# Cubical Type Theory 

May 4, 2015

## Interval

$$
\varphi, \psi::=0|1| i|1-i| \varphi \wedge \psi \mid \varphi \vee \psi
$$

The equality is the equality in the free distributive lattice on generators $i, 1-i$. We don't get a Boolean algebra since we don't require neither $i \wedge(1-i)=0$ nor $i \vee(1-i)=1$.

## Context

$$
\Delta, \Gamma::=()|\Gamma, x: A| \Gamma, i: \mathbb{I}
$$

## Substitutions

$$
\begin{gathered}
\overline{(): \Delta \rightarrow()} \quad \frac{\sigma: \Delta \rightarrow \Gamma \quad \Delta \vdash u: A \sigma}{(\sigma, x=u): \Delta \rightarrow \Gamma, x: A} \quad \frac{\sigma: \Delta \rightarrow \Gamma \quad \Delta \vdash \varphi: \mathbb{I}}{(\sigma, i=\varphi): \Delta \rightarrow \Gamma, i: \mathbb{I}} \\
\frac{\sigma: \Delta \rightarrow \Gamma \quad \Gamma \vdash A}{\Delta \vdash A \sigma} \quad \frac{\sigma: \Delta \rightarrow \Gamma \quad \Gamma \vdash t: A}{\Delta \vdash t \sigma: A \sigma}
\end{gathered}
$$

We can define $1_{\Gamma}: \Gamma \rightarrow \Gamma$ by induction on $\Gamma$ and then if $\Gamma \vdash u: A$ we write $(x=u): \Gamma \rightarrow \Gamma, x: A$ for $1_{\Gamma}, x=u$. If we have further $\Gamma, x: A \vdash t: B$ we may write $t(u)$ and $B(u)$ respectively instead of $t(x=u)$ and $B(x=u)$.

Similarly if $\Gamma \vdash \varphi: \mathbb{I}$ we write $(i=\varphi): \Gamma \rightarrow \Gamma, i: \mathbb{I}$ for $1_{\Gamma}, i=\varphi$. We may write $t(\varphi)$ and $B(\varphi)$ for $t(i=\varphi)$ and $B(i=\varphi)$ respectively if $\Gamma, i: \mathbb{I} \vdash t: B$.

## Face operations and Notation for systems

Among these substitutions, there are the ones corresponding to face operations e.g.

$$
(x=x, i=0, y=y):(x: A, y: B(i=0)) \rightarrow(x: A, i: \mathbb{I}, y: B)
$$

If $\Gamma$ is $(x: A, i: \mathbb{I}, y: B)$ we write $\Gamma(i 0)=(x: A, y: B(i 0))$ and we write simply $(i 0): \Gamma(i 0) \rightarrow \Gamma$ instead of $(x=x, i=0, y=y)$. In general, we write $\alpha: \Gamma \alpha \rightarrow \Gamma$ the face operations.

A substitution $\sigma: \Delta \rightarrow \Gamma$ is strict if it never takes the value 0,1 on symbols. A fundamental fact is that any substitution $\sigma$ is decomposed in a unique way in the form $\sigma=\alpha \sigma_{1}$ where $\sigma_{1}$ is strict.

A system for a type $\Gamma \vdash A$ is given by a set of compatible objects $\Gamma \alpha \vdash u_{\alpha}: A \alpha$.
Proposition 0.1 If we have $\sigma: \Delta \rightarrow \Gamma \alpha$ and $\delta: \Delta \rightarrow \Gamma \beta$ such that $\alpha \sigma=\beta \delta: \Delta \rightarrow \Gamma$ then $\Delta \vdash u_{\alpha} \sigma=$ $u_{\beta} \delta: A \alpha \sigma$.

Proof. $\alpha$ and $\beta$ are compatible and we can find $\beta_{1}, \alpha_{1}$ such that $\alpha \beta_{1}=\beta \alpha_{1}=\gamma$ and $\sigma=\beta_{1} \sigma_{1}, \delta=\alpha_{1} \sigma_{1}$ and then $u_{\alpha} \sigma=u_{\alpha} \beta_{1} \sigma_{1}=u_{\beta} \alpha_{1} \sigma_{1}$.

In order to write the equation for transport and composition, it is appropriate to use the following notation $\left[\alpha \mapsto a_{\alpha}\right]$ for a system $\vec{a}$ in $A$. Let $L$ be the family of faces over which the system $\vec{a}$ is defined. If $\sigma: \Delta \rightarrow \Gamma$, we write $\sigma \leqslant L$ if, and only if, we can write $\sigma=\alpha \sigma_{1}$ for some $\alpha$ in $L$. The previous result shows that in this case $\vec{a} \sigma=a_{\alpha} \sigma_{1}$ is defined without ambiguity.

Given $L$ a set of face maps $\Gamma \alpha \rightarrow \Gamma$ The set of all maps $\sigma: \Delta \rightarrow \Gamma$ such that $\sigma \leqslant L$ is a sieve on $\Gamma$ : if $\sigma \leqslant L$, then $\sigma \delta \leqslant L$.

