Cubical Type Theory

May 4, 2015

Interval

$$\varphi, \psi ::= 0 \mid 1 \mid i \mid 1 - i \mid \varphi \land \psi \mid \varphi \lor \psi$$

The equality is the equality in the free distributive lattice on generators i, 1 - i. We don't get a Boolean algebra since we don't require neither $i \wedge (1 - i) = 0$ nor $i \vee (1 - i) = 1$.

Context

$$\Delta, \Gamma ::= () \mid \Gamma, x : A \mid \Gamma, i : \mathbb{I}$$

Substitutions

$$\begin{array}{c} \overline{():\Delta \to ()} & \overline{\sigma:\Delta \to \Gamma \quad \Delta \vdash u:A\sigma} \\ \overline{(o,x=u):\Delta \to \Gamma,x:A} & \overline{\sigma:\Delta \to \Gamma \quad \Delta \vdash \varphi:\mathbb{I}} \\ & \overline{\sigma:\Delta \to \Gamma \quad \Gamma \vdash A} \\ & \overline{\Delta \vdash A\sigma} & \overline{\sigma:\Delta \to \Gamma \quad \Gamma \vdash t:A} \\ \hline \end{array} \end{array}$$

We can define $1_{\Gamma} : \Gamma \to \Gamma$ by induction on Γ and then if $\Gamma \vdash u : A$ we write $(x = u) : \Gamma \to \Gamma, x : A$ for $1_{\Gamma}, x = u$. If we have further $\Gamma, x : A \vdash t : B$ we may write t(u) and B(u) respectively instead of t(x = u) and B(x = u).

Similarly if $\Gamma \vdash \varphi : \mathbb{I}$ we write $(i = \varphi) : \Gamma \to \Gamma, i : \mathbb{I}$ for $1_{\Gamma}, i = \varphi$. We may write $t(\varphi)$ and $B(\varphi)$ for $t(i = \varphi)$ and $B(i = \varphi)$ respectively if $\Gamma, i : \mathbb{I} \vdash t : B$.

Face operations and Notation for systems

Among these substitutions, there are the ones corresponding to face operations e.g.

$$(x = x, i = 0, y = y) : (x : A, y : B(i = 0)) \to (x : A, i : \mathbb{I}, y : B)$$

If Γ is $(x : A, i : \mathbb{I}, y : B)$ we write $\Gamma(i0) = (x : A, y : B(i0))$ and we write simply $(i0) : \Gamma(i0) \to \Gamma$ instead of (x = x, i = 0, y = y). In general, we write $\alpha : \Gamma \alpha \to \Gamma$ the face operations.

A substitution $\sigma : \Delta \to \Gamma$ is *strict* if it never takes the value 0, 1 on symbols. A fundamental fact is that any substitution σ is decomposed in a unique way in the form $\sigma = \alpha \sigma_1$ where σ_1 is strict.

A system for a type $\Gamma \vdash A$ is given by a set of compatible objects $\Gamma \alpha \vdash u_{\alpha} : A\alpha$.

Proposition 0.1 If we have $\sigma : \Delta \to \Gamma \alpha$ and $\delta : \Delta \to \Gamma \beta$ such that $\alpha \sigma = \beta \delta : \Delta \to \Gamma$ then $\Delta \vdash u_{\alpha} \sigma = u_{\beta} \delta : A \alpha \sigma$.

Proof. α and β are compatible and we can find β_1, α_1 such that $\alpha\beta_1 = \beta\alpha_1 = \gamma$ and $\sigma = \beta_1\sigma_1, \delta = \alpha_1\sigma_1$ and then $u_{\alpha}\sigma = u_{\alpha}\beta_1\sigma_1 = u_{\beta}\alpha_1\sigma_1$. In order to write the equation for transport and composition, it is appropriate to use the following notation $[\alpha \mapsto a_{\alpha}]$ for a system \vec{a} in A. Let L be the family of faces over which the system \vec{a} is defined. If $\sigma : \Delta \to \Gamma$, we write $\sigma \leq L$ if, and only if, we can write $\sigma = \alpha \sigma_1$ for some α in L. The previous result shows that in this case $\vec{a}\sigma = a_{\alpha}\sigma_1$ is defined without ambiguity.

Given L a set of face maps $\Gamma \alpha \to \Gamma$ The set of all maps $\sigma : \Delta \to \Gamma$ such that $\sigma \leq L$ is a *sieve* on Γ : if $\sigma \leq L$, then $\sigma \delta \leq L$.

Lemma 0.2 If δ is strict and $\sigma\delta \leq L$ then $\sigma \leq L$

Proof. We have $\sigma \delta = \alpha \theta$ for some α in L. Hence we have $i\sigma \delta = i\alpha$ for all i symbol declared in Γ . Since δ is strict this implies $i\sigma = i\alpha$.

