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Introduction

As stressed by H. Edwards [6, 7], Kronecker’s approach to the resolution of equation [8] differs from the
one of Galois. Inspired by Abel’s work [3], he stated the problem, of finding all polynomials that are
solved by radicals, while Galois aims at characterizing which polynomials are solved by radicals. Kronecker
1953 paper [8], well-known for containing the statement of Kronecker-Weber’s Theorem, emphasizes this
difference. Following Abel, Kronecker sketches a possible solution for irreducible equations of prime
degree. The main ideas of this solution seem to be already present in Abel’s work [3]1.

Surprisingly, given the importance of Kronecker’s problem, few works address this question of finding
all solvable polynomials. Possible references are the works of Abel [3], corrected by Sylow, and its modern
account by G̊arding and Skau [5], or its more traditional account by Netto [10] or the thesis of Sørensen
[11]. But all these works assume (sometimes only in an implicit way) that the base fields contain all
roots of unity. This is not satisfactory if one wants to describe for instance all solvable equations over the
field of rationals. Only H. Edwards’ work [6, 7] and Sylow’s presentation of Abel’s paper [3] are careful
about this point and presents a general solution in the case of irreducible equation of prime degree over
a general base field.

The goal of this paper is to present an elementary solution of Kronecker’s problem, which refines
in some sense Edwards’ solution, and follows very closely Abel’s arguments [3]. Following [6] (and
Kronecker) we work only with “algebraic field”, so that we can always explicitely find a decomposition
of a polynomial in irreducible factors over these fields.

1 Solvable polynomials

Let k be a field of characteristic 0 and P a polynomial in k[X]. We say that P is solvable iff there exists
a sequence of radical extensions k1 = k[u1], k2 = k[u1, u2], . . . , kn = k[u1, . . . , un] such that P has a
root in kn. A radical extension of a field k is of the form k[u] = k[X]/〈Xp − v〉 where p is prime and v
an element in k which is not a pth power in k.

Lemma 1.1 If v in k is not a pth power in k then the polynomial Xp − v is irreducible.

Proof. Abel [3] proved this result assuming that k contains a primitive pth root of unity. We follow the
proof in [10]: if f is a monic polynomial of degree l which divides Xp − v then all roots u of f satisfy
up = v and so f(0)p, which is (−1)l times the product of all up, is equal to (−1)lvl. If l < p then l and
p are coprime and this implies that v is in kp.

Using this lemma, we see that k[X]/〈Xp − v〉 is indeed a field extension of k.

2 Analysis of solvable equations of prime degree

Let p be a prime number.
The goal is to generate all irreducible solvable polynomials P in k[X] of degree p. In this section we

analyse this goal starting from the following result, that we shall prove in the next section using more

1As suggested in [5], it seems that Kronecker knew about Abel’s work only through Malmstem [9] presentation.
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or less exactly Abel’s arguments [3]. We start by taking an irreducible factor of Xp−1 + . . .+X + 1 and
consider K the extension of k with a root of this factor. We have K = k[α] with αp = 1 a primitive pth
root of unity, but we can have K = k if k contains already a primitive pth root of unity α.

Theorem 2.1 If P is solvable it is possible to build the splitting field Ω = K[x0, . . . , xp−1] of P in such
a way that if we define

u =
1

p
(x0 + α−1x1 + . . .+ α−(p−1)xp−1)

and v = up, we have Ω = K[u]. Furthermore, we can find q0 in k and q2, . . . , qp−1 in k[v] such that

xi = q0 + αiu+ q2α
2iu2 + . . .+ qp−1α

(p−1)iup−1

for i = 0, . . . , p− 1 and the element u is not in K[v].

As we are going to see, it is possible to deduce from this by elementary arguments the structure of
solvable irreducible polynomials of degree p. We don’t use any Galois theory, though the argument can
be seen as a motivation of Galois theory. On the other hand, we use the structure of cyclic extensions
as analysed by Abel [2].

Abel’s key idea [3] consists in looking at the possible “conjugates” of u over k, or, what amounts to
the same, the possible morphism k[u]→ Ω and expressing that when we change u by one of its conjugate
in the expression

x0 = q0 + u+ q2u
2 + . . .+ qp−1u

p−1

then x0 has to become another root xi of the polynomial P .