Lemma 0.2 If $\delta$ is strict and $\sigma \delta \leqslant L$ then $\sigma \leqslant L$
Proof. We have $\sigma \delta=\alpha \theta$ for some $\alpha$ in $L$. Hence we have $i \sigma \delta=i \alpha$ for all $i$ symbol declared in $\Gamma$. Since $\delta$ is strict this implies $i \sigma=i \alpha$.

A sieve is actually determined by the face maps it contains. This follows directly from the previous Lemma and the fact that any map $\sigma$ can be written $\alpha \sigma_{1}$ with $\sigma_{1}$ strict.

Given $L$ a downward closed set of face maps on $\Gamma$ and $\sigma: \Delta \rightarrow \Gamma$ we define $L \sigma$ to be the downward closed set of face maps $\beta$ on $\Delta$ such that $\sigma \beta \leqslant L$.

Corollary 0.3 We have $\delta \leqslant L \sigma$ if, and only if, $\sigma \delta \leqslant L$
Proof. We write $\delta=\beta \delta_{1}$ where $\delta_{1}$ is strict and we have $\sigma \delta=\sigma \beta \delta_{1} \leqslant L$ if, and only if, $\sigma \beta \leqslant L$ by the Lemma.

Corollary 0.4 We have $L 1=L$ and $(L \sigma) \delta=L(\sigma \delta)$
If now $\sigma: \Delta \rightarrow \Gamma$ is arbitrary, we can define $\vec{a} \sigma$ as the system $[\beta \mapsto \vec{a} \sigma \beta]$ for $\beta$ such that $\sigma \beta \leqslant L$. This defines a system for $\Delta \vdash A \sigma$. It follows from this Corollary and from Proposition 0.1 that we have $(\vec{u} \sigma) \delta=\vec{u}(\sigma \delta)$.

If $f: A \rightarrow B$ and $\vec{a}$ is a system for $A$ we define $f \vec{a}=\left[\alpha \mapsto f \alpha a_{\alpha}\right]$ which is a system for $B$.

## Basic typing rules

$$
\begin{array}{cc} 
& \frac{\Gamma \vdash A}{\Gamma, x: A \vdash} \\
& \frac{\Gamma \vdash}{\Gamma, i: \mathbb{I} \vdash} \\
& \frac{\Gamma \vdash}{\Gamma \vdash x: A}(x: A \text { in } \Gamma) \\
\frac{\Gamma, x: A \vdash B}{\Gamma \vdash(x: A) \rightarrow B} & \frac{\Gamma \vdash}{\Gamma \vdash i: \mathbb{I}}(i: \mathbb{I} \text { in } \Gamma) \\
\Gamma \vdash \lambda x: A \cdot t:(x: A) \rightarrow B & \frac{\Gamma \vdash t:(x: A) \rightarrow B \quad \Gamma \vdash u: A}{\Gamma \vdash t u: B(u)}
\end{array}
$$

## Sigma types

$$
\frac{\Gamma, x: A \vdash B}{\Gamma \vdash(x: A, B)} \quad \frac{\Gamma \vdash a: A}{\Gamma \vdash(a, b):(x: A, B)} \quad \frac{\Gamma \vdash b: B(a)}{\Gamma \vdash z .1: A} \quad \frac{\Gamma \vdash z:(x: A, B)}{\Gamma \vdash z .2: B(z .1)}
$$

## Identity types

$$
\begin{array}{ccc}
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash \mathrm{ID} A B} & \frac{\Gamma, i: \mathbb{I} \vdash A}{\Gamma \vdash\langle i\rangle A: \mathrm{ID} A(i=0) A(i=1)} \\
\frac{\Gamma \vdash P: \operatorname{ID} A_{0} A_{1} \quad \Gamma \vdash \varphi: \mathbb{I}}{\Gamma \vdash P \varphi} & \frac{\Gamma \vdash P: \operatorname{ID} A_{0} A_{1}}{\Gamma \vdash P 0=A_{0}} & \frac{\Gamma \vdash P: \operatorname{ID} A_{0} A_{1}}{\Gamma \vdash P 1=A_{1}} \\
\frac{\Gamma \vdash P: \operatorname{ID} A_{0} A_{1} \quad \Gamma \vdash a_{0}: A_{0}}{\Gamma \vdash \operatorname{IdP} P a_{0} a_{1}} & \Gamma \vdash a_{1}: A_{1} \\
\frac{\Gamma \vdash t: \operatorname{IdP} P a_{0} a_{1} \quad \Gamma \vdash \varphi: \mathbb{I}}{\Gamma \vdash t \varphi: P \varphi} & \frac{\Gamma \vdash t: \operatorname{IdP} P a_{0} a_{1}}{\Gamma \vdash\langle i\rangle t: \operatorname{IdP}(\langle i\rangle A) t(i 0) t(i 1)} & \frac{\Gamma \vdash t: \operatorname{IdP} P a_{0} a_{1}}{\Gamma \vdash t 1=a_{1}: P 1}
\end{array}
$$

We define $\operatorname{Id} A a_{0} a_{1}=\operatorname{IdP}(\langle i\rangle A) a_{0} a_{1}$ if $a_{0}: A$ and $a_{1}: A$. We can define $1_{a}: \operatorname{Id} A a a$ as $1_{a}=\langle i\rangle a$. We define $p^{*}=\langle i\rangle p(1-i)$ so that

$$
\frac{\Gamma \vdash p: \operatorname{Id} A a b}{\Gamma \vdash p^{*}: \operatorname{Id} A b a}
$$