A sieve is actually determined by the face maps it contains. This follows directly from the previous Lemma and the fact that any map σ can be written $\alpha \sigma_1$ with σ_1 strict.

Given L a downward closed set of face maps on Γ and $\sigma : \Delta \to \Gamma$ we define $L\sigma$ to be the downward closed set of face maps β on Δ such that $\sigma\beta \leq L$.

Corollary 0.3 We have $\delta \leq L\sigma$ if, and only if, $\sigma\delta \leq L$

Proof. We write $\delta = \beta \delta_1$ where δ_1 is strict and we have $\sigma \delta = \sigma \beta \delta_1 \leq L$ if, and only if, $\sigma \beta \leq L$ by the Lemma.

Corollary 0.4 We have L1 = L and $(L\sigma)\delta = L(\sigma\delta)$

If now $\sigma : \Delta \to \Gamma$ is arbitrary, we can define $\vec{a}\sigma$ as the system $[\beta \mapsto \vec{a}\sigma\beta]$ for β such that $\sigma\beta \leq L$. This defines a system for $\Delta \vdash A\sigma$. It follows from this Corollary and from Proposition 0.1 that we have $(\vec{u}\sigma)\delta = \vec{u}(\sigma\delta)$.

If $f: A \to B$ and \vec{a} is a system for A we define $f \vec{a} = [\alpha \mapsto f \alpha \ a_{\alpha}]$ which is a system for B.

Basic typing rules

$$\begin{array}{ccc} & \frac{\Gamma \vdash A}{\Gamma, x : A \vdash} & \frac{\Gamma \vdash}{\Gamma, i : \mathbb{I} \vdash} \\ & \frac{\Gamma \vdash}{\Gamma \vdash x : A} (x : A \ in \ \Gamma) & \frac{\Gamma \vdash}{\Gamma \vdash i : \mathbb{I}} (i : \mathbb{I} \ in \ \Gamma) \\ & \frac{\Gamma, x : A \vdash B}{\Gamma \vdash (x : A) \to B} & \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A . \ t : (x : A) \to B} & \frac{\Gamma \vdash t : (x : A) \to B}{\Gamma \vdash t \ u : B(u)} \end{array}$$

Sigma types

$$\frac{\Gamma, x: A \vdash B}{\Gamma \vdash (x:A,B)} \qquad \frac{\Gamma \vdash a: A \quad \Gamma \vdash b: B(a)}{\Gamma \vdash (a,b): (x:A,B)} \qquad \frac{\Gamma \vdash z: (x:A,B)}{\Gamma \vdash z.1:A} \qquad \frac{\Gamma \vdash z: (x:A,B)}{\Gamma \vdash z.2: B(z.1)}$$

Identity types

$$\begin{array}{ccc} \displaystyle \frac{\Gamma \vdash A & \Gamma \vdash B}{\Gamma \vdash \mathsf{ID} \ A \ B} & \overline{\Gamma, i : \mathbb{I} \vdash A} \\ \hline \Gamma \vdash \langle i \rangle A : \mathsf{ID} \ A(i = 0) \ A(i = 1) \end{array} \\ \\ \displaystyle \frac{\Gamma \vdash P : \mathsf{ID} \ A_0 \ A_1 & \Gamma \vdash \varphi : \mathbb{I}}{\Gamma \vdash P \ \varphi} & \frac{\Gamma \vdash P : \mathsf{ID} \ A_0 \ A_1}{\Gamma \vdash P \ 0 = A_0} & \frac{\Gamma \vdash P : \mathsf{ID} \ A_0 \ A_1}{\Gamma \vdash P \ 1 = A_1} \\ \\ \displaystyle \frac{\Gamma \vdash P : \mathsf{ID} \ A_0 \ A_1 & \Gamma \vdash a_0 : A_0 & \Gamma \vdash a_1 : A_1}{\Gamma \vdash \mathsf{IdP} \ P \ a_0 \ a_1} & \frac{\Gamma, i : \mathbb{I} \vdash t : A}{\Gamma \vdash \langle i \rangle t : \mathsf{IdP} \ (\langle i \rangle A) \ t(i0) \ t(i1)} \\ \\ \displaystyle \frac{\Gamma \vdash t : \mathsf{IdP} \ P \ a_0 \ a_1 & \Gamma \vdash \varphi : \mathbb{I}}{\Gamma \vdash t \ \varphi : P \ \varphi} & \frac{\Gamma \vdash t : \mathsf{IdP} \ P \ a_0 \ a_1}{\Gamma \vdash t \ 0 = a_0 : P \ 0} & \frac{\Gamma \vdash t : \mathsf{IdP} \ P \ a_0 \ a_1}{\Gamma \vdash t \ 1 = a_1 : P \ 1} \end{array}$$