2.1 First analysis

Before analysing the conjugates of u we notice that, since Ω = K[x0, . . . , xp−1] = K[u] and K = k[α]
the degree of the extension Ω/k is of the form pm where m is a product of numbers < p and hence p
does not divide m. Since u is of degree p over K[v], it follows from this that the degree of v over k is
not divisible by p. Since Ω = K[x0, . . . , xp−1] = K[u] the element u is a root of a polynomial in k[X]
that is linearly factored in Ω. To give a morphism ϕ : k[u] → Ω is the same as to give a conjugate of u
in Ω that is a root of the minimal polynomial of u over k. The number of such morphisms is thus equal
to the degree of u over k.

We now look at a morphism ϕ : k[u]→ Ω. Following Abel, we write u′ = ϕ(u), v′ = ϕ(v) = u′p. The
degree of v′ over k is the same as the one of v and hence is not divisible by p. It follows that we have v′

in K[v], otherwise we would have K[v, v′] = k[α, v, v′] = Ω, which is not possible since the degree of Ω
over k is divisible by p. So we have ϕ(v) in K[v]. Since u′ is in Ω = K[u] we can write

u′ = c0 + c1u+ . . .+ cp−1u
p−1

with c0, . . . , cp−1 in K[v]. Since v′ is in K[v] and u is of degree p over K[v] the equation Xp = v′ has for
solutions

c0 + c1α
ju+ . . .+ cp−1α

j(p−1)up−1

and since αu′ is also a solution of this equation, we should have an equality of the form

αu′ = c0 + c1α
ju+ . . .+ cp−1α

j(p−1)up−1

and so
αc0 + c1αu+ . . .+ cp−1αu

p−1 = c0 + c1α
ju+ . . .+ cp−1α

j(p−1)up−1

It follows that ci = 0 if i 6= l and u′ is necessarily of the form clu
l where l is such that jl = 1 mod. p.

Since we have P (x0) = 0 where

x0 = q0 + u+ q2(v)u2 + . . .+ qp−1(v)up−1

it follows that
q0 + u′ + q2(v′)u′2 + . . .+ qp−1(v′)u′p−1
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is also a root of P and so we have for some k

q0 + u′ + q2(v′)u′2 + . . .+ qp−1(v′)u′p−1 = q0 + αku+ q2(v)α2ku2 + . . .+ qp−1(v)αk(p−1)up−1

and since K[v′] = K[v] and u′ = clu
l it follows that we have cl = ql(v)αkl.

In conclusion, the conjugates of u are necessarily of the form ql(v)ulαj . A special case is when j = 0
in which case ϕ(u) is in k[u] and ϕ can be thought as an automorphism of k[u]2.

Since u is of degree p over K[v] and up = v, we can define T : Ω→ Ω by T (u) = αu. For getting all
possible morphisms k[u] → Ω, it is then enough to look at the automorphisms of k[u] and to compose
with a power of T .

An automorphism ϕi : k[u] → k[u] is completely determined by i such that ϕi(u) = qi(v)ui. We
have ϕi ◦ ϕj = ϕij and so the group of such automorphisms can be identified with a subgroup of the
multiplicative group (Z/pZ)× of the nonzero elements mod. p. Let g be a primitive root modulo p and
choose k = gl mod. p which generates this group. We write lν = p−1. The corresponding automorphism
satisfies

θ(u) = qk(v)uk

We have then
θ2(u) = qk2(v)uk2 , θ3(u) = qk3(v)uk3 , . . .

with kn = kn mod. p. The conjugates of u in Ω are then exactly the elements

uαi, θ(u)αi, . . . , θν−1(u)αi

and hence u is of degree pν over k. It follows that the minimal polynomial of u over k is of the form

(Xp − v) . . . (Xp − θν−1(v))

and hence the polynomial (Y − v) . . . (Y − θν−1(v)) is irreducible in k[Y ]. Hence v is of degree ν over k
and furthermore, v is the root of a cyclic polynomial of degree ν over k.

We obtain in this way one result of Galois which characterizes the group of automorphisms of Ω =
K[u] = K[x0, . . . , xp−1] as a subgroup of the affine maps of Z/pZ. But Abel and Kronecker’s analysis
goes further and give a complete characterization of the form of the roots of a solvable polymomial.