With these rules we also can justify function extensionality

$$
\frac{\Gamma \vdash t:(x: A) \rightarrow B \quad \Gamma \vdash u:(x: A) \rightarrow B \quad \Gamma \vdash p:(x: A) \rightarrow \operatorname{ld} B(t x)(u x)}{\Gamma \vdash\langle i\rangle \lambda x: A . p x i: \operatorname{ld}((x: A) \rightarrow B) t u}
$$

We also can justify the fact that any element in $(x: A, \operatorname{ld} A a x)$ is equal to ( $a, 1_{a}$ )

$$
\frac{\Gamma \vdash a: A \quad \Gamma \vdash b: A \quad \Gamma \vdash p: \operatorname{ld} A a b}{\Gamma \vdash\langle i\rangle(p i,\langle j\rangle p(i \wedge j)): \operatorname{Id}(x: A, \operatorname{ld} A a x)\left(a, 1_{a}\right)(b, p)}
$$

For justifying the transitivity of equality, we need $A$ to have composition operations.

## Composition operations

We have

$$
\frac{\Gamma \vdash a: A \quad \Gamma \alpha \vdash p_{\alpha}: \operatorname{Id} A \alpha a \alpha u_{\alpha}}{\Gamma \vdash \operatorname{comp} A a \vec{p}: A}
$$

with the uniformity condition, for $\sigma: \Delta \rightarrow \Gamma$

$$
\Delta \vdash(\operatorname{comp} A a \vec{p}) \sigma=\operatorname{comp} A \sigma a \sigma \vec{p} \sigma: A \sigma
$$

and the regularity condition

$$
\Gamma \vdash \operatorname{comp} A a(\vec{p}, \alpha \mapsto\langle i\rangle a \alpha)=\operatorname{comp} A a \vec{p}: A
$$

We may write simply $a \vec{p}$ instead of comp $A a \vec{p}$.
We can then justify

$$
\frac{\Gamma \vdash p: \operatorname{ld} A a b \quad \Gamma \vdash q: \operatorname{ld} A b c}{\Gamma \vdash\langle i\rangle(p i)[(i=1) \mapsto q]: \operatorname{Id} A a c}
$$

With such a composition operation, each type has the structure of a weak $\infty$-groupoid.
If we define

$$
\operatorname{prop} A=(x y: A) \rightarrow \operatorname{Id} A x y \quad \text { set } A=(x y: A) \rightarrow \operatorname{prop}(\operatorname{Id} A x y)
$$

it is possible to show that any proposition is a set as follows
$\frac{\Gamma \vdash h: \operatorname{prop} A \quad \Gamma \vdash a b: A \quad \Gamma \vdash p q: \operatorname{ld} A a b}{\Gamma \vdash\langle j\rangle\langle i\rangle a[(i=0) \mapsto h a a,(i=1) \mapsto h a b,(j=0) \mapsto h a(p i),(j=1) \mapsto h a(q i)]: \operatorname{ld}(\operatorname{ld} A a b) p q}$

## Transport operation

$$
\frac{\Gamma, i: \mathbb{I} \vdash A}{\Gamma \vdash \operatorname{transp}^{i}(A): A(i 0) \rightarrow A(i 1)}
$$

together with the regularity condition that transp ${ }^{i}(A) a_{0}=a_{0}$ whenever $A$ is independent of $i$.
We can then justify the substitution rule

$$
\frac{\Gamma, x: A \vdash B \quad \Gamma \vdash p: \operatorname{ld} A a b}{\Gamma \vdash \operatorname{transp}^{i}(B(p i)): B(a) \rightarrow B(b)}
$$

which, together with the fact that any type ( $x: A$, Id $A a x$ ) is contractible, implies the usual dependent elimination rule for the identity type.

If $E:$ ID $A B$ we write $E^{+}=\operatorname{transp}^{i}(E i): A \rightarrow B$ and $E^{-}=\operatorname{transp}^{i}(E(1-i)): B \rightarrow A$.

## Kan filling operation

It is convenient for the definition of composition to introduce the operation comp ${ }^{i} A a \vec{a}: A$ with $i: \mathbb{I} \vdash a_{\alpha}: A \alpha$ compatible system such that $a_{\alpha}(i 0)=a \alpha$. We have (comp $\left.{ }^{i} A a \vec{a}\right) \alpha=a_{\alpha}(i 1)$. This operation binds the symbol $i$.