We define $\operatorname{Id} A a_0 a_1 = \operatorname{IdP} (\langle i \rangle A) a_0 a_1$ if $a_0 : A$ and $a_1 : A$. We can define $1_a : \operatorname{Id} A a a$ as $1_a = \langle i \rangle a$. We define $p^* = \langle i \rangle p (1 - i)$ so that

$$\frac{\Gamma \vdash p : \mathsf{Id} \ A \ a \ b}{\Gamma \vdash p^* : \mathsf{Id} \ A \ b \ a}$$

With these rules we also can justify function extensionality

$$\frac{\Gamma \vdash t: (x:A) \rightarrow B \qquad \Gamma \vdash u: (x:A) \rightarrow B \qquad \Gamma \vdash p: (x:A) \rightarrow \mathsf{Id} \ B \ (t \ x) \ (u \ x)}{\Gamma \vdash \langle i \rangle \lambda x: A. \ p \ x \ i: \mathsf{Id} \ ((x:A) \rightarrow B) \ t \ u}$$

We also can justify the fact that any element in $(x : A, \mathsf{Id} A a x)$ is equal to $(a, 1_a)$

$$\frac{\Gamma \vdash a : A \quad \Gamma \vdash b : A \quad \Gamma \vdash p : \mathsf{Id} \ A \ a \ b}{\Gamma \vdash \langle i \rangle (p \ i, \langle j \rangle p \ (i \land j)) : \mathsf{Id} \ (x : A, \mathsf{Id} \ A \ a \ x) \ (a, 1_a) \ (b, p)}$$

For justifying the transitivity of equality, we need A to have composition operations.

Composition operations

We have

$$\frac{\Gamma \vdash a : A \qquad \Gamma \alpha \vdash p_{\alpha} : \mathsf{Id} \ A \alpha \ a \alpha \ u_{\alpha}}{\Gamma \vdash \mathsf{comp} \ A \ a \ \vec{p} : A}$$

with the uniformity condition, for $\sigma: \Delta \to \Gamma$

$$\Delta \vdash (\operatorname{comp} A \ a \ \vec{p})\sigma = \operatorname{comp} A\sigma \ a\sigma \ \vec{p}\sigma : A\sigma$$

and the regularity condition

$$\Gamma \vdash \mathsf{comp} \ A \ a \ (\vec{p}, \alpha \mapsto \langle i \rangle a \alpha) = \mathsf{comp} \ A \ a \ \vec{p} : A$$

We may write simply $a\vec{p}$ instead of comp $A \ a \ \vec{p}$. We can then justify

$$\frac{\Gamma \vdash p : \mathsf{Id} \ A \ a \ b}{\Gamma \vdash \langle i \rangle (p \ i) [(i = 1) \mapsto q] : \mathsf{Id} \ A \ a \ c}$$

With such a composition operation, each type has the structure of a weak ∞ -groupoid.

If we define

prop
$$A = (x \ y : A) \rightarrow \mathsf{Id} \ A \ x \ y$$
 set $A = (x \ y : A) \rightarrow \mathsf{prop} \ (\mathsf{Id} \ A \ x \ y)$

it is possible to show that any proposition is a set as follows

$$\frac{\Gamma \vdash h: \operatorname{prop} A \quad \Gamma \vdash a \ b: A \quad \Gamma \vdash p \ q: \operatorname{Id} A \ a \ b}{\Gamma \vdash \langle j \rangle \langle i \rangle a[(i=0) \mapsto h \ a \ a, (i=1) \mapsto h \ a \ b, \ (j=0) \mapsto h \ a \ (p \ i), \ (j=1) \mapsto h \ a \ (q \ i)]: \operatorname{Id} \ (\operatorname{Id} A \ a \ b) \ p \ q}$$

Transport operation

$$\frac{\Gamma, i: \mathbb{I} \vdash A}{\Gamma \vdash \mathsf{transp}^i(A): A(i0) \to A(i1)}$$

together with the regularity condition that $\operatorname{transp}^{i}(A) a_{0} = a_{0}$ whenever A is independent of i.

We can then justify the substitution rule

$$\frac{\Gamma, x: A \vdash B \quad \Gamma \vdash p: \mathsf{Id} \ A \ a \ b}{\Gamma \vdash \mathsf{transp}^i(B(p \ i)): B(a) \to B(b)}$$

which, together with the fact that any type $(x : A, \mathsf{Id} A a x)$ is contractible, implies the usual dependent elimination rule for the identity type.

If $E : \mathsf{ID} \ A \ B$ we write $E^+ = \mathsf{transp}^i(Ei) : A \to B$ and $E^- = \mathsf{transp}^i(E(1-i)) : B \to A$.

Kan filling operation

It is convenient for the definition of composition to introduce the operation $\operatorname{comp}^i A \ a \ \vec{a} : A$ with $i : \mathbb{I} \vdash a_{\alpha} : A\alpha$ compatible system such that $a_{\alpha}(i0) = a\alpha$. We have $(\operatorname{comp}^i A \ a \ \vec{a})\alpha = a_{\alpha}(i1)$. This operation binds the symbol *i*.

