
Sheaf model of type theory

The set theoretic model of type theory interprets universes à la Russell. The (pre)sheaf models do
not validate these universes. However we can validate a simpler version than universes à la Tarski, and
this is what we present here. We present it in the case of presheaf models, but essentially the same holds
for sheaf models.

1 Syntax

We list the rules of type theory, using a name-free syntax.

Γ `
1 : Γ→ Γ

σ : ∆→ Γ δ : Θ→ ∆

σδ : Θ→ Γ

Γ ` A Typen σ : ∆→ Γ

∆ ` Aσ Typen

Γ ` t : A σ : ∆→ Γ

∆ ` tσ : Aσ

() `
Γ ` Γ ` A Typen

Γ.A `
Γ ` A Typen
p : Γ.A→ Γ

Γ ` A Typen
Γ.A ` q : Ap

σ : ∆→ Γ Γ ` A ∆ ` u : Aσ

(σ, u) : ∆→ Γ.A

Γ ` A Typen Γ.A ` B Typen
Γ ` Π A B Typen

Γ.A ` b : B

Γ ` λb : Π A B

Γ ` w : Π A B Γ ` u : A

Γ ` app(w, u) : B[u]

Γ ` A Typen Γ.A ` B Typen
Γ ` Σ A B Typen

Γ ` u : A Γ ` v : B[u]

Γ ` (u, v) : Σ A B

Γ ` w : Σ A B

Γ ` pw : A

Γ ` w : Σ A B

Γ ` q w : B[pw]

where [u] = (1, u) : Γ→ Γ.A if Γ ` u : A.

1σ = σ = σ1 (σδ)ν = σ(δν)

(σ, u)δ = (σδ, uδ) p(σ, u) = σ q(σ, u) = u

(Aσ)δ = A(σδ) A1 = A (aσ)δ = a(σδ) a1 = a

app(w, u)δ = app(wδ, uδ) app(λb, u) = b[u] (λb)σ = λ(b(σp, q))

u, v)δ = (uδ, vδ) p(u, v) = u q(u, v) = v (pu)σ = p(uσ) (qu)σ = q(uσ)

1 = (p, q) v = λapp(vp, q)

We add the following rules for universes.

Γ ` A Typen
Γ ` |A| : Un

Γ ` T : Un
Γ ` El T Typen

Γ ` A Typen
Γ ` A Typen+1

Γ ` T : Un
Γ ` T : Un+1

Γ ` Un Typen+1

El |A| = A |El T | = T

With this presentation, we can define π T V = |Π (El T ) (El V )| if Γ ` T : Un and Γ.El T ` V : Un.
This satisfies El (π T V ) = Π (El T ) (El V ).
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2 Presheaf model

If C is any small category, the presheaf model of type theory over C can be described as follows.
To simplify the presentation, we don’t consider the question of size.
We write X,Y, Z, . . . the objects of C and f, g, h, . . . the maps of C. If f : X → Y and g : Y → Z we

write gf the composition of f and g. We write 1X : X → X or simply 1 : X → X the identity map of
X. Thus we have (fg)h = f(gh) and 1f = f1 = f .

A context is interpreted by a presheaf Γ: for any object X of C we have a set Γ(X) and if f : Y → X
we have a map ρ 7−→ ρf, Γ(X) → Γ(Y ). This should satisfy ρ1 = ρ and (ρf)g = ρ(fg) for f : Y → X
and g : Z → Y .

A type Γ ` A over Γ is given by a set Aρ for each ρ : Γ(X). Furthermore if f : Y → X we have
ρf : Γ(Y ) and we can consider the set Aρf . We should have a map u 7−→ uf, Aρ→ Aρf which should
satisfy u1 = u and (uf)g = u(fg).

An element Γ ` a : A is interpreted by a family aρ : Aρ such that (aρ)f = a(ρf) for any ρ : Γ(X)
and f : Y → X.

This can be seen as a concrete description of what is respectively a fibration and a section of this
fibration.

If Γ ` A we can define a new presheaf Γ.A by taking (ρ, u) : (Γ.A)(X) to mean ρ : Γ(X) and u : Aρ.
We define (ρ, u)f = ρf, uf.

If we have a map σ : ∆→ Γ and Γ ` A we define ∆ ` Aσ by (Aσ)ρ = A(σρ).
If Γ ` A and ρ : Γ(X) we define |A|ρ to be the family (Aρf, f : Y → X) with restriction map

Aρf → Aρfg, u 7−→ ug for g : Z → Y .
We define U(X) as the set of families of sets Pf, f : Y → X together with restriction maps

Pf → Pfg, u 7−→ ug satisfying u1 = u and (ug)h = u(gh). We define then Γ ` U by taking Uρ = U(X)
if ρ : Γ(X).