The composition operation can then be defined as comp Aa $\vec{p}=\operatorname{comp}^{i} A a\left[\alpha \mapsto p_{\alpha} i\right]$
In general a map $u: T \rightarrow A$ does not need to preserve composition for judgemental equality. However, if we have a map $u: T \rightarrow A$, for any $t: T$ and system $i: \mathbb{I} \vdash t_{\alpha}: T \alpha$ we can consider the composition of the images $v_{0}=\operatorname{comp}^{i} A(u t)(u \vec{t})$ and the image of the composition $v_{1}=u\left(c o m p^{i} T t \vec{t}\right)$ and we have an equality

$$
\vdash \text { pres } u \vec{t}: \operatorname{Id} A v_{0} v_{1}
$$

which satisfies (pres $u \vec{t}) \alpha=\langle i\rangle\left(u \alpha t_{\alpha}(i 1)\right)$ for $\alpha \leqslant L$.
This is defined as follow. First we consider $w_{0}=$ fill $^{i} A(u t)(u \vec{t})$ and $w_{1}=u$ (fill $\left.{ }^{i} T t \vec{t}\right)$. We have $w_{0}(i 0)=u t$ and $w_{0}(i 1)=v_{0}, w_{0} \alpha=u t_{\alpha}$ while $w_{1}(i 0)=u t$ and $w_{1}(i 1)=v_{1}, w_{1} \alpha=w_{0} \alpha=u t_{\alpha}$. We then take

$$
\text { pres } u \vec{t}=\langle j\rangle\left(\operatorname{comp}^{i} A(u t)\left[\alpha \mapsto u \alpha t_{\alpha},(j=0) \mapsto w_{0},(j=1) \mapsto w_{1}\right]\right)
$$

This operation satisfies (pres $u \vec{t}) \sigma=$ pres $u \sigma \vec{t} \sigma$.
We recover Kan filling operation

$$
i: \mathbb{I} \vdash \text { fill }^{i} A \text { a } \vec{a}=\operatorname{comp}^{j} A a\left[\alpha \mapsto a_{\alpha}(i \wedge j)\right]: A
$$

The element $i: \mathbb{I} \vdash u=$ fill $^{i} A$ a $\vec{a}: A$ satisfies $u(i 0)=a: A$ and $u(i 1)=\operatorname{comp}^{i} A$ a $\vec{a}: A$.

## Recursive definition of composition

The operation comp ${ }^{i} A a \vec{a}$ is defined by induction on $A$.

## Product type

In the case of a product type $\vdash(x: A) \rightarrow B=C$, we have a system $i: \mathbb{I} \vdash \mu_{\alpha}: C \alpha$ with $\mu_{\alpha}(i 0)=f \alpha$ and we define

$$
\operatorname{comp}^{i} C \text { f } \vec{\mu}=\lambda x: A .^{\operatorname{comp}^{i}} B(f x)\left[\alpha \mapsto \mu_{\alpha} x\right]: C
$$

## Identity type

In the case of identity type $\vdash \mathrm{Id} A u v=C$ if we have a system $i: \mathbb{I} \vdash \mu_{\alpha}: C \alpha$ with $\mu_{\alpha}(i 0)=p \alpha$ for $p: C$. We define

$$
\operatorname{comp}^{i} C p \vec{\mu}=\langle j\rangle \text { comp }^{i} A(p j)\left[\alpha \mapsto \mu_{\alpha} j\right]: C
$$

## Sum type

In the case of a sigma type $\vdash(x: A, B)=C$ we first need to generalize the composition operation Comp $^{i} A a \vec{a}: A(i 1)$ where $A$ may now depend on $i: \mathbb{I}$ and $\vdash a: A(i 0)$. This is defined in term of composition and transport operations.

$$
\operatorname{Comp}^{i} A \text { a } \vec{a}=\operatorname{comp}^{i} A(i 1)\left(\operatorname{transp}^{i} A a\right)\left[\alpha \mapsto \operatorname{transp}^{j} A \alpha(i \vee j) a_{\alpha}\right]: A(i 1)
$$

Given a system $\vec{c}=\left[\alpha \mapsto\left(a_{\alpha}, b_{\alpha}\right)\right]$ for $C$, we define

$$
\operatorname{comp}^{i} C(a, b) \vec{c}=\left(\operatorname{comp}^{i} A a\left[\alpha \mapsto a_{\alpha}\right] \text {, Comp }^{i} B(u) b\left[\alpha \mapsto b_{\alpha}\right]\right)
$$

where $u=\operatorname{comp}^{j} A a\left[\alpha \mapsto a_{\alpha}(i \wedge j)\right]$.

## Recursive definition of transport

The operation transp ${ }^{i} A a$ is defined by induction on $A$.

## Product type

In the case of a product type $\vdash(x: A) \rightarrow B=C$, we define

$$
\operatorname{transp}^{i} C f=\lambda x: A(i 1) . \operatorname{transp}^{i} B(u)\left(f\left(\text { transp }^{i} A(1-i) x\right)\right): C(i 1)
$$

where $x: A(i 1), i: \mathbb{I} \vdash u=\operatorname{transp}^{j} A(i \vee 1-j) x: A$.

## Identity type

In the case of identity type $\vdash$ Id $A u v=C$ we define

```
\(\operatorname{transp}^{i} C p=\langle j\rangle\) comp \(^{i} A(i 1)\left(\operatorname{transp}^{i} A(p j)\right)\left[(j=0) \mapsto \operatorname{transp}^{k} A u(i \vee k),(j=1) \mapsto \operatorname{transp}^{k} A v(i \vee k)\right]: C(i 1)\)
```


## Sum type

In the case of a sigma type $\vdash(x: A, B)=C$, we define

$$
\operatorname{transp}^{i} C(a, b)=\left(\operatorname{transp}^{i} A a, \operatorname{transp}^{i} B(u) b\right)
$$

where $i: \mathbb{I} \vdash u=\operatorname{transp}^{j} A(i \wedge j) a$.

