
About the setoid model

Introduction

We present a generalization to dependent types of Gandy’s interpretation of extensional in intensional
type theory [2]. This can also be seen as variation of the setoid model considered in Hofmann’s thesis
[3]. Contrary to this model [3], the rule of pushing a substitution under an abstraction is not validated
in our interpretation. The first published version of type theory [5, 6] had also this restriction and we
provide thus a model of this version of type theory. On the other hand, we do interpret, contrary to [3],
most computation rules as definitional equality. The only exception is the computation rule for identity
type.

Our interpretation can be seen as a syntactic transformation of a type theory with extensional equality
into an intensional type system (even without identity type).

Beside interpreting extensional equality, we can interpret a type of impredicative propositions. We
formulate an interpretation of this new type system into an inconsistent type system (with a type of all
types). This should provide a computational interpretation of the axiom of unique choice. An application
may be to give computational interpretation of the definition of quotient using equivalence classes. We
conjecture that the terms that we get from this interpretation are all normalizing. (This conjecture is
motivated by a consistency result of univalence and resizing, which shows that the interpreted system is
consistent.)

1 The setoid model

We shall model a version of type theory with extensional type theory in intensional type theory (this
target type theory does not even need to have an identity type).

Contexts will be interpreted as setoids.
A setoid is a type Γ with a relation R of type Γ→ Γ→ Type. We write ρ0 ;Γ ρ1 instead of R ρ0 ρ1

for ρ0 ρ1 : Γ. We assume that we have an operation

ηΓ :
∏
ρ:Γ

ρ;Γ ρ

This expresses that the given relation is reflexive. We express also that it is symmetric and transitive in
a way similar to Kan extensions1 by requiring operations of type∏

ρ0 ρ1 ρ2:Γ

ρ0 ;Γ ρ1, ρ1 ;Γ ρ2 −→ ρ0 ;Γ ρ2

∏
ρ0 ρ1 ρ2:Γ

ρ0 ;Γ ρ2, ρ1 ;Γ ρ2 −→ ρ0 ;Γ ρ1

∏
ρ0 ρ1 ρ2:Γ

ρ0 ;Γ ρ1, ρ0 ;Γ ρ2 −→ ρ1 ;Γ ρ2

A setoid morphism σ, σ′ : ∆ → Γ is given by a function σ : ∆ → Γ together with a proof that it
preserves the given relations

σ′ :
∏

ν0 ν1:∆

ν0 ;∆ ν1 −→ σν0 ;Γ σν1

1Our model should generalize to express groupoids, and higher-order structures.
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Contrary to [3], we don’t require the definional equality σ′ ν ν (ην) = η(σν) : σν ; σν.
A dependent type Γ ` A is given by a dependent type Aρ over ρ : Γ together with an operation∏

ρ0 ρ1:Γ

∏
α:ρ0;ρ1

Aρ0 → Aρ1 → Type

We write u0 ;α u1 the result of this operation for u0 : Aρ0, u1 : Aρ1.
We ask furthermore to have an operation η : Πρ : Γ.Πu : Aρ.u;ηρ u and extension operations, given

αij : ρi ; ρj for 0 6 i < j 6 2

u0 ;α01
u1, u1 ;α12

u2 −→ u0 ;α02
u2

u0 ;α02
u2, u1 ;α12

u2 −→ u0 ;α01
u1

u0 ;α01 u1, u0 ;α02 u2 −→ u1 ;α12 u2

where each of these expressions should be prefixed by a product over

ρ0 ρ1 ρ2 : Γ, α01 : ρ0 ; ρ1, α12 : ρ1 ; ρ2, α02 : ρ0 ; ρ2, u0 : Aρ0, u1 : Aρ1, u2 : Aρ2

We require also a function Aα+ : Aρ0 → Aρ1 with a proof Aα ↑ u : u ;α Aα+u and a function
Aα− : Aρ1 → Aρ0 with a proof Aα ↓ u : Aα−u;α u.

These definitions can be seen as a restriction to the case of setoids of the notion of Kan simplicial set
and Kan fibrations.

We define Γ ` a : A to be a pair of a section aρ : Aρ for ρ : Γ together with aα : aρ0 ;α aρ1 for
α : ρ0 ; ρ1. We don’t require to have the definitional equality aηρ = η(aρ) : aρ;ηρ aρ.