2.2 Galois group

There are several Galois group involved. First K[u] is a normal extension of K and the Galois group
is of order pν. The extension k[u] is in general not a normal extension of k (if k does not contain a
primitive pth root of unity). However the extension k[v] is a normal extension of k with a cyclic group
of order ν. There is also the extension k[x0, . . . , xp−1] of k, whose Galois group is of order pν3. Finally
K[u] = k[α, u] is also a normal extension of k and its Galois group is analysed in the work [7].

2.3 A refinement and a complete characterisation

Let us write (i) for gil. We can write θ(u) = hu(1) and h in k[v] has for conjugates h = h0, h1, . . . , hν−1.
We then have

θ2(u) = θ(h)(θ(u))(1) = h1h
(1)
0 u(2)

and more generally

θ(u) = hu(1), θ2(u) = h1h
(1)
0 u(2), . . . , θν(u) = u = hν−1h

(1)
ν−2 . . . h

(ν−1)
0 u(ν)

2This is equivalent to ϕ(x0) = x0, in which case ϕ permutes the elements of the sum

x0 = q0 + u+ q2(v)u2 + . . .+ qp−1(v)up−1

3It follows that P has the same Galois group over the fields k and K. In general however the Galois group of P may
change if we add to k roots of unity. This means that we cannot assume, like in the works [3, 10, 5], that the base fields
contain all roots of unity.
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We can choose g such that (ν)− 1 = np and n is not divisible by p: if gp−1− 1 is divisible by p2, then
(g + p)p−1 − 1 is not divisible by p2 and we can change g to g + p. We have

1 = hν−1h
(1)
ν−2 . . . h

(ν−1)
0 vn

and we can then find t and s such that nt+ 1 = ps, so that

v = (vs)pr
(0)
ν−1r

(1)
ν−2 . . . r

(ν−1)
0

with r = ht0. The elements r = r0, r1, . . . , rν−1 have to be pairwise distinct since v is not of pth
power in K[v]4. It follows5 that we have k[r0] = k[v] and so we can write vs = ψ(r). Also the element
w = u/ψ(r) satisfies

wp = r
(0)
ν−1r

(1)
ν−2 . . . r

(ν−1)
0

We have
v = ψ(r0)p r

(0)
ν−1r

(1)
ν−2 . . . r

(ν−1)
0 . . . vν−1 = ψ(rν−1)p r

(0)
ν−2r

(1)
ν−3 . . . r

(ν−1)
ν−1

3 Summary of the analysis

In order to build the roots of a solvable irreducible polynomial of prime degree p over a field k, we take
a divisor ν of p − 1 and a cyclic polynomial of degree ν over k with roots r = r0, r1, . . . , rν−1. We
write p− 1 = lν. We choose a primitive root g mod. p. We consider the elements, where (i) denotes gli

s = r
(ν−1)
0 r

(ν−2)
1 . . . r

(0)
ν−1 s1 = r

(ν−1)
1 r

(ν−2)
2 . . . r

(ν−1)
0 . . . sν−1 = r

(ν−1)
ν−1 r

(ν−2)
0 . . . r

(ν−1)
ν−2

We assume that the element s is not a pth power in k[r] and we introduce wp = s with w of degree p
over k[r]. We write (ν)− 1 = np and we define w1 = w(1)/rn0 so that wp1 = s1 and

w2 = w
(1)
1 /rn1 = w(2)/r

n(1)
0 rn1 , w3 = w

(1)
2 /rn2 = w(3)/r

n(2)
0 r

n(1)
1 rn2 , . . .

and we have
w

(1)
ν−1/r

n
ν−1 = wwnp/sn = w

The elements w, w1, . . . , wν−1 are linearly independent over k[α, r] since s is not a pth power in
k[r], and hence also in k[α, r] using Lemma 5.1, by hypothesis. It follows from this that the elements
s, s1, . . . , sν−1 are pairwise distinct: if s = s1 for instance we have w of the form αkw1 which is
impossible. Hence s is of degree ν over k.