If we have Γ ` T : U we define Γ ` El T by the equation (El T )ρ = Tρ1X for ρ : Γ(X).
We validate then |El T | = T and El |A| = A.
If Γ ` A we have (El |A|)ρ = |A|ρ1X and |A|ρ is the family Aρf, f :→ X, so that |A|ρ1X = Aρ1X =

Aρ. The restriction map u 7−→ uf, (El |A|)ρ→ (El |A|)ρf is the restriction map defined by Aρ→ Aρf .
If Γ ` T : U the family (El T )ρf, f : Y → X is defined by T (ρf)1Y = Tρf , and so |El T | = T .
We can interpret dependent products Γ ` Π A B and sums Γ ` Σ A B if we have Γ ` A and Γ.A ` B.

For ρ : Γ(X) we define (u, v) : (Σ A B)ρ to mean u : Aρ and v : B(ρ, u). We define (u, v)f = uf, vf for
f : Y → X. On the other hand an element of (Π A B)ρ is a family w indexed by h : Y → X with

wh :
∏
u:Aρh

B(ρh, u)

and such that app(wh, u)g = app(whg, ug) if h : Y → X and g : Z → Y . We define then (wh)f = w(hf).
We write w = w1.

We can interpret Γ ` λt : Π A B whenever Γ.A ` t : B and Γ ` app(v, u) : B[u] if Γ ` u : A and
Γ ` v : Π A B. Here we write [u] the map Γ→ Γ.A defined by [u]ρ = ρ, uρ. If ρ : Γ(X) and f : Y → X
we define app((λt)ρf, a) = t(ρf, a) : B(ρf, a) for a : Aρf . We take app(v, u)ρ = app(vρ, uρ) : B(ρ, uρ).
We can then check that we have

app(λt, u)ρ = t(ρ, uρ) = t[u]ρ : B(ρ, uρ)

if Γ.A ` t : B and Γ ` u : A and ρ : Γ(X), which shows that the model validates the conversion rule
Γ ` app(λt, u) = t[u] : B[u].

3 Sheaf model

The previous definitions extend in the case of sheaf models over a site. We shall consider only the case
of disjoint covering f0 : X0 → X, f1 : X1 → X and in this case the sheaf condition is that the map
Γ(X)→ Γ(X0)× Γ(X1), x 7−→ (xf0, xf1) is an isomorphism.

We shall consider two examples.
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3.1 Sheaf model over Cantor spaces

The category C is a poset. The objects X,Y, Z, . . . are basic open of Cantor space. We represent them
as finite amount of informations

ω(k0) = b0, . . . , ω(kp−1) = bp−1

about a generic function ω : N → N2. If k is not in the domain of X then a basic covering of X is given
by X,ω(k) = 0 and X,ω(k) = 1. We can then define inductively what is a partition X � P of X

1. X �X

2. X � P0, P1 whenever X,ω(k) = 0 � P0 and X,ω(k) = 1 � P1

An element of N(X) is a formal sum u0X0 + . . . + un−1Xn−1 if u0, . . . , un−1 are numeral and X �

X0, . . . , Xn−1. Similarly an element of N2(X) is a formal sum u0X0 + . . .+un−1Xn−1 if u0, . . . , un−1 are
Booelan and X �X0, . . . , Xn−1. We require uX = uX0 + . . . + uXn−1. This defines the interpretation
of N and N2 as sheaves over Cantor space.

We define a natural transformation ω : N → N2 by taking

ω(u0X0 + . . .+ un−1Xn−1) = ω(u0X0) + . . .+ ω(un−1Xn−1)

and ω(uX) = bX if u is in the domain of X and ω(u) = b is in X and

ω(uX) = 0X(ω(u) = 0) + 1X(ω(u) = 1)

otherwise.

One suggestive way to describe this model is that we have added to type theory one generic infinite
binary sequence ω, and each stage X describes the value about some finite amount of information about
this generic sequence. At any stage of knowledge, we can require the information about a new value ω(k)
and we should get this information in a finite amount of time.

We define in type theory with universes T : N2 → U0 by T 0 = |N0| and T 1 = |N1| where N0 is the
empty type and N1 the unit type, and N2 the type with two elements 0, 1. We define ¬A = A→ N0.