Given Γ ` A it is possible to define a new setoid Γ.A by defining α, ω : (ρ0, u0) ; (ρ1, u1) iff
α : ρ0 ; ρ1 and ω : u0 ;α u1. We can then take η(ρ, u) = ηρ, ηu : (ρ, u) ; (ρ, u).

Given Γ ` A and Γ.A ` B it is then possible to define Γ ` Π A B and Γ ` Σ A B. For ρ : Γ we take
(Π A B)ρ to be the type of pairs f, f ′ such that f u : B(ρ, u) for u : Aρ and f ′ u0 u1 ω : f u0 ;ηρ,ω f u1

if ω : u0 ;ηρ u1. We define then (f, f ′) ;α (g, g′) to be∏
u0:Aρ0

∏
u1:Aρ1

u0 ;α u1 −→ f u0 ;α,ω g u1

We can then define η(f, f ′) = f ′ : (f, f ′) ;ηρ (f, f ′). We take (u, v) : (Σ A B)ρ to mean u : Aρ and
v : B(ρ, u) while (ω, δ) : (u0, v0) ;α (u1, v1) iff ω : u0 ;α u1 and δ : v0 ;α,ω v1.

We can then define (Π A B) ↑, (Π A B) ↓ and (Σ A B) ↑, (Σ A B) ↓. (See Appendix 2 for a
justification of the dependent product.)

We can interpret identity type given Γ ` A and Γ ` a : A and Γ ` u : A. We take (IdA a u)ρ to be
the type aρ;ηρ uρ. Given ω0 : (IdA a u)ρ0 and ω1 : (IdA a u)ρ1 we define ω0 ;α ω1 to be the unit type
N1. The elimination rule over this type gets validated. However the computation rule holds only in the
interpretation as a propositional equality (like in [3]).

We can also interpret a type of natural numbers by taking Nρ to be the type N of the target system
and defining

0 ;N 0 = N1 S n;N S m = n;N m 0 ;N S m = N0 S n;N 0 = N0

where N1 is the unit type and N0 the empty type. Contrary to what happens in the model [3] we expect
the computation rules for N to hold definitionally in this interpretation.
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2 Interpretation as translation

It is then possible to check that we get a model of type theory given by the rules in Figure 1. What is
not validated by this model are the rules of substitution under a binder. (See Appendix 1 for a simple
explanation of why this rule fails in this model.) Following the discussions in [5, 6] we do not consider
this to be a problem.

We can see this interpretation as a syntactic translation from an extensional type theory into an
intensional type theory (without any identity type). A definitional equality Γ ` a = u : A is interpreted
in the target type system as a pair of definitional equalities

ρ : Γ ` aρ = uρ : Aρ ρ0 ρ1 : Γ, α : ρ0 ; ρ1 ` aα = uα : aρ0 ; aρ1

while a definitional equality Γ ` A = B is interpreted as a pair of definitional equalities

ρ : Γ ` Aρ = Bρ ρ0 ρ1 : Γ, α : ρ0 ; ρ1, u0 : Aρ0, u1 : Aρ1 ` u0 ;Aα u1 = u0 ;Bα u1

3 A type of proposition and the resizing axiom

We define a setoid Ω of propositions. The underlying type is a type of all types U while X ;Ω Y is the
type X ↔ Y , i.e. the type (X → Y ) × (Y → X). We define a dependent type Ω ` T by taking TX to
be the type X while u;α v is the unit type N1 for α : X ;Ω Y and u : X and v : Y . (We can avoid to
consider inconsistent type system if we are interested only in a predicative type of small propositions.)

We get in this way an interpretation of a weak form of univalence

Πϕ0 ϕ1 : Ω.(Tϕ0 ↔ Tϕ1)↔ IdΩ ϕ0 ϕ1

It is then possible to define the operations Γ ` ∀ A ϕ : Ω given Γ ` A and Γ.A ` ϕ : Ω, with the
logical equivalence T (∀ A ϕ)↔ Π A T (ϕ). We take

(∀ A ϕ)ρ =
∏
u:Aρ

ϕ(ρ, u)

while, if α : ρ0 ; ρ1, we define

(∀ A ϕ)α : (
∏
u:Aρ0

ϕ(ρ0, u))↔ (
∏
u:Aρ1

ϕ(ρ1, u))

using the maps Aα+ and Aα−. We can also define an operation (∧) : Ω → Ω → Ω with the logical
equivalence T (ϕ0 ∧ ϕ1)↔ Tϕ0 × Tϕ1.