## Isomorphisms

We define the type of isomorphisms

$$
\begin{array}{cccc}
\Gamma \vdash f: A \rightarrow B & \Gamma \vdash g: B \rightarrow A & \Gamma \vdash s:(y: B) \rightarrow \operatorname{ld} B(f(g y)) y & \Gamma \vdash t:(x: A) \rightarrow \operatorname{ld} A(g(f x)) x \\
\hline & \Gamma \vdash(f, g, s, t): \operatorname{Iso}(A, B)
\end{array}
$$

We write $(f, g, s, t)^{+}=f: A \rightarrow B$ and $(f, g, s, t)^{-}=g: B \rightarrow A$.

## Glueing

$$
\begin{gathered}
\frac{\Gamma \vdash A \quad \Gamma \alpha \vdash u_{\alpha}: \operatorname{Iso}\left(A \alpha, T_{\alpha}\right)}{\Gamma \vdash A \vec{u}} \\
\frac{\Gamma \vdash a: A}{} \quad \Gamma \alpha \vdash u_{\alpha}: \operatorname{Iso}\left(A \alpha, T_{\alpha}\right) \quad \Gamma \alpha \vdash u_{\alpha}^{-} t_{\alpha}=a \alpha: A \alpha \\
\Gamma \vdash(\vec{t}, a): A \vec{u} \\
\\
\frac{\Gamma \vdash A \quad \Gamma \alpha \vdash u_{\alpha}: \operatorname{Iso}\left(A \alpha, T_{\alpha}\right)}{\Gamma \vdash \operatorname{elim} A \vec{u}: A \vec{u} \rightarrow A}
\end{gathered}
$$

We write $B=A \vec{u}$. We have $B \alpha=T_{\alpha}$ for $\alpha \leqslant L$. We have a map $\vdash g=\operatorname{elim} A \vec{u}: B \rightarrow A$ with $g \alpha=u_{\alpha}^{-}$for $\alpha \leqslant L$ and elim $A \vec{u} a=a$ if $\vec{u}$ is an empty system.

Let us assume to have two systems $M, N$ and $L=M, N$ is the union of these two systems. If we have $a: A$ and $t_{\alpha}$ with $u_{\alpha}^{-} t_{\alpha}=a \alpha$ for $\alpha \leqslant M$, then it is possible to find $v_{\beta}: T_{\beta}$ for $\beta \leqslant N$ with $q_{\beta}$ : Id $A \beta a \beta v_{\beta}$ such that $q_{\beta} \alpha_{1}$ is the constant path $\langle i\rangle a \beta \alpha_{1}$ whenever $\beta \alpha_{1}=\alpha \beta_{1}$. We can then consider

$$
a^{\prime}=\operatorname{comp} A a\left[\beta \mapsto q_{\beta}\right]
$$

which satisfies $a^{\prime} \alpha=a \alpha=u_{\alpha}^{-} t_{\alpha}$ for $\alpha \leqslant M$ and $a^{\prime} \beta=u_{\beta}^{-} v_{\beta}$ for $\beta \leqslant N$.
This defines an operation

$$
\left(a^{\prime}, \vec{v}\right)=\operatorname{extend} a \vec{t}\left[\alpha \mapsto u_{\alpha}\right]\left[\beta \mapsto u_{\beta}\right]
$$

which satisfies $a^{\prime} \alpha=a \alpha$ for $\alpha \leqslant M$ and $a^{\prime} \beta=u_{\beta}^{-} v_{\beta}$ for $\beta \leqslant N$.
The element $\left(a^{\prime}, \vec{t}, \vec{v}\right)$ is then an element of $A \vec{u}$.

## Composition for glueing

We have two systems on $\Gamma$. One system $L$ for defining $A \vec{u}=B$ so that $\vec{u}$ is a system of isomorphisms $\left[\alpha \mapsto u_{\alpha}\right]$ for $\alpha \leqslant L$. One system for $b: B$ of the form $\left[\beta \mapsto b_{\beta}\right]$ for $\beta \leqslant J$. We write $g=\operatorname{elim} A \vec{u}: B \rightarrow A$ and define

$$
c=\operatorname{comp}^{i} A(g b)(g \vec{b})
$$

and, for $\alpha \leqslant L$

$$
d_{\alpha}=\operatorname{comp}^{i} T_{\alpha} b \alpha \vec{b} \alpha: T_{\alpha}
$$

We have an equality $p_{\alpha}=$ pres $g \alpha \vec{b} \alpha$ : Id $A \alpha c \alpha d_{\alpha}$ for $\alpha \leqslant L$ and we define

$$
\operatorname{comp}^{i} B b\left[\beta \mapsto b_{\beta}\right]=\left(\left[\alpha \mapsto d_{\alpha}\right], \operatorname{comp} A c\left[\alpha \mapsto p_{\alpha}\right]\right)
$$

