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Introduction

We present a notion of fibration of cubical sets. This is formulated in term of the notion of partial
element, which has a natural semantics in a presheaf model. We define a partial element to be connected
if it can be extended to a total element. (The justification of this terminology is that this would generalize
in the present framework the notion of two points being connected by a path.) To be fibrant can then
be defined internally as the fact that if a partial path is connected at 0 then it also is connected at 1.

Cubical sets

Base category

Let C the following category. The objects are finite sets I,J,.... A morphism Hom(J,I) is a map
I — dM(J) where dM(J) is the free de Morgan algebra on J. We write f : J — I for f € Hom(J,I).
We write 17 : I — I the identity map of I. If f: J — I and g : K — J we write fg : K — I their
composition.

A presheaf X on C can be described as a family of sets X (I) together with restriction maps X (I) —
X(J), ur— uf for f:J — I, satisfying ul; = v and (uf)g = u(fg). (This notation for the restriction
map is motivated by the canonical isomorphism between X(I) and I — X, where I is the presheaf
represented by I.)

The presheaf I is defined by I(J) = dM(J). We can think of an element of dM(I) as a lattice formula
v on atoms 4,1 —i for i in I. If f:J — I, and ¢ is in dM(JI), then the restriction operation ¢ f can be
thought as a substitution: we replace the atom 4 by f(¢) in the formula ).

A sieve on I is a collection L of maps of codomain I such that fg € L whenever f:J — I isin L
and g : K — J. If L is a sieve on I then we let Lf be the sieve on J of all maps g : K — J such that
fgisin L. We define in this way a presheaf 2, taking Q(I) be the set of sieves on I. Each element ¢ in
dM(I) determines the sieve of f : J — I such that ¢ f = 1. This defines a natural transformation I — .

In each dM(I) there is a greatest element < 1, the disjunction of all ¢ and 1 — ¢ for ¢ in I. The sieve
associated to this element is the boundary of I.

A cubical set is a presheaf on C.

Partial elements and connectedness

Q) is internally the set of truth-values. To each element p in Q2 we can associate a subobject [p] of the
constant cubical set 1. A partial element of a cubical set X can be defined as a pair p, u where p is in
and u is a map [p] — X. The element p is called the extent of the partial element p,u. (Alternatively, a
partial element of X can be defined as a subsingleton of X.)

We think of T as a formal representation of the real interval [0, 1]. It has a structure of a de Morgan
algebra. The map I — € can be described internally as the map ¢ — 4 = 1, which associates to an



element 7 the truth-value ¢ = 1. Using the disjunction property of free de Morgan algebra (which results
from the conjunctive normal form representation of formulae), we see that we have

(inj=1)=>G=1)A0G=1) (ivi=1)=>G=1)Vv(E=1)
and the map I — Q, i +— i =1 is an injective lattice map. We identify ¢ with the truth-value ¢ = 1.
Lemma 0.1 If we have ¢ : 1 — I we can define Vi.1 (i) in I such that
(1=Viap(i)) = Vi: L(1 = (i)
Proof. This corresponds to a map dM(I,7) — dM(I) natural in I. We let (Vi.xb(¢))(I) be the disjunction

of the conjunctions not mentionning 7 in the disjunctive normal form of ¢ (z) in dM(, ). 0

If 4 is an element in I and u is a partial element of X of extent i, we write X[t — u] the subset of
X of element in X that extends u. An element of this set is a witness that u is connected.

Fibrations

A family of sets Ap for p in T is a fibration iff we have an operation which takes as argument a path ~
in T, an element v in I, a partial section u(i) of Av(i) of extent ¢, an element in Av(0)[¢) — u(0)], and
produces an element in Ay(1)[¢) — u(1)]. This operation is thus an element of

(v:Th (1) (u: ((0: 1) = Ay(i)¥)) = Av(0)[¢ = w(0)] = Ay(1)[h = u(1)]
Lemma 0.2 If we have a composition operation
comp: (v:T) (¢ : 1) (u: ((i: 1) = Ay(i))) = Av(0)[¢ = w(0)] = Ay(1)[h = u(1)]

then we have a filling operation: given~ in T, in: I, win ((i : I) — A~(i))¥! and ag in Ay(0)[¢ — u(0)],
we can find a section in

(i : 1) = Ay(D)[¢ = u(@), (1 = i) = ao
Proof. We define
fill v ¢ wagi=comp~vy (¥V(1—1))vag

where v is the partial element in ((j : T) — Av(4))*V(=9] which is equal to Aj.u(i A j) on [¢/] and \j.ag
on [i = 0]. This is well-defined since u(i A j) = u(0) = ag on [¢p] N [i = 0]. O

Taking as a special case 0 for 1, we see that if ' H A is a fibration then we have the path lifting
property: we have an operation taking as argument v in I'' and ag in Ay(0) and producing a section
a(i) : Av(9) such that a(0) = ao.

We say that a cubical set A is fibrant if it defines a fibration over the constant cubical set 1. Explicitely,
it means that we have an operation taking as argument an element 1 in I, a partial path u in Al of
extent ¢ and producing a map Ay — u(0)] — Afp — wu(1)]. The previous Lemma shows that we then
have another operation producing an element in

(ag : Altp — w(0)]) = (2 : 1) = Al — u(i), (1 — i) — ag)

Model of type theory

Proposition 0.3 If we have fibrations T+ A and T,z : A+ B then T (z: A) — B is a fibration.

