A coherent theory of strict Henselian ring

The goal of this note is to present a small variation of a result of Gavin Wraith. We give a coherent theory for strict Henselian ring.

For the formulation of this theory, we need the notion of universal decomposition algebra $L=$ $A\left[x_{1}, \ldots, x_{n}\right]=A\left[X_{1}, \ldots, X_{n}\right] / I$ of a monic polynomial $f=X^{n}-a_{1} X^{n-1}+a_{2} X^{n-2}-\ldots$ in $A[X]$ where I is the ideal generated by

$$
a_{1}=s_{1}, \ldots, a_{n}=s_{n}
$$

where s_{1}, \ldots, s_{n} in $A\left[X_{1}, \ldots, X_{n}\right]$ are the elementary symmetric polynomials. It is well known that $L=A\left[x_{1}, \ldots, x_{n}\right]$ is freely generated as a module over A by the Cauchy modules and it follows from this that L is a faithfully flat extension of A.

We say that f is unramifiable iff $1=\left(f^{\prime}\left(x_{1}\right), \ldots, f^{\prime}\left(x_{n}\right)\right)$ in L. Since

$$
D\left(f^{\prime}\left(x_{1}\right), \ldots, f^{\prime}\left(x_{n}\right)\right)=\Delta(f)=D\left(d_{1}(f), \ldots, d_{n}(f)\right)
$$

where $d_{i}(f)=s_{i}\left(f^{\prime}\left(x_{1}\right), \ldots, f^{\prime}\left(x_{n}\right)\right)$ it follows from L faithfully flat that this condition is equivalent to $\Delta(f)=1$ in A

Lemma 0.0.1. If $f=\left(X-a_{1}\right) \ldots\left(X-a_{p}\right) g$ in $A[X]$ and $\Delta(f)=1$ and A is local, then $f^{\prime}\left(a_{1}\right)$ is invertible or \ldots or $f^{\prime}\left(a_{p}\right)$ is invertible or $\Delta(g)=1$.
Proof. We write $h=\left(X-a_{1}\right) \ldots\left(X-a_{p}\right)$.
We have in $A\left[x_{1}, \ldots, x_{n}\right]$ decomposition algebra of g

$$
1=D\left(f^{\prime}\left(a_{1}\right), \ldots, f^{\prime}\left(a_{p}\right), h\left(x_{1}\right) g^{\prime}\left(x_{1}\right), \ldots, h\left(x_{n}\right) g^{\prime}\left(x_{n}\right)\right)
$$

and hence

$$
1=D\left(f^{\prime}\left(a_{1}\right), \ldots, f^{\prime}\left(a_{p}\right), g^{\prime}\left(x_{1}\right), \ldots, g^{\prime}\left(x_{n}\right)\right)
$$

and from this follows

$$
1=D\left(f^{\prime}\left(a_{1}\right), \ldots, f^{\prime}\left(a_{p}\right)\right) \vee \Delta(g)
$$

in $A\left[x_{1}, \ldots, x_{n}\right]$. Since the decomposition algebra is faithfully flat, we get

$$
1=D\left(f^{\prime}\left(a_{1}\right), \ldots, f^{\prime}\left(a_{p}\right)\right) \vee \Delta(g)
$$

in A and since A is local we have the conclusion.
Lemma 0.0.2. If A is local and any monic unramifiable polynomial has a root in A then any monic unramifiable polynomial has a simple root in A.

Proof. Assume that A is local and any monic unramifiable polynomial has a root in A. Let f be a monic unramifiable polynomial. It has a root a_{1} and we can write $f=\left(X-a_{1}\right) f_{1}$. By the Lemma, a_{1} is a simple root of f or $\Delta\left(f_{1}\right)=1$. If $\Delta\left(f_{1}\right)=1$ then it has a root a_{2} and $f=\left(X-a_{1}\right)\left(X-a_{2}\right) f_{2}$. Then by the Lemma again, a_{1} or a_{2} is a simple root of f of $\Delta\left(f_{2}\right)=1$, and so on until we find a simple root of f.

The coherent theory is then that $A \mathrm{~A}$ is local and that any monic unramifiable polynomial has a root By the second Lemma, we can ask instead that any monic unramifiable polynomial has a simple root.
Using the first Lemma, one can also show that if to be invertible is decidable then the discrete residual field is separably closed and the ring is Henselian.