The composition operation can then be defined as comp A a $\vec{p} = \text{comp}^i A a [\alpha \mapsto p_\alpha i]$

In general a map $u: T \to A$ does not need to preserve composition for judgemental equality. However, if we have a map $u: T \to A$, for any t: T and system $i: \mathbb{I} \vdash t_{\alpha}: T\alpha$ we can consider the composition of the images $v_0 = \mathsf{comp}^i A(u t)(u \vec{t})$ and the image of the composition $v_1 = u(\mathsf{comp}^i T t \vec{t})$ and we have an equality

$$\vdash$$
 pres $u \ \vec{t}$: Id $A \ v_0 \ v_1$

which satisfies (pres $u \ \vec{t}$) $\alpha = \langle i \rangle (u \alpha \ t_{\alpha}(i1))$ for $\alpha \leq L$.

This is defined as follow. First we consider $w_0 = \text{fill}^i A(u t)(u t)$ and $w_1 = u$ (fill^{*i*} T t t). We have $w_0(i0) = u t$ and $w_0(i1) = v_0$, $w_0\alpha = u t_\alpha$ while $w_1(i0) = u t$ and $w_1(i1) = v_1$, $w_1\alpha = w_0\alpha = u t_\alpha$. We then take

pres
$$u \ t = \langle j \rangle (\operatorname{comp}^{i} A \ (u \ t) \ [\alpha \mapsto u\alpha \ t_{\alpha}, (j = 0) \mapsto w_{0}, (j = 1) \mapsto w_{1}])$$

This operation satisfies (pres $u \ \vec{t} \sigma = \text{pres } u \sigma \ \vec{t} \sigma$.

We recover Kan filling operation

$$i: \mathbb{I} \vdash \mathsf{fill}^i A \ a \ \vec{a} = \mathsf{comp}^j A \ a \ [\alpha \mapsto a_\alpha(i \land j)]: A$$

The element $i: \mathbb{I} \vdash u = \operatorname{fill}^i A \ a \ \vec{a}: A$ satisfies u(i0) = a: A and $u(i1) = \operatorname{comp}^i A \ a \ \vec{a}: A$.

Recursive definition of composition

The operation $\operatorname{comp}^i A \ a \ \vec{a}$ is defined by induction on A.

Product type

In the case of a product type $\vdash (x : A) \rightarrow B = C$, we have a system $i : \mathbb{I} \vdash \mu_{\alpha} : C\alpha$ with $\mu_{\alpha}(i0) = f\alpha$ and we define

$$\operatorname{comp}^{i} C f \ \vec{\mu} = \lambda x : A. \operatorname{comp}^{i} B \ (f \ x) \ [\alpha \mapsto \mu_{\alpha} \ x] : C$$

Identity type

In the case of identity type $\vdash \mathsf{Id} A \ u \ v = C$ if we have a system $i : \mathbb{I} \vdash \mu_{\alpha} : C\alpha$ with $\mu_{\alpha}(i0) = p\alpha$ for p : C. We define

$$\operatorname{comp}^{i} C \ p \ \vec{\mu} = \langle j \rangle \operatorname{comp}^{i} A \ (p \ j) \ [\alpha \mapsto \mu_{\alpha} \ j] : C$$

Sum type

In the case of a sigma type $\vdash (x : A, B) = C$ we first need to generalize the composition operation $\mathsf{Comp}^i A \ a \ \vec{a} : A(i1)$ where A may now depend on $i : \mathbb{I}$ and $\vdash a : A(i0)$. This is defined in term of composition and transport operations.

 $\mathsf{Comp}^i A \ a \ \vec{a} = \mathsf{comp}^i A(i1) \ (\mathsf{transp}^i A \ a) \ [\alpha \mapsto \mathsf{transp}^j A\alpha(i \lor j) \ a_\alpha] : A(i1)$

Given a system $\vec{c} = [\alpha \mapsto (a_{\alpha}, b_{\alpha})]$ for C, we define

$$\mathsf{comp}^i \ C \ (a,b) \ \vec{c} = (\mathsf{comp}^i \ A \ a \ [\alpha \mapsto a_\alpha], \mathsf{Comp}^i \ B(u) \ b \ [\alpha \mapsto b_\alpha])$$

where $u = \operatorname{comp}^{j} A \ a \ [\alpha \mapsto a_{\alpha}(i \wedge j)].$

Recursive definition of transport

The operation $\operatorname{transp}^{i} A a$ is defined by induction on A.

