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Types as Kan Simplical Sets

Types as Homotopy Types

1980s various models of dependent types as domains

1993 Hofmann-Streicher model of types as groupoids (at first motivated by
an independence result in type theory)

2006 S. Awodey, M. Warren Quillen model structures and equality types

2006 Streicher types as Kan simplicial sets
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Types as Kan Simplical Sets

Types as Homotopy Types

2006 Voevodsky “A very short note on homotopy lambda-calculus”

2006 Voevodsky “Foundation of Mathematics and Homotopy Theory”, talk
at IAS

2009 Voevodsky model of the univalence axiom, stratification of types with
homotopy levels and how to organize mathematical libraries in type theory
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Types as Kan Simplical Sets

Types as Homotopy Types

Given the groupoid model, it was quite natural to try to model types as weak
ω-groupoids

However even the definition of weak ω-groupoid is complicated (coherence
conditions)

Instead it is much simpler to interpret types as Kan simplicial sets (and this is
a natural refinement of the setoid interpretation)

However as we shall see, the fact that this forms a model of type theory uses
in an essential way classical logic (even before checking the univalence axiom)
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Types as Kan Simplical Sets

Types as Homotopy Types

Goals of this talk

(0) the relation bewteen simplical sets model and logical relations

(1) to explain the constructivity issues with the Kan simplicial set model

(2) to provide a model of types as Kan simplical set in a constructive framework

We analyze only the case of dimension 6 1 but in a way which hopefully
generalizes to higher dimensions

4



Types as Kan Simplical Sets

Set-Theoretic versus Combinatorial Topology

Forgotten distinction; quite important however in 1910-20

Combinatorial topology, constructive, versus

Set theoretic, non constructive

Representation of a space as a set of points, often uncountable

Brouwer was one of main investigator, even considered as the founder, of
combinatorial topology

Cf. J.P. Dubucs L.E.J. Brouwer: topologie et constructivisme
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Types as Kan Simplical Sets

Simplicial Maps and Logical Relations

Surface represented by

(0) a (finite) set of points X

(1) a (finite) set of lines X(1) and

(2) a (finite) set of triangles X(2)

In Set Theory, this becomes an uncountable set
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Types as Kan Simplical Sets

Simplicial Maps and Logical Relations

Each line α has a source d0 α and a target d1 α

Each triangle θ has three faces d0 θ, d1 θ, d2 θ

Definitions get simpler by allowing degenerated lines η0 a and degenerated
triangles η0 α, η1 α
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Types as Kan Simplical Sets

Simplicial Maps and Logical Relations

If we have two surfaces X,X(1), X(2) and Y, Y (1), Y (2) one can represent in
a purely combinatorial way a continuous function as a map f : X → Y together
with f (1) : X(1) → Y (1) and f (2) : X(2) → Y (2) such that

f (1) (η0 a) = η0 (f a), di (f (1) α) = f (di α)

f (2) (ηi α) = ηi (f (1) α), di (f (2) θ) = f (1) (di θ)
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Types as Kan Simplical Sets

Simplicial Maps and Logical Relations

If we look only at the dimension 6 1 and we consider X(1) (resp. Y (1)) as
defining a relation R on X (resp. S on Y ) we see that this is a refinement of the
notion of functions f : X → Y preserving relations

∀x0 x1 : X R x0 x1 → S (f x0) (f x1)

The refinement is in asking f (1) (η0 a) = η0 (f a)

Thus we can think the model of types as simplicial sets as a refinement and
extension of the logical relation model of type theory
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Types as Kan Simplical Sets

Simplicial Maps and Logical Relations

If R is reflexive and S is an equivalence relation then the relation T f0 f1

∀x0 x1 : X R x0 x1 → S (f0 x0) (f1 x1)

is an equivalence relation

This corresponds to the result that Y X satisfies the Kan property whenever
Y does
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Types as Kan Simplical Sets

Simplicial Maps and Logical Relations

There are two natural distinct proofs of transitivity: give T f g and T g h
and R a c for proving S (f a) (h c) we can

1. either use S (f a) (g a) and S (g a) (h c)

2. or use S (f a) (g c) and S (g c) (h c)

to conclude S (f a) (h c)

Which proofs should we choose? We present a possible analysis of this
question later
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Types as Kan Simplical Sets

Simplicial sets

In this talk we concentrate on dimension 6 1

The Kan condition in this case corresponds to symmetry and transitivity

The model we describe can be seen as a refinement of the setoid model of
type theory

Hopefully the same structure extends to all dimensions
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Types as Kan Simplical Sets

Types as Simplicial sets

Γ ` Γ ` A Γ ` a : A

A context should be interpreted as a Kan simplicial set

A type Γ ` A should be interpreted as a (Kan) fibration

An element Γ ` a : A should be interpreted as a section of this fibration
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Types as Kan Simplical Sets

Types as Simplicial sets

If σ : Γ then Aσ is a set

If we have a line α : σ0 → σ1 then Aα is a set of lines γ such that di γ is in
Aσi