## Transport for glueing

We have one system of isomorphisms $u_{\alpha}$ : Iso $\left(A \alpha, T_{\alpha}\right)$ for $\alpha \leqslant L$. We write $A \vec{u}=B$ and define $g$ to be the map elim $A \vec{u}: B \rightarrow A$. We have $g \alpha=u_{\alpha}^{-}: T_{\alpha} \rightarrow A \alpha$ if $\alpha \leqslant L$. Given $b_{0}$ in $B(i 0)$, we want to define

$$
\operatorname{transp}^{i} B b_{0}: B(i 1)
$$

We separate $L=L^{\prime}, L_{0}, L_{1}$ in 3 parts: $\alpha \mapsto u_{\alpha}$ with $\alpha$ independent of $i,(i 0) \beta \mapsto u_{\beta(i 0)}$ and $(i 1) \gamma \mapsto u_{\gamma(i 1)}$. We have

$$
\vec{u}(i 1)=\left[\alpha \mapsto u_{\alpha}(i 1)\right],\left[\gamma \mapsto u_{\gamma(i 1)}\right]
$$

We consider $a_{1}=\operatorname{transp}^{i} A\left(g(i 0) b_{0}\right): A(i 1)$ and $t_{\alpha}=\operatorname{transp}^{i} T \alpha b_{0} \alpha: T_{\alpha}(i 1)$. We have for each $\alpha$

$$
p_{\alpha}=\operatorname{pres}^{i} g \alpha b_{0} \alpha: \operatorname{Id} A(i 1) \alpha a_{1} \alpha\left(g \alpha(i 1) t_{\alpha}\right)
$$

so that we can form $a_{1}^{\prime}=\operatorname{comp} A(i 1) a_{1} \vec{p}$ which satisfies

$$
a_{1}^{\prime} \alpha=u_{\alpha}^{-}(i 1) t_{\alpha}: A(i 1) \alpha
$$

We can then define

$$
\left(a_{1}^{\prime \prime}, \vec{v}\right)=\text { extend } a_{1}^{\prime} \vec{t}\left[\alpha \mapsto u_{\alpha}(i 1)\right]\left[\gamma \mapsto u_{\gamma(i 1)}\right]
$$

which satisties $a_{1}^{\prime \prime} \alpha=a_{1}^{\prime} \alpha$ and

$$
\operatorname{transp}^{i} B b_{0}: B(i 1)=\left(a_{1}^{\prime \prime},\left[\alpha \mapsto t_{\alpha}\right],\left[\gamma \mapsto v_{\gamma}\right]\right)
$$

## Composition of types

$$
\begin{gathered}
\frac{\Gamma \vdash A \quad \Gamma \alpha \vdash P_{\alpha}: \mathrm{ID} A \alpha T_{\alpha}}{\Gamma \vdash A \vec{P}} \\
\frac{\Gamma \vdash a: A \quad}{} \quad \begin{array}{l}
\Gamma \vdash P_{\alpha}: \mathrm{ID} A \alpha T_{\alpha} \quad \Gamma \alpha \vdash P_{\alpha}^{-} t_{\alpha}=a \alpha: A \alpha \\
\Gamma \vdash(\vec{t}, a): A \vec{P} \\
\\
\frac{\Gamma \vdash A \quad \Gamma \alpha \vdash P_{\alpha}: \mathrm{ID} A \alpha T_{\alpha}}{\Gamma \vdash \operatorname{elim} A \vec{P}: A \vec{P} \rightarrow A}
\end{array}
\end{gathered}
$$

## Composition for types composition

Given $P:$ ID $A T$ and a system $i: \mathbb{I} \vdash t_{\alpha}$ compatible with $t: T$ we can consider $v_{0}=\operatorname{comp}^{i} A\left(P^{-} t\right) P^{-} \vec{t}$ and $v_{1}=P^{-}($comp $i T t \vec{t})$, we define

$$
p=\operatorname{pres} P t \vec{t}: \operatorname{Id} A v_{0} v_{1}
$$

such that $p_{\alpha}$ is the constant path $\langle i\rangle\left(P^{-} t_{\alpha}(i 1)\right)$
This operation is defined in such a way that $p$ is the constant path $\langle j\rangle$ comp ${ }^{i} A t \vec{t}$ if $P$ is constant.
We define $u=$ transp $^{k} P(j \wedge 1-k) t$ so that $u: P j$ and $u(j 0)=t: T$ and $u(j 1)=P^{-} t: A$. Similarly we introduce $u_{\alpha}=\operatorname{transp}^{k} P \alpha(j \wedge 1-k) t_{\alpha}$. We can then consider $w=\operatorname{comp}^{i} P u \vec{u}$ which is such that $w(j 0)=$ comp $^{i} T t \vec{t}$ and $w(j 1)=v_{0}$. We define then $p=\langle j\rangle \operatorname{transp}^{k} P(j \vee k) w$.