Product type

In the case of a product type $\vdash (x : A) \rightarrow B = C$, we define

ranspⁱ
$$C f = \lambda x : A(i1)$$
. transpⁱ $B(u) (f (transpi A(1-i) x)) : C(i1)$

where $x : A(i1), i : \mathbb{I} \vdash u = \operatorname{transp}^{j} A(i \lor 1 - j) x : A$.

Identity type

In the case of identity type $\vdash \mathsf{Id} \ A \ u \ v = C$ we define

 $\mathsf{transp}^{i} C p = \langle j \rangle \mathsf{comp}^{i} A(i1) (\mathsf{transp}^{i} A (p j)) [(j = 0) \mapsto \mathsf{transp}^{k} A u(i \lor k), (j = 1) \mapsto \mathsf{transp}^{k} A v(i \lor k)] : C(i1) \to \mathsf{transp}^{k} A v(i \lor k) = C(i1) \to \mathsf{t$

Sum type

In the case of a sigma type $\vdash (x : A, B) = C$, we define

$$transp^i C(a, b) = (transp^i A a, transp^i B(u) b)$$

where $i : \mathbb{I} \vdash u = \operatorname{transp}^{j} A(i \wedge j) a$.

t

Isomorphisms

We define the type of isomorphisms

$$\frac{\Gamma \vdash f: A \to B \quad \Gamma \vdash g: B \to A \quad \Gamma \vdash s: (y:B) \to \mathsf{ld} \ B \ (f \ (g \ y)) \ y \quad \Gamma \vdash t: (x:A) \to \mathsf{ld} \ A \ (g \ (f \ x)) \ x \to \Gamma \vdash (f, g, s, t): \mathsf{lso}(A, B)$$

We write $(f, g, s, t)^+ = f : A \to B$ and $(f, g, s, t)^- = g : B \to A$.

Glueing

$$\begin{array}{c} \displaystyle \frac{\Gamma \vdash A \quad \Gamma \alpha \vdash u_{\alpha} : \mathsf{lso}(A\alpha, T_{\alpha})}{\Gamma \vdash A \vec{u}} \\ \\ \displaystyle \frac{\Gamma \vdash a : A \quad \Gamma \alpha \vdash u_{\alpha} : \mathsf{lso}(A\alpha, T_{\alpha}) \quad \Gamma \alpha \vdash u_{\alpha}^{-} t_{\alpha} = a\alpha : A\alpha}{\Gamma \vdash (\vec{t}, a) : A \vec{u}} \\ \\ \displaystyle \frac{\Gamma \vdash A \quad \Gamma \alpha \vdash u_{\alpha} : \mathsf{lso}(A\alpha, T_{\alpha})}{\Gamma \vdash \mathsf{elim} \ A \ \vec{u} : A \vec{u} \to A} \end{array}$$

We write $B = A\vec{u}$. We have $B\alpha = T_{\alpha}$ for $\alpha \leq L$. We have a map $\vdash g = \text{elim } A \vec{u} : B \to A$ with $g\alpha = u_{\alpha}^{-}$ for $\alpha \leq L$ and elim $A \vec{u} = a$ if \vec{u} is an empty system.

Let us assume to have two systems M, N and L = M, N is the union of these two systems. If we have a : A and t_{α} with $u_{\alpha}^{-}t_{\alpha} = a\alpha$ for $\alpha \leq M$, then it is possible to find $v_{\beta} : T_{\beta}$ for $\beta \leq N$ with $q_{\beta} : \text{Id } A\beta \ a\beta \ v_{\beta}$ such that $q_{\beta}\alpha_1$ is the constant path $\langle i \rangle a\beta \alpha_1$ whenever $\beta \alpha_1 = \alpha \beta_1$. We can then consider

 $a' = \operatorname{comp} A \ a \ [\beta \mapsto q_{\beta}]$

which satisfies $a'\alpha = a\alpha = u_{\alpha}^{-}t_{\alpha}$ for $\alpha \leq M$ and $a'\beta = u_{\beta}^{-}v_{\beta}$ for $\beta \leq N$. This defines an operation

$$(a', \vec{v}) =$$
extend $a \vec{t} [\alpha \mapsto u_{\alpha}] [\beta \mapsto u_{\beta}]$

which satisfies $a'\alpha = a\alpha$ for $\alpha \leq M$ and $a'\beta = u_{\beta}^{-}v_{\beta}$ for $\beta \leq N$.

The element (a', \vec{t}, \vec{v}) is then an element of $A\vec{u}$.