We can define Γ ` Λb : T (∀ A ϕ) if Γ.A ` b : Tϕ by taking (Λb)ρ u = b(ρ, u) and (Λb)α = 0.
For Γ ` A we have Γ ` eqA : A→ A→ Ω such that the definitional equality Γ ` T (eqA a u) = IdA a u

holds for Γ ` a : A and Γ ` u : A.
We can also define Γ ` ∃ Aϕ : Ω given Γ ` A and Γ.A ` ϕ : Ω.
For the target type system, we need a type of all types in order to interpret the existential quantifi-

cation as a strong sum

(∃ Aϕ)ρ =
∑
u:Aρ

ϕ(ρ, u)

What is spectacular in this interpretation is that we get an interpretation of unique choice, i.e. a proof
of the following implication

T (∃ A ϕ)→ (Πa0 a1 : A.ϕ[a0]→ ϕ[a1]→ IdA a0 a1)→ Σ A T (ϕ)

For this, it is crucial that we interpret existential quantification as a sigma type,
In this type system, it should be possible to define the quotient type using equivalence classes, and

for instance, to define Z as a quotient of N×N. Voevodsky had such a development using resizing rules
and equivalence and it would be interesting to see if we get a natural computational content of this
development in this way.
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Γ `
1 : Γ→ Γ

σ : ∆→ Γ δ : Θ→ ∆

σδ : Θ→ Γ

Γ ` A σ : ∆→ Γ

∆ ` Aσ
Γ ` t : A σ : ∆→ Γ

∆ ` tσ : Aσ

`
Γ ` Γ ` A

Γ.A `
Γ ` A

p : Γ.A→ Γ

Γ ` A
Γ.A ` q : Ap

σ : ∆→ Γ Γ ` A ∆ ` u : Aσ

(σ, u) : ∆→ Γ.A

Γ.A ` B
Γ ` Π A B

Γ.A ` B σ : ∆→ Γ ∆.Aσ ` b : B(σp, q)

∆ ` λb : (Π A B)σ

Γ.A ` B
Γ ` Σ A B

Γ.A ` B σ : ∆→ Γ ∆ ` u : Aσ ∆ ` v : B(σ, u)

∆ ` (u, v) : (Σ A B)σ

σ : ∆→ Γ ∆ ` w : (Π A B)σ ∆ ` u : Aσ

∆ ` app(w, u) : B(σ, u)

∆ ` w : (Σ A B)σ

∆ ` pw : Aσ

∆ ` w : (Σ A B)σ

∆ ` qw : B(σ, pw)

σ1 = σ 1σ = σ (σδ)ν = σ(δν)

(σ, u)δ = (σδ, uδ) p(σ, u) = σ q(σ, u) = u

app(w, u)δ = app(wδ, uδ) app((λb)σ, u) = b(σ, u)

Figure 1: Rules of WMLTT

Appendix 0: WMLTT

We call WMLTT the version of Type Theory with rules are presented in Figure 1. This is equivalent to
the version of type theory presented in the references [5, 6].

For the typing rules, we remove the conversion rule (Π A B)σ = Π (Aσ) (B(σp, q)) and have instead
the following rules

Γ ` A Γ.A ` B σ : ∆→ Γ ∆ ` w : (Π A B)σ ∆ ` u : Aσ

∆ ` app(w, u) : B(σ, u)

and the conversion rule is

Γ ` A Γ.A ` B σ : ∆→ Γ Γ.A ` b : B ∆ ` u : Aσ

∆ ` app((λb)σ, u) = b(σ, u) : B(σ, u)

Appendix 1: The setoid model for simple type theory

A type A is a pair (X,R) where X is a set and R x u a relation over X which is reflexive, symmetric
and transitive. In particular for any x in X we have an element η(x) : R x x. We define

(X,R)→ (Y, S) = (Z, T )

where Z is the set of pairs f, f ′ with f : X → Y and f ′ : Π x u : X.R x u→ S (f x) (f u), and

