailment relation.

Proof. The only complex case is the cut rule. We assume A, A+ pr - B,u and A, A+ qz,u,u+qx + B
and we prove A F, B. By Lemma 1.5, we can assume p = q. We write y = pz and we have A, A+y - B, u
and A, A+ y,u,u+yt+ B. We write C = A, A+ y, A+ 2y and we prove C'F B.

We have by weakening C' - B, u and C,u,u+y - B and C' - B4y, u+y. By cut, we get C,u - B, B+y.
By Lemma 1.4, this is equivalent to C, u, C—y,u—y F B. We also have C, u, C+y,u+y - B by weakening
from C,u,u 4+ y - B. Hence by Lemma 1.3 we get C,u - B. Since we also have C' - B,u we get C - B
by cut.

By Lemma 1.5 we have A, A + 2y F B, which shows A F, B. O

Proposition 1.7 If A+, B and A+-_, B then A+ B

Proof. We have A;A+ pr + B and A, A — gx F B. Using Lemma 1.5 we can assume p = ¢ and then
conclude by Lemma 7.3. O

Proposition 1.7 implies that to prove an entailment involving some elements, we can always assume
that these element are linearly ordered for the relation a - b. Here are two direct applications.

Proposition 1.8 We have A+ by,..., b, iff A—by,...,A—by 0.
Thus AFBif A-BFOiIff0F B — A.

Proposition 1.9 If A+b,,..., A+ b, Fbj for j=1,...,m then A+ 0.

It follows from Proposition 1.9 that if we consider the monoid of formal elements AA, with the
operation AA + AB = A(A + B), ordered by the relation AA < AB iff A+ b for all b in B, we have a
cancellative monoid.

It follows then from Proposition 1.8 that the distributive lattice defined by the Grothendieck I-group
associated to this cancellative monoid coincides with the distributive lattice defined by the relation .

Here is another consequence of the fact that we can always assume that these element are linearly
ordered for the relation a I b.

Corollary 1.10 Ifa; +---+a, =0 then ay,...,a, - 0.

Corollary 1.11 Ifay +---+an, =0y +---+ b, thenay,...,a, Fby,...,b,.

Proof. We have ¥; ja; — b; = 0 and we can apply the previous result. O



2 Another presentation of regular entailment relations

It follows from Proposition 1.8 that the relation - is completely determined by the predicate A + 0 on
non empty finite subsets of the group. Let us analyse what are the properties satisfied by this predicate
R(A) = At 0. First, is satisfies

(R1) R(a) whenever a < 0 in G.
Then, it is monotone
(R2) R(A) holds if R(A") and A’ C A

The cut-rule can be stated as R(A — B) if R(A — B,z — B) and R(A — B, A — ), so we get the
property (since we can assume x = 0 by translation and replace B by —B)

(Rs) R(A+ B) if R(A+ B, A) and R(A + B, B)
Finally, the regularity condition gives R(a — b,b — a,x — y,y — ) which simplifies using (Rz) to
(R4) R(z, —x)

We get in this way another presentation of a regular entailment relation as a predicate satisfying the
conditions (Ry), (R2), (R3), (R4). If R satisfies these properties and we define A+ B by R(A — B) then
we get a regular entailment relation. (We have one less axiom since the translation property A + B if
A+ z F B+ z is automatically satisfied.)

3 System of ideals

Let us use the same analysis for the notion of system of ideals, which is a relation A F x between non
empty finite subsets of G and element x in G satisfying the conditions

l.aFzifa<zin G

2. AFzif ADA and A =z
3. Arzif AjyFxand Ay
4. ArxifA+ykFa+y

We consider the predicate S(A) = A F 0. This predicate satisfies
(Ry1) S(a)ifa<0in G

(R2) S(A) holds if A D A" and S(A")

(Rs5) S(A) holds if S(A,u) and S(A — u)

Conversely if S satisfies (Ry), (Rz2) and (Rs) and we define A Fg « by S(A — ) then I is a system of
ideals.

Clearly to a system of ideals we can associate the relation A <g B by A Fg b for all b in B we define
a preordered monoid, with A+ B as monoid operation. Conversely, any preorder on the monoid of finite
non empty subset with A A B being A, B as meet operation and A + B as monoid operation, defines a
system of ideal A+ b= AA < b.

4 Regularisation of a system of ideals
Note that both notions (reformulation of regular relations) and system of ideals are now predicates on
nonempty finite subsets of G. We say that a system of ideals is regular if it satisfies (R3) and (Ry).

The following proposition follows from Proposition 1.9.

Proposition 4.1 The preordered monoid <g is cancellative if, and only if, S is regular.



Proof. If S is regular then <g is cancellative by Proposition 1.9. Conversely, if <g is conservative then
the meet-semilattice it defines embeds in its Grothendieck group, which is a distributive lattice. O

We always have the least system of ideals: Sp(A) iff A contains an element < 0 in G. This clearly
satisfies (R;) and (Ry) and it satisfies (Rs): if So(A,w) then either Sy(A) or v < 0 and if v < 0 then
So(A — u) implies Sp(A).

Note also that systems of ideal are closed by arbitrary intersection and directed union.

Let S be a system of ideals. We define T,(S) to be the least system of ideals ) containing S and
such that Q(z). We have T, T, = T,T,, and T,,(SNS") = T,,(S) N T,(S’) directly from this definition.
Lorenzen found an elegant direct description of T, (.S).