If Γ ` a : A then aσ is an element of Aσ and aα is a path in Aα

Furthermore we have the degeneracy conditions: if α = η0 σ

A(η0 σ) is the set of lines of Aσ

a(η0 σ) = η0 (aσ)
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Types as Kan Simplical Sets

Types as Simplicial sets

If Γ ` A and Γ.A ` B and σ : Γ then (Π A B)σ is the set of functions f with
a function f (1) = η0 f such that

(1) if u : Aσ then f u : B(σ, u)

(2) if γ : u0 → u1 in A(η0 σ) then f (1) γ : f u0 → f u1

(3) we have f (1) (η0 u) = η0 (f u)
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Types as Kan Simplical Sets

Types as Simplicial sets

If Γ ` A and Γ.A ` B and α : σ0 → σ1 then (Π A B)α is the set of triple
f0, f1, λ with fi : (Π A B)σi such that

if ω : u0 → u1 is in Aα then λ ω is a path f0 u0 → f1 u1 in B(α, ω)

di (f0, f1, λ) = fi

The simplicial set Γ.A has for points the pairs σ, u with σ : Γ and u : Aσ and
for lines the pairs α, ω with α : σ0 → σ1 and ω : Aα

This defines a model where types are simplicial sets. We have to check that
the Kan property is preserved by the type forming operation.
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Types as Kan Simplical Sets

Types as Simplicial sets

We have

(λt)σ u = t(σ, u)

(λt)α ω = t(α, ω)

η0 (σ, u) = (η0 σ, η0 u)
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Types as Kan Simplical Sets

Types as Kan Simplicial sets

This is a direct generalization of R. Gandy 1956 interpretation of extensional
type theory in intensional type theory

Each type is interpreted by a set with a relation

One has to check by induction on the types that this relation is an equivalence
relation

An earlier simpler instance of this interpretation

B. Russell The Theory of Implications 1906, American Journal of
Mathematics
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Types as Kan Simplical Sets

Types as Kan Simplicial sets

Problem: the fact that this forms a model of type theory uses classical logic
in an essential way

Most definitions are by cases on whether a given simplex is degenerated or not

But the condition of being degenerated is not decidable in general

Even the result: Y X Kan if Y Kan

seems to require classical logic in an essential way

The use of classical logic is best seen for the definition of Kan fibration
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Types as Kan Simplical Sets

Kan fibration

Let p : F → B be a Kan fibration

Over any point b : B we have the fiber F (b) = p−1(b) a simplical set

If we have a path α : b0 → b1 in B the Kan filling condition gives a
set-theoretic map F (α)+ : F (b0)→ F (b1)

Classically using the other Kan filling conditions there is no problem to extend
this map to a map of simplicial sets

Similarly we have F (α)− : F (b1) → F (b0) and the pair F (α)+, F (α)− is
an homotopy equivalence which shows that F (b0) and F (b1) have the same
homotopy type
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Types as Kan Simplical Sets

Kan fibration

Constructively, it does not seem possible to derive all these properties from
the usual definition of Kan fibration (even giving the filling explicitely)

Instead we have to incorporate the important properties of Kan fibrations in
the definition

All the problems are in checking the degeneracy conditions
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Types as Kan Simplical Sets

Types as Kan Simplicial sets

To summarize:

Classical logic is used in an essential way in checking that Kan simplicial sets
form a model of type theory (even before checking the univalence axiom)

This is a quite interesting use of classical logic

However we don’t expect classical logic to be essential

Furthermore this model should generalize/refine the setoid model

We are presenting a constructive version of this model
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Types as Kan Simplical Sets

Kan fibration

The constructive condition can be expressed concisely as follows using A.
Joyal’s notion of left fibration

Consider the pull-back BI ×0
B F of F → B and Bd0 : BI → B

We have a map 〈d0, p〉 : F I → BI ×0
B F

We require that this map has a section s

Furthermore there are two constant maps c0 : F → F I and c1 : F → BI×0
BF

and we ask that c0 = s ◦ c1
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Types as Kan Simplical Sets

Kan fibration

We require 4 compositions operation (and not only 3)

comp0 α β : a1 → a2 for α : a0 → a1, β : a0 → a2

comp1 α β, comp′1 α β : a0 → a2 for α : a0 → a1, β : a1 → a2

comp2 α β : a0 → a1 for α : a0 → a2, β : a1 → a2

Equations

comp0 (η0 a) β = β comp1 (η0 a) β = β

comp′1 α (η0 b) = α comp2 α (η0 b) = α
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Types as Kan Simplical Sets

Kan fibration

(Heuristic comment)

We know that these equations should hold in the model

For instance we have a proof p of

Id a0 a1 → Id a0 a2 → Id a1 a2 of the form

Id a0 a1 → C(a0)→ C(a1)

and p α β is convertible to β if α is reflexivity

So if we have a model this model should satisfies these equations
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Types as Kan Simplical Sets