The element

x0 = q0 +

ν−1∑
i=0

ψ0(ri)wi +

ν−1∑
i=0

ψ1(ri)w
g
i + . . .+

ν−1∑
i=0

ψl−1(ri)w
gl−1

i

have exactly p conjugates (provided we have ψj(r) 6= 0 for some j).
Furthermore, any solvable polynomial of degree p can be obtained in this way.
Notice that we don’t require that n is not divisible by p.
We can deduce directly from this form of the roots the main results of [7]. In particular notice that

if we build in this way two elements x and y of degree p over k then these two elements are fixed by
exactly the same automorphisms of Ω/k, namely the automorphisms that satisfy ϕ(w1) = w1+l for some
fixed l (and then ϕ(wi) = wi+l for all i). It follows that we have k[x] = k[y].

4This fact is best understood in the examples below. For instance for p = 5 and we have ν = 4 and we consider r83r
4
2r

2
1r0,

if we have r0 = r1 = r2 = r3 then this becomes r150 and if r0 = r2 and r1 = r3 this becomes r50r
10
1 .

5This is a consequence of Abel’s analysis of cyclic equations. Any element t in k[v] having ν distinct conjugates is such
that k[t] = k[v]. Netto does not observe that we must have k[v] = k[r] but states this as an extra hypothesis. On the
contrary, Sylow in his analysis of Abel’s paper [3], states that it is easy to see, “on voit facilement”, that r is of degree ν
over k.
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4 Example: solvable equations of degree 5

4.1 Case ν = 1

We take an arbitrary v in k which is not a 5th power and the general form of the root is

q0 + u+ ψ1u
2 + ψ2u

4 + ψ3u
3

with q0 in k, and ψ1, ψ2, ψ3 in k and u5 = v.

4.2 Case ν = 2

We take a cyclic polynomial of degree 2 and root r, r1 such that r4r1 is not a 5th power in k[r].
k[r] = k[r1] has an automorphism θ such that θ(r) = r1 and θ(r1) = r. Then if we consider the radical
extension w5 = r4r1 of k[r] and w1 = w4/r3, so that w5

1 = r41r = θ(w5). For any polynomials ψ0 and ψ1

such that ψ0(r) 6= 0 or ψ1(r) 6= 0 the element

x0 = q0 + ψ0(r)w + ψ0(r1)w1 + ψ1(r)w2 + ψ1(r1)w2
1

has exactly 5 conjugates in k[α,w] with α5 = 1. Indeed the element w has 10 conjugates of the form αiw
and αiw1. If w is sent to αiw then w5 = r4r1 is not modified, so that r is sent to r and w1 = w4/r3 is
sent to α4iw1 and x0 is sent to

xi = q0 + ψ0(r)αiw + ψ0(r1)α4iw1 + ψ1(r)α2iw2 + ψ1(r1)α3iw2
1

If w is sent to αiw1 then r is sent to r1 and x0 is sent to

x4i = q0 + ψ0(r1)αiw1 + ψ0(r)α4iw + ψ1(r1)α2iw2
1 + ψ1(r)α3iw2

We see in this way that the conjugates of x0 over k are exactly x0, x1, x2, x3, x4.

4.3 Case ν = 4

We take a cyclic polynomial of degree 4 and root r, r1, r2, r3 such that r8r41r
2
2r3 is not a 5th power

in k[r]. We have an automorphism θ of k[r] with θ(ri) = ri+1. We consider the radical extension
w5 = r8r41r

2
2r3 and

w1 = w2/r3, w2 = w4/r6r31, w3 = w8/r12r61r
3
2

and wi+5 = wi so that θ(w5
i ) = w5

i+1. Then for any ψ(r) 6= 0 the element

x0 = q0 + ψ(r)w + ψ(r1)w1 + ψ(r2)w2 + ψ(r3)w3

is of degree 5 over k. Indeed w has 20 conjugates of the form αlwi. if w is sent to one wi then x0 is not
changed, and if w is changed to αkiwi then x0 is sent to xk.

There is in the reference [12] an analysis of the form of the general cyclic equation of degree 4.
Notice that, in his letter to Crelle where Abel gives the general form of solvable equations of degree

5, Abel seems to limit himself to the case ν = 4. (It seems to be an open problem to know if the formula
given by Abel in his letter to Crelle covers actually all possible cases or not.) Similarly, Kronecker, in
his 1853 note (where he announced what is now known as the Kronecker-Weber theorem), seems to limit
himself to the case where ν = p − 1. This restriction is reproduced in [12]. On the other hand, Abel’s
work [3] considers all possible cases.

