
A Haskell Implementation for a
Dependent Type Theory with Definitions

Master’s thesis in Computer science and engineering

QUFEI WANG

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

A Haskell Implementation for a
Dependent Type Theory with Definitions

QUFEI WANG

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

A Haskell Implementation for a Dependent Type Theory with Definitions
QUFEI WANG

© QUFEI WANG, 2021.

Supervisor: Thierry Coquand, Department of Computer Science and Engineering
Examiner: Ana Bove, Department of Computer Science and Engineering

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

iv

A Haskell Implementation for a Dependent Type Theory with Definitions
QUFEI WANG
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
We present in this paper a simple dependently typed language. This language could
be viewed as a pure λ-calculus extended with dependent types and definitions. The
focus of this project is on the study of a definition mechanism where the definitions
of constants could be handled efficiently during the type checking process. We later
enrich the language with a module system to study how the definition mechanism
should be adjusted for the introduction of the concept namespace on variables. The
outcome of our work is a REPL(read-evaluate-print-loop) program through which
a source file of our language could be loaded and type checked. The program also
provides auxiliary functions for users to experiment with and observe the effect of
the definition mechanism. The syntax of our language is specified by the BNF
converter and the program is implemented in Haskell. We hold the expectation that
our work could contribute to the development of proof assistant systems based on
the dependent type theory.

Keywords: computer science, dependent type theory, functional programming, type
checker.

v

Acknowledgements
This project would not have been possible without the support of many people.
Many thanks to my supervisor Thierry Coquand for his guidance, patience and
share of knowledge. Thank you to my examiner Ana Bove for her precious time
and suggestions on the quality of the work. Most importantly, I want to thank my
parents for their unconditional love, and my wife Kefang Zhao for her long standing
consideration and support.

Qufei Wang, Gothenburg, November 2021

vii

Contents

List of Tables xi

1 Introduction 1
1.1 Background . 1
1.2 Aim . 2
1.3 Organization . 3
1.4 Limitations . 3

2 Theory 5
2.1 Subtleties of the System . 5
2.2 Syntax of the Language . 8
2.3 Operational Semantics . 10
2.4 Type Checking Algorithm . 12

2.4.1 checkD . 14
2.4.2 checkT . 15
2.4.3 checkI . 15

2.5 Definition Mechanism . 15
2.5.1 Linear Head Reduction . 16
2.5.2 Problem of Finding the Minimum Set of Constants 18

3 Extension 21
3.1 Syntax of the Extended Language . 23
3.2 Operational Semantics . 24
3.3 Type Checking Algorithm . 26

3.3.1 checkD . 28
3.3.2 checkInst . 28
3.3.3 checkT . 29
3.3.4 checkI . 29

3.4 Linear Head Reduction . 30

4 Results 31

5 Conclusion 33

Bibliography 35

A Appendix I

ix

Contents

A.1 Evaluation Using Closure . I
A.2 η-Conversion . I

A.2.1 CheckCI . II
A.2.2 CheckCT . II

A.3 Concrete Syntax for the Basic Language II
A.4 Concrete Syntax for the Extended Language III
A.5 Variation of Hurkens Paradox . IV
A.6 Example of Head Reduction . V
A.7 Variation of Hurkens Paradox with Segment V
A.8 Example of Head Reduction With Segment VI
A.9 REPL Command List . VII

x

List of Tables

2.1 Syntax of the Language . 10
2.2 Q-expressions . 11
2.3 Semantics of the Language . 11
2.4 Function ρ(x) . 11
2.5 Function app(k, q) . 12
2.6 Type Checking Judgments . 12
2.7 Function getEnv . 13
2.8 Function getType . 13
2.9 Predicate checkConvert . 14
2.10 Function headRedV . 16
2.11 Function getVal . 17
2.12 Function readBack . 17
2.13 Function linear head reduction . 17
2.14 Function inferT . 19

3.1 Syntax of the Extended Language . 25
3.2 Semantics of the Extended Language 25
3.3 Function ρ(x) . 26
3.4 Function ι . 26
3.5 Function getType . 27
3.6 Forms of Judgment . 28
3.7 Function headRedV in the Extended Language 30
3.8 Function getVal . 30

A.1 New Judgments for Checking η-Convertibility II
A.2 REPL Command List . VII

xi

List of Tables

xii

1
Introduction

1.1 Background

Dependent type theory originated in the work of AUTOMATH[1] initiated by N.G.
de Bruijn in the 1960s. Since then it has lent much of its power to proof assistant
systems like Coq[2] and Agda[3], and contributed much to their success. Essentially,
dependent types are types that depend on values of other types. As a simple ex-
ample, consider the type that represents vectors of length n comprising of elements
of type A, which can be expressed as a dependent type (vec A n). Readers may
easily recall that in imperative languages such as C/C++ or Java, there are array
types which depend on the type of their elements, but not types that depend on
values of other types. More formally, suppose we have defined a function which to
an arbitrary object x of type A assigns a type B(x), then the Cartesian product
Πx:AB(x) is a type, namely the type of functions which take an arbitrary object x
of type A into an object of type B(x).