Composition for glueing

We have two systems on Γ . One system L for defining $A\vec{u} = B$ so that \vec{u} is a system of isomorphisms $[\alpha \mapsto u_{\alpha}]$ for $\alpha \leq L$. One system for b : B of the form $[\beta \mapsto b_{\beta}]$ for $\beta \leq J$. We write $g = \text{elim } A \vec{u} : B \to A$ and define

$$c = \operatorname{comp}^{i} A \ (g \ b) \ (g \ \vec{b})$$

and, for $\alpha \leq L$

$$d_{\alpha} = \operatorname{comp}^{i} T_{\alpha} \ b\alpha \ \vec{b}\alpha : T_{\alpha}$$

We have an equality $p_{\alpha} = \operatorname{pres} g \alpha \ \vec{b} \alpha : \operatorname{Id} A \alpha \ c \alpha \ d_{\alpha}$ for $\alpha \leq L$ and we define

 $\mathsf{comp}^i B \ b \ [\beta \mapsto b_\beta] = ([\alpha \mapsto d_\alpha], \mathsf{comp} \ A \ c \ [\alpha \mapsto p_\alpha])$

Transport for glueing

We have one system of isomorphisms $u_{\alpha} : \mathsf{lso}(A\alpha, T_{\alpha})$ for $\alpha \leq L$. We write $A\vec{u} = B$ and define g to be the map elim $A \vec{u} : B \to A$. We have $g\alpha = u_{\alpha}^- : T_{\alpha} \to A\alpha$ if $\alpha \leq L$. Given b_0 in B(i0), we want to define

transp^{*i*} $B b_0 : B(i1)$

We separate $L = L', L_0, L_1$ in 3 parts: $\alpha \mapsto u_{\alpha}$ with α independent of $i, (i0)\beta \mapsto u_{\beta(i0)}$ and $(i1)\gamma \mapsto u_{\gamma(i1)}$. We have

$$\vec{u}(i1) = [\alpha \mapsto u_{\alpha}(i1)], [\gamma \mapsto u_{\gamma(i1)}]$$

We consider $a_1 = \operatorname{transp}^i A(g(i0) b_0) : A(i1)$ and $t_\alpha = \operatorname{transp}^i T\alpha b_0\alpha : T_\alpha(i1)$. We have for each α

 $p_{\alpha} = \operatorname{pres}^{i} g \alpha \ b_{0} \alpha : \operatorname{Id} A(i1) \alpha \ a_{1} \alpha \ (g \alpha(i1) \ t_{\alpha})$

so that we can form $a'_1 = \operatorname{comp} A(i1) \ a_1 \ \vec{p}$ which satisfies

$$a_1'\alpha = u_\alpha^-(i1) \ t_\alpha : A(i1)\alpha$$

We can then define

$$(a_1'', \vec{v}) =$$
extend $a_1' \vec{t} [\alpha \mapsto u_{\alpha}(i1)] [\gamma \mapsto u_{\gamma(i1)}]$

which satisfies $a_1''\alpha = a_1'\alpha$ and

$$\operatorname{transp}^{i} B \ b_{0} : B(i1) = (a_{1}^{\prime\prime}, [\alpha \mapsto t_{\alpha}], [\gamma \mapsto v_{\gamma}])$$

Composition of types

$$\label{eq:constraint} \begin{split} \frac{\Gamma \vdash A \quad \Gamma \alpha \vdash P_{\alpha}: \text{ID } A \alpha \; T_{\alpha}}{\Gamma \vdash A \vec{P}} \\ \frac{\Gamma \vdash a: A \quad \Gamma \alpha \vdash P_{\alpha}: \text{ID } A \alpha \; T_{\alpha} \quad \Gamma \alpha \vdash P_{\alpha}^{-} t_{\alpha} = a \alpha : A \alpha}{\Gamma \vdash (\vec{t}, a): A \vec{P}} \\ \frac{\Gamma \vdash A \quad \Gamma \alpha \vdash P_{\alpha}: \text{ID } A \alpha \; T_{\alpha}}{\Gamma \vdash \text{elim } A \; \vec{P}: A \vec{P} \to A} \end{split}$$

Composition for types composition

Given P : ID A T and a system $i : \mathbb{I} \vdash t_{\alpha}$ compatible with t : T we can consider $v_0 = \text{comp}^i A (P^- t) P^- \vec{t}$ and $v_1 = P^-(\text{comp } i T t \vec{t})$, we define

$$p = \operatorname{pres} P \ t \ \vec{t} : \operatorname{Id} A \ v_0 \ v_1$$

such that p_{α} is the constant path $\langle i \rangle (P^{-}t_{\alpha}(i1))$

This operation is defined in such a way that p is the constant path $\langle j \rangle \operatorname{comp}^i A t \vec{t}$ if P is constant. We define $u = \operatorname{transp}^k P(j \wedge 1 - k) t$ so that u : Pj and u(j0) = t : T and $u(j1) = P^-t : A$. Similarly we introduce $u_\alpha = \operatorname{transp}^k P\alpha(j \wedge 1 - k) t_\alpha$. We can then consider $w = \operatorname{comp}^i P u \vec{u}$ which is such that $w(j0) = \operatorname{comp}^i T t \vec{t}$ and $w(j1) = v_0$. We define then $p = \langle j \rangle \operatorname{transp}^k P(j \vee k) w$.