5 Abel’s Analysis

The rest of the paper consists in a proof of Theorem 2.1, following closely Abel [3].
Notice first that if P is solvable in k it is solvable in any extension L of k. Indeed given the sequence

of radical extensions k1, . . . , kn of k it is direct to build a corresponding sequence L1, . . . , Ln with a
morphism ki → Li and where Li+1 = Li or Li+1 a radical extension of Li. If P has a root in kn it has
then a root in Ln.

We assume that P is an irreducible solvable polynomial of degree p over k. We show first that this
implies that P is also irreducible over K = k[α].
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Lemma 5.1 P is irreducible over K.

Proof. Let α1, . . . , αl be the conjugates of α over k. We have l < p. Let Q(X,α) be an irreducible factor
of P in K[X]. Then each Q(X,αi) divides P . Since any root of R(X) = Q(X,α1) . . . Q(X,αl) is a root
of P and P is irreducible, R is a power Pm of P . If d is the degree of Q this implies pm = dl, and since
p is prime and l < p, we have p = d.

If we assume that P is solvable over k it is also solvable over K and we have a sequence, that we
can assume minimal, of radical extensions K1 = K[u1], K2 = K[u1, u2], . . . ,Kn = K[u1, . . . , un] where
Kn contains a root x0 of the polynomial P and we have upii in Ki−1 for some prime pi and the equation
Xpi = upii has no solution, and hence is irreducible over Ki−1. We write u = un. We can write

x0 = q0 + q1u+ . . .+ qpn−1u
pn−1

with q0, . . . , qpn−1 in Kn−1. A simple argument6, which is already in [1], shows that we can assume
q1 = 1.

The element x0 is of degree pn over Kn−1. Hence its degree over K is divisible by pn. On the other
hand, this degree is p since P is irreducible. Since p is prime we have p = pn and we see that Kn contains
all the roots of P that are the conjugates of x0

xl = q0 + αlu+ q2α
2lu2 + . . .+ qp−1α

(p−1)lup−1

for l = 0, . . . , p− 1.
We have then

u =
1

p
(x0 + α−1x1 + . . .+ α−(p−1)xp−1)

The element u is in K[x0, . . . , xp−1]. It is called that (Lagrange) resolvent of the equation P (x) = 0.
We see that Abel’s analysis explains where this resolvent comes from.

We follow now Abel in showing that x0, . . . , xp−1 are in K[u], so that K[u] = K[x0, . . . , xp−1] and x0
is in k[u]. This will be a consequence of the fact that u is distinct from all elements

uσ =
1

p

p−1∑
l=0

α−lxσ(l)

where σ ∈ Sp is a non trivial permutation of 0, . . . , p− 1.
The polynomial

Q(X) =
∏
σ∈Sp

(X − uσ)

is in k[X], since it is symmetric in the xi and invariant by the change of α to αj , and such that Q(u) = 0.
If R = Q/(X − u) we have R in k[u][X]. We claim that R(u) 6= 0.

Lemma 5.2 If uσ = u then σ(l) = l for all l.

Proof. (Abel) Assume uσ = u. This can be written as

u =
1

p

p−1∑
l=0

α−lxσ(l) =
1

p

p−1∑
l=0

α−l(q0 + ασ(l)u+ q2α
2σ(l)u2 + . . .+ qp−1α

(p−1)σ(l)up−1)

with q0, q2, . . . , qp−1 in Kn−1 and hence, comparing the coefficient of u in both side of this equality

1 =
1

p

p−1∑
l=0

α−lασ(l)

or

p =

p−1∑
l=0

α−lασ(l)

This equality is only possible if σ(l) = l for all l.

6Since the sequence is minimal, at least one ql, l > 0 is 6= 0. We have then Kn−1[qlu
l] = Kn−1[u] and if we replace u

by qlu
l we see that x0 gets the required form.
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The element
R(u)xl =

∑
σ∈Sp

R(uσ)xσ(l)

is in K, since it is symmetric in x0, . . . , xp−1. Furthermore, the element R(u)x0 is in k, since it is also
invariant when we change α to αi.

We get in this way a proof of Theorem 2.1.
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