Grade and Linear Equations

September 25, 2010

Introduction

We present a proof of a result of Sharpe [2], which gives a sufficient condition for a system of linear equations with coefficiens in a commutative ring to have a solution in term of the true grade of Hochster [1]

1 Statement of the result

Let R be a(n arbitrary) commutative ring. We consider $n+1$ column vectors U_{1}, \ldots, U_{n}, V in R^{m} and the linear system

$$
\begin{equation*}
x_{1} U_{1}+\ldots+x_{n} U_{n}=V \tag{1}
\end{equation*}
$$

We let A be the $m \times n$ matrix $U_{1} \ldots U_{n}$ and B be the $m \times(n+1)$ matrix $A V=U_{1} \ldots U_{n} V$. If M is a matrix we write $\Delta_{l}(M)$ the ideal generated by all $l \times l$ minors of M.

Theorem 1.1 If we have $\operatorname{Gr}\left(\Delta_{n}(A)\right) \geqslant 2$ and $\Delta_{n+1}(B)=0$ then the system (1) has exactly one solution.

For $R=\mathbb{Z}$ the system

$$
\begin{aligned}
& 2 x=3 \\
& 4 x=6
\end{aligned}
$$

satisfies the condition $\Delta_{n+1}(B)=0$ but the grade of $\langle 2,4\rangle$ is only 1 .

2 Proof of the statement

Let δ be a $n \times n$ minor of A. Since $\Delta_{n+1}(B)=0$ we can find a solution $\lambda_{1}, \ldots, \lambda_{n}$ of the system (we precise this point in an appendix)

$$
\begin{equation*}
\lambda_{1} U_{1}+\ldots+\lambda_{n} U_{n}=\delta V \tag{2}
\end{equation*}
$$

If δ^{\prime} is another $n \times n$ minor, we have a solution

$$
\lambda_{1}^{\prime} U_{1}+\ldots+\lambda_{n}^{\prime} U_{n}=\delta^{\prime} V
$$

We then have

$$
\delta^{\prime} \lambda_{1} U_{1}+\ldots+\delta^{\prime} \lambda_{n} U_{n}=\delta \lambda_{1}^{\prime} U_{1}+\ldots+\delta \lambda_{n}^{\prime} U_{n}
$$

and hence, for each i

$$
\delta^{\prime} \lambda_{i} U_{1} \wedge \ldots \wedge U_{n}=\delta \lambda_{i}^{\prime} U_{1} \wedge \ldots \wedge U_{n}
$$

and since $\Delta_{n}(A)$ is regular, this implies $\delta^{\prime} \lambda_{i}=\delta \lambda_{i}^{\prime}$.
Since $\Delta_{n}(A)$ is of grade $\geqslant 2$ this implies that there exists an unique x_{i} such that $\lambda_{i}=x_{i} \delta$ for all minors δ and all corresponding solution of the system (2). We then have, for all δ

$$
\delta V=\lambda_{1} U_{1}+\ldots+\lambda_{n} U_{n}=\delta\left(x_{1} U_{1}+\ldots+x_{n} U_{n}\right)
$$

and since $\Delta_{n}(A)$ is regular, this implies

$$
V=x_{1} U_{1}+\ldots+x_{n} U_{n}
$$

We then prove uniqueness of the solution. For this we need only that $\Delta_{n}(A)$ is regular. If we have also

$$
V=y_{1} U_{1}+\ldots+y_{n} U_{n}
$$

we then have

$$
x_{i} U_{1} \wedge \ldots \wedge U_{n}=y_{i} U_{1} \wedge \ldots \wedge U_{n}
$$

for each i, and hence $x_{i}=y_{i}$ since $\Delta_{n}(A)$ is regular. This shows that there exists at most one solution as soon as $\Delta_{n}(A)$ is regular.

3 Appendix: some exterior algebra

We let e_{1}, \ldots, e_{m} be the canonical basis of R^{m}. If X is a column vector of R^{m} we write $X=X^{1} e_{1}+\ldots+X^{n} e_{n}$ and if I is a finite sequence i_{1}, \ldots, i_{k} we write $X(I)=X^{i_{1}} e_{i_{1}}+\ldots+X^{i_{k}} e_{i_{k}}$ and $e_{I}=e_{i_{1}} \wedge \ldots \wedge e_{i_{k}}$. A $n \times n$ minor δ of the matrix A is determined by a strictly increasing sequence $I=i_{1}<\ldots<i_{n}$. We have $\delta e_{I}=U_{1}(I) \wedge \ldots \wedge U_{n}(I)$ and

$$
\lambda_{1}(I) e_{I}=V(I) \wedge U_{2}(I) \wedge \ldots \wedge U_{n}(I) \quad \ldots \quad \lambda_{n}(I) e_{I}=U_{1}(I) \wedge U_{2}(I) \wedge \ldots \wedge V(I)
$$

We want to check that $V^{i}=\lambda_{1}(I) U_{1}^{i}+\ldots+\lambda_{n}(I) U_{n}^{i}$ for all i different from i_{1}, \ldots, i_{n}. For this we use that $\Delta_{n+1}(B)=0$ and hence

$$
(V(i)+V(I)) \wedge\left(U_{1}(i)+U_{1}(I)\right) \wedge \ldots \wedge\left(U_{n}(i)+U_{n}(I)\right)=0
$$

If we develop this equality we get

$$
0=V(i) \wedge U_{1}(I) \wedge \ldots \wedge U_{n}(I)+V(I) \wedge U_{1}(i) \wedge \ldots \wedge U_{n}(I)+\ldots+V(I) \wedge U_{1}(I) \wedge \ldots \wedge U_{n}(i)
$$

which can be rewritten to

$$
\delta V^{i} e_{i, I}-\lambda_{1}(I) U_{1}^{i} e_{i, I}-\ldots-\lambda_{n}(I) U_{n}^{i} e_{i, I}=0
$$

and hence

$$
\delta V^{i}=\lambda_{1}(I) U_{1}^{i}+\ldots+\lambda_{n}(I) U_{n}^{i}
$$

as desired.

References

[1] D.G. Northcott. Finite Free Resolutions. Cambridge Tracts in Mathematics, 1976.
[2] D.W. Sharpe Grade and the Theory of Linear Equations. Linear Algebra and its Applications, Vol. 18, Issue 1, 1977, p. 25-32.