T (f, f ′) (g, g′) = Π x u : X.R x u→ S (f x) (g u)
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It is rather direct to show that T is reflexive, symmetric and transitive with η(f, f ′) = f ′.
The following notation will be convenient. If t : (X,R)→ (Y, S) with t = (f, f ′) and ρ : X we write

tρ for f ρ : Y and if α : R ρ0 ρ1 we write tα : S (tρ0) (tρ1) for f ′ ρ0 ρ1 α.
We define (X,R)× (Y, S) = (X×Y, T ) with T (x, y) (u, v) = R x u×S y v. It is direct how to define

p : A×B → A and q : A×B → B.
If t : (X,R) → ((Y, S) → (Z, T )) and u : (X,R) → (Y, S) we define app(t, u) : (X,R) → (Z, T ) by

taking
app(t, u)ρ = tρ (uρ) app(t, u)α = tα (uα)

We define λ(c) : A→ (B → C) for c : A×B → C. This is defined by

λ(c)ρν = c(ρ, ν) λ(c)ρβ = c(η(ρ), β)

and
λ(c)αβ = c(α, β)

Given σ : D → A we can now compare

λ(c)σ d = (λy.c(σ d, y), λq.c(η(σ d), q))

and
λ(c(σp, q)) d = (λy.c(σ d, y), λq.c(σ(η(d)), q))

They are equal only if
σ(η(d)) = η(σ d)

and this is not valid in general.
On the other hand

app(λ(c)σ, u) = c(σ, u)

is valid. This is because we have
app(λ(c)σ, u) d = c(σ d, u d)

and
app(λ(c)σ, u) α = c(σ α, u α)

Appendix 2: Justification of the dependent product

If Γ ` A and Γ.A ` B we define Γ ` Π A B. If ρ : Γ then (Π A B)ρ is the set of pairs f, f ′ with
f u : B(ρ, u) if u : Aρ and f ′ ω : f u0 → f u1 over η(ρ), ω whenever ω : u0 →ηρ u1. If α : ρ0 → ρ1 and
f0, f

′
0 : (Π A B)ρ0, f1, f

′
1 : (Π A B)ρ1 we define λ : f0 →α f1 to be a function sending ω : u0 →α u1 to

λ ω : f0 u0 →α,ω f1 u1. We define η(f, f ′) = f ′.
If f, f ′ : (Π A B)ρ0 and α : ρ0 → ρ1, we define (Π A B)α+(f, f ′) = g, g′ : (Π A B)ρ1 in the following

way. First g v = B(α,Aα ↓ v)+(f (Aα−v)) is in B(ρ1, v) if v : Aρ1. If we have v → v′ we have
g v → g v′ which defines g′. To define a proof of f, f ′ →α g, g

′ we take u→ v. We have then a triangle
u→ Aα−v, Aα−v → v, u→ v and we deduce f u→ f (Aα−v) and then f u→ g v.

Given θ = (α01, α12, α02) and λ01 : f0 →α01 f1, λ02 : f0 →α02 f2 we define comp0(θ, λ01, λ02) :
f1 →α12 f2. For this, we take u1 →Aα12 u2. We then have a triangle ν = (ω01, ω12, ω02) with ω01 = Aα01 ↓
u1 : Aα−01u1 → u1, ω12 : u1 → u2, ω02 : Aα−01u1 → u2. Hence we get comp0((θ, ν), λ01 ω01, λ02 ω02) :
f1 u1 → f2 u2.

Appendix 3: Justification of the abstraction rule

The abstraction rule is
Γ.A ` B σ : ∆→ Γ ∆.Aσ ` b : B(σp, q)

∆ ` λb : (Π A B)σ

Given ν : ∆ we have to define (λb)ν in (Π A B)σν. An element of this type is a pair. For the first
element we take the function f u = b(ν, u) : B(σν, u) for u : Aσν. The second element f ′ takes as
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argument u0, u1 : Aσν and a proof ω : u0 →ησν u1 and should produce an element f ′ u0 u1 ω :
b(ν, u0) ;ησν,ω b(ν, u1). Using Γ ` A and the triangle ησν, ησν, σην we build ω′ : u0 →σην u1. Using
∆.Aσ ` b : B(σp, q) we get b(ην, ω′) : b(ν, u0) ;σην,ω′ b(ν, u1) and then using Γ.A ` B and the triangle
(σην, ω′), (ησν, ω), (ησν, ηu1) we get an element in b(ν, u0) ;ησν,ω b(ν, u1) as required.

We need also to define a function sending α : ν0 ; ν1 and ω : u0 ;σα u1 to b(ν0, u0) ;σα,ω (ν1, u1).
We take b(α, ω) : b(ν0, u0) ;σα,ω (ν1, u1).
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