Theorem 3.1 The following statement expressing Markov’s principle

Πp : N → N2.(¬¬Σn : N.El (T (p n)))→ Σn : N.El (T (p n))

is not provable in dependent type theory with universes.

Proof. We show that this statement is not valid in the sheaf model over Cantor space. We are going to
analyse the type

S = Σn : N.El (T (ω n))

We have that S(X) is inhabited as soon as we have k in the domain of X and ω(k) = 1 in X for then
(kX, 0) is an element of S(X). On the other hand S() is empty since if X0, . . . , Xn−1 is a partition of ()
then there is always one Xi of the form ω(k0) = 0, . . . , ω(kp−1) = 0. For any X we can choose k not in
the domain of X and we have

X,ω(k) = 1 6 X

It follows from this that ¬S = S → N0 is empty at all stages X and so that ¬¬S is a singleton at all
stages. Since S() is empty, it follows that (¬¬S → S)() is empty and so

Πp : N → N2.(¬¬Σn : N.El (T (p n)))→ Σn : N.El (T (p n))

has no global element.
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3.2 Interpretation of the fan functional

The category C has for objects basic open subset of finite power of Cantor space. The maps are uniformely
continuous maps. The covering are finite partition in disjoint clopen subsets. In this model, we define
N(X) to be the uniformely continuous map from X to N , and similarly N2(X) is the set of uniformely
continuous maps from X to N2.

One intuitive description of this model is the following. Each stage of knowledge X represents the
values of initial segment of finitely many generic sequences ω0, . . . , ωm−1. At any stage of knowledge, we
can choose some of the sequence, and require to know what is its value at a choosen element, information
we should obtain in a finite amount of time. It may also happen that we discover that these sequences
can actually be obtained as continuous functions of other sequences, for which we know some finite initial
segment, which is represent by a new stage of knowledge Y and a continuous function f : Y → X. But,
contrary to the change of information that is specified by the covering, this change of information is not
bound to happen in a finite amount of time (cf. Kripke’s discussion of the difference between his notion
of model and Beth’s notion of model). This explains in what sense this model can be seen as a refinement
of the previous model of sheaves over Cantor space.

In this model, we have a direct description of a sheaf for representing the space N → N2 by defining
C(X) to be the set of all uniformly continuous functions X → C where C is the Cantor space.

Lemma 3.2 The sheaf C(X) represents (N → N2)(X).

Proof. We build a natural isomorphism between the functors C(X) and (N → N2)(X). In one direction,
if we have an element ϕ : X → C then we can define a family ϕf : N(Y ) → N2(Y ) for f : Y → X by
taking ϕfα = λy.ϕ(f(y))(α(y)). In the other direction, if we have a family ϕf : N(Y )→ N2(Y ) satisfying
(ϕfα)g = ϕfg(αg) for g : Z → Y then we can define ϕ : X → C by taking ϕ(x, n) = ϕ1(λy.n)(x). These
two functions define a natural isomorphism between the functors C(X) and (N → N2)(X).

We use α, β, γ, . . . to range over elements of type C and n,m, . . . to range over elements of N .

We define a function (6) : N → N → U by

0 6 m = |N1| S(n) 6 0 = |N0| S(n) 6 S(m) = n 6 m

We define an element

FT : (Πα : C.Σn : N.ϕ(α, n))→ ΣM : N.Πα : C.Σn : N.ϕ(α, n)× El (n 6M)

For this we assume to have
h : Πα : C.Σn : N.ϕ(α, n)

at some stage of knowledge X. This means that if g : Z → X and α is in C(Z) then h(g, α) is a pair n, u
where n is in N(Z) and u is an element of ϕ(α, n). We can then consider p : X×C → X and q : C(X×C)
and h(p, q) = (n, u) : Σn.ϕ(q, n) with n in N(X ×C). This gives a finite partition U0, . . . , Ul−1 of X ×C
with a finite number of associated values n0, . . . , nl−1. We define then M to be the maximum value
of n0, . . . , nl−1. If we have f : Y → X and α : C(Y ) we can then consider (f, α) : Y → X × C and
n(f, α) is an element of N(Y ) and u(f, α) is a proof of ϕ(α, n(f, α)). Furthermore the function n(f, α)
is always less then the constant function M on Y . So the definition of FT is FT (h) = (M,h′) where
M is the maximum values of n0, . . . , nl−1 obtained by computing h(p, q) and h′(f, α) = (n, 0, u) where
(n, u) = h(f, α).
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