We have two systems on $\Gamma$. One system $L$ for defining $A \vec{P}=B$ so that $\vec{P}$ is a system of type equalities $\left[\alpha \mapsto P_{\alpha}\right]$ for $\alpha \leqslant L$. One system for $b: B$ of the form $\left[\beta \mapsto b_{\beta}\right]$ for $\beta \leqslant J$. We write $g=\operatorname{elim} A \vec{P}: B \rightarrow A$ and define

$$
c=\operatorname{comp}^{i} A(g b)(g \vec{b})
$$

and, for $\alpha \leqslant L$

$$
d_{\alpha}=\operatorname{comp}^{i} T_{\alpha} b \alpha \vec{b} \alpha: T_{\alpha}
$$

We have an equality $p_{\alpha}=$ pres $P \alpha b \alpha \vec{b} \alpha:$ Id $A \alpha c \alpha d_{\alpha}$ for $\alpha \leqslant L$ and we define

$$
\operatorname{comp}^{i} B b\left[\beta \mapsto b_{\beta}\right]=\left(\left[\alpha \mapsto d_{\alpha}\right], \operatorname{comp} A c\left[\alpha \mapsto p_{\alpha}\right]\right)
$$

## Transport for type composition

We have one system of equalities $P_{\alpha}$ : ID $A \alpha T_{\alpha}$ for $\alpha \leqslant L$. We write $A \vec{P}=B$ and define $g$ to be the map elim $A \vec{P}: B \rightarrow A$. We have $g \alpha=P_{\alpha}^{-}: T_{\alpha} \rightarrow A \alpha$ if $\alpha \leqslant L$. Given $b_{0}$ in $B(i 0)$, we want to define

$$
\operatorname{transp}^{i} B b_{0}: B(i 1)
$$

We separate $L=L^{\prime}, L_{0}, L_{1}$ in 3 parts: $\alpha \mapsto u_{\alpha}$ with $\alpha$ independent of $i,(i 0) \beta \mapsto u_{\beta(i 0)}$ and $(i 1) \gamma \mapsto u_{\gamma(i 1)}$. We have

$$
\vec{P}(i 1)=\left[\alpha \mapsto P_{\alpha}(i 1)\right],\left[\gamma \mapsto P_{\gamma(i 1)}\right]
$$

We consider $a_{1}=\operatorname{transp}^{i} A\left(g(i 0) b_{0}\right): A(i 1)$ and $t_{\alpha}=\operatorname{transp}^{i} T \alpha b_{0} \alpha: T_{\alpha}(i 1)$. We have for each $\alpha$

$$
p_{\alpha}=\operatorname{pres}^{i} g \alpha b_{0} \alpha: \operatorname{Id} A(i 1) \alpha a_{1} \alpha\left(g \alpha(i 1) t_{\alpha}\right)
$$

so that we can form $a_{1}^{\prime}=\operatorname{comp} A(i 1) a_{1} \vec{p}$ which satisfies

$$
a_{1}^{\prime} \alpha=u_{\alpha}^{-}(i 1) t_{\alpha}: A(i 1) \alpha
$$

We can then define

$$
\left(a_{1}^{\prime \prime}, \vec{v}\right)=\text { extend } a_{1}^{\prime} \vec{t}\left[\alpha \mapsto P_{\alpha}(i 1)\right]\left[\gamma \mapsto P_{\gamma(i 1)}\right]
$$

which satisties $a_{1}^{\prime \prime} \alpha=a_{1}^{\prime} \alpha$ and

$$
\operatorname{transp}^{i} B b_{0}: B(i 1)=\left(a_{1}^{\prime \prime},\left[\alpha \mapsto t_{\alpha}\right],\left[\gamma \mapsto v_{\gamma}\right]\right)
$$

In general, if we have a compatible system of equality

$$
\left[\alpha \mapsto P_{\alpha}\right]\left[\beta \mapsto P_{\beta}\right]
$$

with $P_{\alpha}$ : ID $A \alpha T_{\alpha}$ and $P_{\beta}$ : ID $A \beta T_{\beta}$ we can define

$$
\left(a^{\prime}, \vec{v}\right)=\text { extend } a \vec{t}\left[\alpha \mapsto P_{\alpha}\right]\left[\beta \mapsto P_{\beta}\right]
$$

satisfies $a^{\prime} \alpha=a \alpha$ for $\alpha \leqslant M$ and $a^{\prime} \beta=P_{\beta}^{-} v_{\beta}$ for $\beta \leqslant N$. Furthermore, it is such that $a^{\prime}=a$ if each $P_{\beta}$ is constant.

Similarly, if we have $P$ : ID $A T$ then $P^{-}$does not need to preserve composition for judgemental equality. However, if we have $t: T$ and system $i: \mathbb{I} \vdash t_{\alpha}: T \alpha$ we can consider the composition of the images $v_{0}=\operatorname{comp}^{i} A\left(P^{-} t\right)\left(P^{-} \vec{t}\right)$ and the image of the composition $v_{1}=P^{-}\left(\operatorname{comp}^{i} T t \vec{t}\right)$ and we have an equality

$$
\vdash \text { pres } u \vec{t}: \operatorname{Id} A v_{0} v_{1}
$$

which satisfies (pres $u \vec{t}) \alpha=\langle i\rangle\left(u \alpha t_{\alpha}(i 1)\right)$ for $\alpha \leqslant L$ and is constant if $P$ is constant.