Proposition 4.2 T,(S)(A) iff there exists k > 0 such that S(A, A —z,..., A — k).

Proof. If we have A,A—x,..., A—kr<suwand A,A—uz,...,A—lIlz,u,u—=z,...,u—lr <g v then we
have by [ cuts A, A —z,...,A— (k+ )z <g v. 0

Note that it does not seem that we can simplify this condition to S(A, A — kx) in general.
We next define U, (S) = T,(S) NT_(S). We have U,U, = U,Us,.

Lemma 4.3 If S is a system of ideals such that U,(S) = S for all x then S is regular.

Proof. We show that conditions (R3) and (R4) hold.
We have S(z, —z) since we have both T,(5)(z, —z) and T_,(S)(x, —z). This shows (R3).

Let us show (R4). We assume A(A 4+ B) AAB <g 0 and A(A + B) A ANA <g 0 and we show
AA+ B) < 0.

Note that we have T,(S)(A + B) for any a in A by monotonicity: if we force a <g 0 then A(A +
B) <r1,(s) AB and so A(A+ B) <1, (s) 0 follows from A(A+B)AAB <r,(s) 0. Let T be the composition
of all T, for a in A; we force 0 <5 a for all @ in A. We have AB <p(s) A(A+ B) and so AB <p(g) 0
follows from A(A+ B) AAB <p(g) 0. This implies A(A + B) <p(s)y AA and so A(A+ B) <p(g) 0 follows
from A(A 4 B) A NA <ps) 0.

We have A(A + B) <r,(s) 0 for all a in A and A(A + B) <7(g) 0, so we get A(A+ B) < 0 as
desired. O

It follows that if we define L(S) to be the (directed) union of all Uy, ... U,, (S) we have that L(S) is
the least regular system containing S, so is the regular closure of S.

5 Constructive version of Lorenzen-Dieudonné Theorem

In particular, we can start from the least system of ideal. In this case, we have L(Sp)(A) iff there exists
Z1,...,T, such that for any choice €1,...,€, for —1,1 we can find ki,...,k, > 0 and a in A such that
a+ Xekiz; < 0. We clearly have by elimination: if L(Sy)(a) then na < 0 for some n > 0. We can then
deduce from this a constructive version of Lorenzen-Dieudonné Theorem.

Theorem 5.1 For any commutative ordered group G we can build a l-group L and a map f: G — L
such that f(a) > 0 iff there exists n > 0 such that na > 0. More generally, we have f(a1)A---A f(ar) =0
iff there exists ny,...,n; = 0 such that ¥n;a; > 0 and and ¥Xn; > 0.

6 Prifer’s definition of the regular closure

Priifer found the following direct definition of the regular closure P, which follows directly from Propo-
sition 4.1.

Theorem 6.1 The regular closure R of a system of ideals S can be defined by R(A) iff there exists B
such that A+ B <g B.



This gives another proof that if we have L(Sp)(a) then na < 0 for some n > 0: if we have B such
that a + B <g, B then we have a cycle a + b2 < b1,...,a + b < b, and then na < 0.

7 Non commutative version

If G is an ordered group non necessarily commutative, we use a multiplicative notation and we define a
reqular entailment relation by the conditions

l.aFbifa<bin G
2. AFBif AD A and BD B'"and A’ - B’

3. AFBif Ajx-Band A+ B,z
4. A+ Bif Ayt By
5. xa,by - xb,ay

If  is a regular entailment relation, and V is the corresponding distributive lattice then we have a
left and right action of G on V.

We define <, 1 to be the least lattice quotient on V' with left and right action of G such that b <, a.

We define u <*® v by za A uy < xbV vy for all z and y in G.

Lemma 7.1 We have xa ANby < xbV ay for all a and b in V and all x and y in G.

Proof. For instance, if we have xa; Aby < bV a1y and za; Aby < bV asy then we get za Aby < zbV ay
for a = a1 A ag and for a = a1 V as. |

Proposition 7.2 <% defines a lattice quotient on V with left and right action of G on V such that
b<*®qifa andb are in G.

Proof. We have b <*° a since xa A by < bV ay for all  and y by the previous Lemma.

If we have u < v and v < w then za Auy < bV vy and za Avy < zbV wy for all x and y By cut,
we get za Auy < xbV wy for all  and y that is u <*® w. This shows that the relation <% is transitive.
This relation is also reflexive since xa A uy < xbV uy for all z and y in G.

Finally, if we have u <%? v that is za A uy < xbV vy for all 2 and y in G, we also have zut <*° zvt
that is za A zuty < xbV zuty for all z and y in G since we have z~'za A uty < z~'zb V vty for all x and
y in G. O

By definition u <, v implies u <%y since <q,p is the least invariant order relation forcing a < b.
Also by definition, note that we have u <®° v iff a <™V b.

Proposition 7.3 u <, v and u <pq v imply u < v.

Proof. Indeed u <, v implies u <% v which implies a <% b. Together with u <, v this implies
u <"" v and so zu A uy < zv V oy for all z,y. In particular, for z =y = 1 we have u < v. O

It follows from this that V' admits a group structure which extends the one on G. Indeed, Proposition
7.3 reduces the verification of the required equations to the case where G is totally ordered and V = G
in this case.