We have two systems on Γ . One system L for defining $A\vec{P} = B$ so that \vec{P} is a system of type equalities $[\alpha \mapsto P_{\alpha}]$ for $\alpha \leq L$. One system for b : B of the form $[\beta \mapsto b_{\beta}]$ for $\beta \leq J$. We write $g = \text{elim } A \vec{P} : B \to A$ and define

$$c = \operatorname{comp}^{i} A (g \ b) (g \ \vec{b})$$

and, for $\alpha \leq L$

$$d_{\alpha} = \operatorname{comp}^{i} T_{\alpha} \ b\alpha \ b\alpha : T_{\alpha}$$

We have an equality $p_{\alpha} = \operatorname{pres} P \alpha \ b \alpha \ \vec{b} \alpha : \operatorname{Id} A \alpha \ c \alpha \ d_{\alpha}$ for $\alpha \leq L$ and we define

$$\operatorname{comp}^{i} B \ b \ [\beta \mapsto b_{\beta}] = ([\alpha \mapsto d_{\alpha}], \operatorname{comp} A \ c \ [\alpha \mapsto p_{\alpha}])$$

Transport for type composition

We have one system of equalities $P_{\alpha} : \mathsf{ID} \ A\alpha \ T_{\alpha}$ for $\alpha \leq L$. We write $A\vec{P} = B$ and define g to be the map elim $A \ \vec{P} : B \to A$. We have $g\alpha = P_{\alpha}^{-} : T_{\alpha} \to A\alpha$ if $\alpha \leq L$. Given b_0 in B(i0), we want to define

transp^{*i*}
$$B b_0 : B(i1)$$

We separate $L = L', L_0, L_1$ in 3 parts: $\alpha \mapsto u_{\alpha}$ with α independent of $i, (i0)\beta \mapsto u_{\beta(i0)}$ and $(i1)\gamma \mapsto u_{\gamma(i1)}$. We have

$$\vec{P}(i1) = [\alpha \mapsto P_{\alpha}(i1)], [\gamma \mapsto P_{\gamma(i1)}]$$

We consider $a_1 = \operatorname{transp}^i A(g(i0) b_0) : A(i1)$ and $t_\alpha = \operatorname{transp}^i T \alpha b_0 \alpha : T_\alpha(i1)$. We have for each α

 $p_{\alpha} = \operatorname{pres}^{i} g \alpha \ b_{0} \alpha : \operatorname{Id} A(i1) \alpha \ a_{1} \alpha \ (g \alpha(i1) \ t_{\alpha})$

so that we can form $a'_1 = \operatorname{comp} A(i1) a_1 \vec{p}$ which satisfies

$$a_1'\alpha = u_\alpha^-(i1) \ t_\alpha : A(i1)\alpha$$

We can then define

$$(a_1'', \vec{v}) =$$
extend $a_1' \vec{t} [\alpha \mapsto P_{\alpha}(i1)] [\gamma \mapsto P_{\gamma(i1)}]$

which satisfies $a_1''\alpha = a_1'\alpha$ and

transp^{*i*}
$$B$$
 $b_0: B(i1) = (a''_1, [\alpha \mapsto t_\alpha], [\gamma \mapsto v_\gamma])$

In general, if we have a compatible system of equality

 $[\alpha \mapsto P_{\alpha}] \ [\beta \mapsto P_{\beta}]$

with $P_{\alpha} : \mathsf{ID} \ A \alpha \ T_{\alpha}$ and $P_{\beta} : \mathsf{ID} \ A \beta \ T_{\beta}$ we can define

$$(a', \vec{v}) =$$
extend $a \ \vec{t} \ [\alpha \mapsto P_{\alpha}] \ [\beta \mapsto P_{\beta}]$

satisfies $a'\alpha = a\alpha$ for $\alpha \leq M$ and $a'\beta = P_{\beta}^{-}v_{\beta}$ for $\beta \leq N$. Furthermore, it is such that a' = a if each P_{β} is constant.

Similarly, if we have $P : \mathsf{ID} A T$ then P^- does not need to preserve composition for judgemental equality. However, if we have t : T and system $i : \mathbb{I} \vdash t_{\alpha} : T\alpha$ we can consider the composition of the images $v_0 = \mathsf{comp}^i A (P^- t) (P^- t)$ and the image of the composition $v_1 = P^- (\mathsf{comp}^i T t t)$ and we have an equality

$$\vdash$$
 pres $u \ \vec{t} : \mathsf{Id} \ A \ v_0 \ v_1$

which satisfies (pres $u \vec{t} \alpha = \langle i \rangle (u \alpha t_{\alpha}(i1))$ for $\alpha \leq L$ and is constant if P is constant.