Proof. Let us write C' = (z : A) — B. Given v in T and ¢ in T and g in ((i : T) — C(i))%! and X\g in
Cy(0)[v) — 1(0)], we define Ay : Cy(1)[¢p — w(1)] by taking

A1 ay = comp (Ni.((i), a(i)) ¥ (¢ = p(i) a(i)) (Ao a(0))

where a(i) : Avy(i) satisfying a(1) = a is defined using the path lifting property of I' F A. O



We have a similar definition for the dependent sum I' - (x : A, B).

If ' H A and we have two sections ' - v : Aand I' - v : A then we define I' - Id A u v by taking
(Id A u v)p to be the subset of path p in (Ap)! such that p(0) = up and p(1) = vp.

Proposition 0.4 IfT'+ A is fibrant then soisT'F-1d A u v.

Proof. We suppose given 7 in I'! and pg in (Id A u v)y(0) 1 in I and a partial section (i) in (Id A u v)7(4)
of extent ) such that ¢(0) = pp on . This means that we have ¢(i,j) in Ay(i) and ¢(i,0) = uy(i) and
q(i,1) = vy(i). We define then py in (Id A w v)y(1)[¢ — q(1)] by p1(j) = compy ¥ (Vi V(1-j)) r po(4)
where 7(i) is a partial section in Avy(i) of extent ¢» V j V (1 — j) defined as r(i) = ¢(4,5) on [¢] and
r(i) = uy(¢) on [1 — j] and (i) = vy(i) on [4]. O

Isomorphisms

If T and A are two cubical sets, an isomorphism 7" — A consists in two maps f: T —Aand g: A —T
and two sections s : (z :T) = IdT (g (f z)) zand ¢ : (z : A) = Id A (f (g )) z. So we have a
map s : T x I — T such that s(z,0) = ¢ (f =) and s(x,1) = x and a map ¢t : A x I — A such that
t(z,0) = f (g z) and t(x, 1) = z.

Lemma 0.5 If T and A are fibrant, and we have an isomorphism (f,g,s,t) : T — A then we have an
operation taking as argument v in I and a partial element t in T of extent ¢ and a in Altp — f t] and
producing an element in (x : T,1d A a (f x))[ — (¢, 14)].

Glueing operation

Lemma 0.6 We assume given a section I' - ¢ : T — A where I' - A, T' = T are two fibrations.
Given v in T! and a partial section t(i) € Ty(i) of extent v and to in Ty(0)[¢) — t(0)], we can consider
ag = 07(0) to in Av(0) and the partial section a(i) = oy(i) t(i) of extent 1p. There is a path connecting
a; =comp 4 ¥ ¥ a ag to oy(1) t; wheret; = compp v ¢ t tg in Ty(1). This path is furthermore constant
on the extent 1.

Proof. By filling in T, we find an extension of the partial section ¢ to a total section # such that £(1) = ¢;.
By filling in A, we find an extension of the partial section a to a total section a such that a(l) = as.
Given ¢ we define the partial section u of extent ¢ = 1 V (1 —4) V¢ by taking u(j) = ov(j) #(j) on
v and u(j) = a(j) on i = 0 and u(j) = o(j) #(j) on i = 1. The path joining a; to oy(1) ¢; is then
Ai.compy @ u ag. O

IfTF: 1 ie. we have ¢ : I' — I, we define I',9 to be the subset of elements p in I'" such that
P(p) = 1.

The rules for the glueing operation are

'A T,oFT T,pko:lso(T,A)
'k glue(A, [p — (T, 0))) Ik glue(A,[1 = (T,0)]) =T

We write B = glue(A, [¢ — (T, 0)]) and we explain the composition operation for B.

If p in T any element of Bp can be written uniquely on the form glue(a, [pp — t]) with a in Ap, t a
partial element of T'p of extent wp such that op t = a.

We assume given v in I'', and element by = (ao, [¢7(0) — to]) and a partial section v(i) = (u(i), [¢y(i) —
w(?)]) of extent 1p. We want to define by = (aq, [py(1) — t1]) in By(1)[ — v(1)].

We first consider ag in Ay(0) and (i) in Avy(7) of extent ¢, and such that ag = u(0). Since T' F+ A is
a fibration, we get af in Avy(1), such that a} = u(1) on .

Using Lemma ?? we define § = Vi.py(i) in I. We have § < ¢v(1). On the extent ) A § we can
consider tg in T+(0) and the partial section w(i) in T(7). Since I',p F T is a fibration we define ¢] in



Tv(1) of extent ¢ and such that t{ = w(1) on § A . Using Lemma ?7?, we have a path between o} and
oy(1) t} of extent §. Since Av(1) is fibrant we can then find af in Av(1) such that af = @} on ¢ and
ai = ovy(1) t} on é.

Using the fact that oy(1) is an isomorphism and Lemma ?7?, we can extend ¢} in Ty(1) to an element
t1 of extent ¢y(1) such that t; = w(1) on 4. Using that Av(1) is fibrant, we find a; in Ay(1) such that
oy(1) t1 = a1 on py(1) and and a1 = af = a} on ¢. The element b; = glue(ay, [py(1) — t1]) is in
B~y(1)[% — v(1)] and satisfies by =t} on the extent ¢.