Kan fibration

To introduce two composition operations

comp1 α β, comp′1 α β : a0 → a2 for α : a0 → a1, β : a1 → a2

“solves” the problem of the non canonical definition we have to make in
checking the transitivity condition in Gandy’s model

We have actually two different notions of composition which correspond to
the two different proofs of transitivity for function spaces
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Types as Kan Simplical Sets

Kan fibration

We require Aα+ : Aσ0 → Aσ1 with Aα ↑ u : u→ Aα+ u for any u : Aσ0

Continuity condition: given any commuting “square” γi : σi → δi between
α : σ0 → σ1 and β : δ0 → δ1 then any line ω : u→ v in Aγ0 extends to a square
u→ Aα+u, v → Aβ+v

Furthermore if the given square is degenerate and ω = η0 u then the resulting
square is also degenerate

Also if α = η0 σ and β = η0 δ then the resulting square is degenerate

In particular A(η0 σ) ↑ u = η0 u
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Types as Kan Simplical Sets

Kan fibration

The map Aα+ : Aσ0 → Aσ1 can be seen as a coercion between the types
Aσ0 and Aσ1

The line Aα ↑ u : u→ Aα+u expresses a kind of coherence condition

The set Aα should be thought of as the type of heterogeneous equalities
between elements in Aσ0 and Aσ1
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Types as Kan Simplical Sets

Kan fibration

The crucial computations are for the product types

To simplify the notation (and in preparation of the interpretation of the
univalence axiom) one introduces an universe of small Kan simplifical sets.

We should have if α : X0 → X1 the following filling maps

α+ : X0 → X1 α− : X1 → X0

α ↑ a0 : a0 → α+a0 α ↓ a1 : α−a1 → a1

(η0 X)+ u = u (η0 X)− v = v

(η0 X) ↑ u = η0 u (η0 X) ↓ v = η0 v
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Types as Kan Simplical Sets

Kan fibration

Definition of (Π α β)+ and (Π α β) ↑

(Π α β)+ f v = β (α ↓ v)+(f (α− v))

For (Π α β) ↑ we need the Kan condition on triangles. For ω : a → b we
define

δ = comp2 ω (α ↓ b) such that δ : a→ α− b

(Π α β) ↑ f ω = comp′1 (η0 f δ) (β (α ↓ b) ↑ f(α−b))
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Types as Kan Simplical Sets

Kan fibration

The degeneracy conditions are used to prove that

g = (Π α β)+ f

is continuous: we have to define η0 g ω : g v0 → g v1 given ω : v0 → v1 in
such a way that

η0 g (η0 v) = η0 (g v)

This is only possible by the conditions required on Kan fibrations
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Types as Kan Simplical Sets

Organizing the model

We have a graded combinatory algebra of values that can be points or lines

The operators di and η0 are combinatory algebra morphisms

d0 (λ ω) = d0 λ (d0 ω) d1 (λ ω) = d1 λ (d0 ω) η0 (f a) = η0 f (η0 a)

We have also

di (Π α β) = Π (di α) (di β) η0 (Π u f) = Π (η0 u) (η0 f)
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Types as Kan Simplical Sets

Organizing the model

If u : X then η0 u : η0 X and if ω : α then di ω : di α

(λt)σ u = t(σ, u)

(λt)α ω = t(α, ω)

η0 (σ, u) = (η0 σ, η0 u)

33



Types as Kan Simplical Sets

Exploring the model

We get in this way a concrete picture of the Kan simplicial set model

Example: interpretation of C. Paulin’s elimination rule for identity type

If we have a simplical set X,X(1), . . . and a : X we define a new simplical set
S, S(1), . . .

S is the set of pairs x, α with α : a→ x

S(1) is the set of triangles a, x0, x1
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Types as Kan Simplical Sets

Exploring the model

The degenerate triangle gives a line θ : (a, η0 a)→ (x, α)

So given any dependent type C : S → U we should have

η0 C θ : C(a, η0 a)→ C(x, α)

and so (η0 C θ)+ is the interpretation of the elimination rule

If C = λx.N we get η0 C θ = η0 N and we get the identity function

This answers one canonicity problem for higher-order inductive types
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Types as Kan Simplical Sets

Exploring the model

In the model we have an interval type I with 0 1 : I and a primitive line
α : 0→ 1

If we have another simplicial set X,X(1), . . . with a0 a1 : X and ω : a0 → a1
then there exists an unique f : I → X with f i = ai and η0 f α = ω
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Types as Kan Simplical Sets

Exploring the model

In the model, we also have a type X for the circle S1

We have only one point in X

X(1) is Z

The triangles are triples n1, n2, n with n1 + n = n2

All higher simplexes are trivial
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Types as Kan Simplical Sets

Model of type theory

We have checked that we get in this way a model of type theory without using
classical logic

Should suggest a way to implement a type-checker for dependent type theory
with the univalence axiom

Should suggest a way to add quotient types
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