## Comment

## Constants

We use the following constants

1. comp $^{i} A a \vec{u}$ with $a: A$ and $i: \mathbb{I} \vdash u_{\alpha}: A \alpha$, defined by induction on $A$
2. Comp ${ }^{i} A a \vec{u}$ with $a: A(i 0)$ and $i: \mathbb{I} \vdash A$ and $i: \mathbb{I} \vdash u_{\alpha}: A \alpha$, defined from comp
3. transp $^{i} A a_{0}$ with $a_{0}: A(i 0)$ and $i: \mathbb{I} \vdash A$, defined by induction on $A$
4. pres $u t \vec{t}$ with $u: \operatorname{Iso}(T, A)$ and $t: T$, defined using comp
5. extend $a \vec{t}\left[\alpha \mapsto u_{\alpha}\right]\left[\beta \mapsto u_{\beta}\right]$ with $a \alpha=u_{\alpha}^{-} t_{\alpha}$, defined using that isomorphisms are equivalence

These constant commute all with substitution. For instance, if $\Gamma \vdash A$ and $\Gamma \alpha, i: \mathbb{I} \vdash u_{\alpha}: A \alpha$ and $\sigma: \Delta \rightarrow \Gamma$ we have

$$
\Delta \vdash\left(\operatorname{comp}^{i} A \text { a } \vec{u}\right) \sigma=\operatorname{comp}^{j} A \sigma a \sigma \vec{u}(\sigma, i=j): A \sigma
$$

for any $j$ fresh for $\Delta$.

## Glueing and composition of types

The rules for glueing and composition of types are similar. However we could not unify them: if all $u_{\alpha}$ are identity functions, then $A \vec{u}$ does not have in general the same composition operation as $A$, while if all $E_{\alpha}$ are constant then $A \vec{E}$ and $A$ have the same composition operations and we have $A \vec{E}=A$.

## Semantics

Each context $\Gamma$ is interpreted by a cubical set as in [5]. Concretely, for each finite set of symbols $I$, we have a set $\Gamma(I)$ and we have restriction maps $\rho \longmapsto \rho f, \Gamma(I) \rightarrow \Gamma(J)$ for each $f: I \rightarrow J$ satisfying $\rho 1_{I}=\rho$ and $(\rho f) g=\rho(f g)$. A type $\Gamma \vdash A$ is interpreted by a family of sets $A \rho$ for each $I$ and $\rho$ in $\Gamma(I)$ and restriction maps $u \longmapsto u f, A \rho \rightarrow A \rho f$ satisfying $u 1_{I}=u$ and $(u f) g=u(f g)$. An element $\Gamma \vdash a: A$ is interpreted by a family of element $a \rho$ in $A \rho$ such that $(a \rho) f=a(\rho f)$.

Furthermore this should have composition and transport operations. For composition, we should have an operation $\left.u\right|_{i} \vec{u}$ in $A \rho$ for $u$ in $A \rho$ and $u_{\alpha}$ in $A \rho \alpha \iota_{i}$ is a compatible family such that $u \alpha=u_{\alpha}(i 0)$. This operation should be regular and uniform. The regularity is that $\left.u\right|_{i}(\vec{u}, \alpha \mapsto u \alpha)=\left.u\right|_{i} \vec{u}$. The uniformity is that $\left(\left.u\right|_{i} \vec{u}\right) f=\left.u f\right|_{j} \vec{u}(f, i=j)$ if $f: I \rightarrow J$ and $j$ not in $J$.

For transport, we should have an operation $\operatorname{comp}^{j}(u)$ in $A \rho(j 1)$ if $j$ in $J$ and $u$ in $A \rho(j 0)$. This operation should be regular: if $\rho$ is independent of $j$, i.e. $\rho=\rho(j 0) \iota_{j}$, then $\operatorname{comp}^{j}(u)=u$ and uniform: $\operatorname{comp}^{j}(A \rho, u) f=\operatorname{comp}^{k}(A \rho(f, j=k)$, uf) if $f: I-j \rightarrow J$ and $k$ is not in $J$.

## References

[1] M.Bezem, Th. Coquand and S. Huber. A model of type theory in cubical sets. Preprint, 2013.
[2] B. van der Berg and R. Garner. Topological and simplicial models of identity types. ACM Transactions on Computational Logic (TOCL), Volume 13, Number 1 (2012).
[3] R. Brown, P. J. Higgins and R. Sivera. Nonabelian Algebraic Topology: Filtered spaces, crossed complexes, cubical homotopy groupoids. volume 15 of EMS Monographs in Mathematics, European Mathematical Society, 2011.
[4] H. Cartan. Sur le foncteur $\operatorname{Hom}(X, Y)$ en théorie simpliciale. Séminaire Henri Cartan, tome 9 (1956-1957), p. 1-12
[5] Th. Coquand. Course notes on cubical type theory.
[6] D. Kan. Abstract Homotopy I. Proc. Nat. Acad. Sci. U.S.A., 41 (1955), p. 1092-1096.
[7] J.C. Moore. Lecture Notes, http://faculty.tcu.edu/gfriedman/notes/, Princeton 1956 p. 1A-8.
[8] A. M. Pitts. An Equivalent Presentation of the Bezem-Coquand-Huber Category of Cubical Sets. Manuscript, 17 September 2013.
[9] R. Williamson. Combinatorial homotopy theory. Preprint, 2012.