Comment

Constants

We use the following constants

- 1. comp^{*i*} A a \vec{u} with a: A and $i: \mathbb{I} \vdash u_{\alpha} : A\alpha$, defined by induction on A
- 2. Comp^{*i*} A a \vec{u} with a: A(i0) and $i: \mathbb{I} \vdash A$ and $i: \mathbb{I} \vdash u_{\alpha}: A\alpha$, defined from comp
- 3. transp^{*i*} A a_0 with $a_0: A(i0)$ and $i: \mathbb{I} \vdash A$, defined by induction on A
- 4. pres $u \ t \ \vec{t}$ with $u : \mathsf{lso}(T, A)$ and t : T, defined using comp
- 5. extend $a \vec{t} [\alpha \mapsto u_{\alpha}] [\beta \mapsto u_{\beta}]$ with $a\alpha = u_{\alpha}^{-} t_{\alpha}$, defined using that isomorphisms are equivalence

These constant commute all with substitution. For instance, if $\Gamma \vdash A$ and $\Gamma \alpha, i : \mathbb{I} \vdash u_{\alpha} : A\alpha$ and $\sigma : \Delta \to \Gamma$ we have

$$\Delta \vdash (\mathsf{comp}^i \ A \ a \ \vec{u})\sigma = \mathsf{comp}^j \ A\sigma \ a\sigma \ \vec{u}(\sigma, i = j) : A\sigma$$

for any j fresh for Δ .

Glueing and composition of types

The rules for glueing and composition of types are similar. However we could not unify them: if all u_{α} are identity functions, then $A\vec{u}$ does not have in general the same composition operation as A, while if all E_{α} are constant then $A\vec{E}$ and A have the same composition operations and we have $A\vec{E} = A$.

Semantics

Each context Γ is interpreted by a cubical set as in [5]. Concretely, for each finite set of symbols I, we have a set $\Gamma(I)$ and we have restriction maps $\rho \mapsto \rho f$, $\Gamma(I) \to \Gamma(J)$ for each $f: I \to J$ satisfying $\rho I_I = \rho$ and $(\rho f)g = \rho(fg)$. A type $\Gamma \vdash A$ is interpreted by a family of sets $A\rho$ for each I and ρ in $\Gamma(I)$ and restriction maps $u \longmapsto uf$, $A\rho \to A\rho f$ satisfying $u I_I = u$ and (uf)g = u(fg). An element $\Gamma \vdash a: A$ is interpreted by a family of element $\alpha \rho$ in $A\rho$ such that $(a\rho)f = a(\rho f)$.

Furthermore this should have composition and transport operations. For composition, we should have an operation $u|_i \vec{u}$ in $A\rho$ for u in $A\rho$ and u_α in $A\rho\alpha\iota_i$ is a compatible family such that $u\alpha = u_\alpha(i0)$. This operation should be regular and uniform. The regularity is that $u|_i(\vec{u}, \alpha \mapsto u\alpha) = u|_i \vec{u}$. The uniformity is that $(u|_i \vec{u})f = uf|_j \vec{u}(f, i = j)$ if $f: I \to J$ and j not in J.

For transport, we should have an operation $\operatorname{comp}^{j}(u)$ in $A\rho(j1)$ if j in J and u in $A\rho(j0)$. This operation should be *regular*: if ρ is independent of j, i.e. $\rho = \rho(j0)\iota_j$, then $\operatorname{comp}^{j}(u) = u$ and *uniform*: $\operatorname{comp}^{j}(A\rho, u)f = \operatorname{comp}^{k}(A\rho(f, j = k), uf)$ if $f: I - j \to J$ and k is not in J.

References

- [1] M.Bezem, Th. Coquand and S. Huber. A model of type theory in cubical sets. Preprint, 2013.
- [2] B. van der Berg and R. Garner. Topological and simplicial models of identity types. ACM Transactions on Computational Logic (TOCL), Volume 13, Number 1 (2012).
- [3] R. Brown, P. J. Higgins and R. Sivera. Nonabelian Algebraic Topology: Filtered spaces, crossed complexes, cubical homotopy groupoids. volume 15 of EMS Monographs in Mathematics, European Mathematical Society, 2011.
- [4] H. Cartan. Sur le foncteur Hom(X, Y) en théorie simpliciale. Séminaire Henri Cartan, tome 9 (1956-1957), p. 1-12
- [5] Th. Coquand. Course notes on cubical type theory.
- [6] D. Kan. Abstract Homotopy I. Proc. Nat. Acad. Sci. U.S.A., 41 (1955), p. 1092-1096.
- [7] J.C. Moore. Lecture Notes, http://faculty.tcu.edu/gfriedman/notes/, Princeton 1956 p. 1A-8.
- [8] A. M. Pitts. An Equivalent Presentation of the Bezem-Coquand-Huber Category of Cubical Sets. Manuscript, 17 September 2013.
- [9] R. Williamson. Combinatorial homotopy theory. Preprint, 2012.