The advantage of having a strongly typed system built into a language lies in the
fact that well-typed programs exclude a large portion of run-time errors than those
without or with only a weak type system. Just as the famous saying puts it “well-
type programs cannot ‘go wrong’” [16]. It is in this sense we say that languages with
dependent types are equipped with the highest level of correctness and precision,
which makes them a natural option for building proof assistant systems.

The downside of dependent type systems, however, lies in the difficulties of their
implementation. One major difficulty is checking the convertibility of terms, that
is, given two terms A and B, decide whether they are equal or not. Checking the
convertibility of terms that represent types is a frequently performed task by the
type checker of any typed language, the way it is conducted directly affects the
performance of the language. In a simple typed language, convertibility checking
is done by simply checking the syntactic identity of the symbols of the types. For
example, in Java, a primitive type int equals only to itself, nothing more. This is
because types in Java are not computable: there’s no way for other terms in Java to
be reduced to the term int. In a dependently typed language, however, the problem
is more complex since a type may contain any expression as its component and
deciding the convertibility of types in this case entails evaluation on expressions,

1

1. Introduction

which could incur much more computation.

1.2 Aim
The aim of this project is to study how to present definitions in dependent type
theory. More specifically, we study how to do type checking in dependent type
theory with the presence of definitions. A definition in dependent type theory is a
declaration of the form x : A = B, meaning that x is a constant of type A, defined
as B, where A,B are expressions of the language. The subtlety about definition in a
dependent type theory is that when checking the convertibility of terms, sometimes
the definition of a constant is indispensable while other times erasing the definition
helps to improve efficiency by cutting off unnecessary computation. Suppose we
have a definition of the exponentiation operation on natural numbers as

expo : Nat→ Nat→ Nat
expo _ 0 = 1
expo n m = n ∗ (expo n (m− 1))

where Nat represents the type of natural number and ∗,− represent the multipli-
cation and subtraction operations on natural numbers respectively. When checking
the convertibility of two terms expo 2 10 and 1024, the definition of expo is neces-
sary to reduce the first to 1024. However, if the terms are changed to expo (1+1) 10
and expo 2 (5 + 5), instead of using the definition of expo to reduce both terms to
1024, we could keep expo locked and only reduce both sides to the term expo 2 10.
By showing that they can be reduced to a common term (having the same symbolic
representation), we can prove their equality with much less computation. In the
proof assistant system Agda, type checking relies on the algorithm of conversion
checking which has increasingly become the bottleneck for type checking large pro-
grams. Sometimes type checking simply becomes too slow, yet it is not clear how to
tackle this problem. A stable solution to this problem is desired so that one feasible
example does not become infeasible upon the upgrade of the convertibility checking
algorithm. Our work studying the role of definitions in dependent type theory is an
attempt to address this problem.

The first part of this project consists of the specification of a dependently typed
language which features a definition mechanism where constants could be manu-
ally locked/unlocked during the type checking process. The idea of making some
constants locked to improve the efficiency of conversion checking is inspired by one
unpublished work of Bruno Barras[4]. One system, named as cubicaltt1 and imple-
mented by Thierry Coquand, Anders Mörtberg et al., contains a similar locking/un-
locking mechanism but there the feature was not documented in detail and what
we present in this project is also a clearer way of implementation. The first part
contains the main theoretical results of this project, and a thorough exposition of
the definition mechanism is given in section 2.5. As an application of the defini-
tion mechanism, we built in the second part a module system based on the concept

1See the website https://github.com/mortberg/cubicaltt

2

https://github.com/mortberg/cubicaltt

1. Introduction

“segment”, which is borrowed from the work AUTOMATH[5]. The adaptation to
the concept of namespace introduced by the module system could be seen as an
evidence of the scalability of our definition mechanism.

1.3 Organization
This paper is organized as follows: chapter 2 starts with three examples to illustrate
the common pitfalls one should avoid in the implementation of a dependent type
theory. Based on the examples, we put forward two principles used as guidance
in our own implementation. We then present in detail the syntax, semantics and
type checking algorithm of this language and conclude this chapter with a thorough
description of the definition mechanism. Chapter 3 starts with an introduction to
the concept of segment and the relevant terminologies. This is followed by a detailed
description on the syntax, semantics and type checking algorithm of the extended
language. Chapter 4 presents a REPL program with commands to load and type
check a source file of our language and experiment with the definition mechanism.
Chapter 5 concludes the paper with a short review of this project.

1.4 Limitations
1. Expressiveness: The expressiveness of the language is intentionally restrained

as an attempt to keep the language simple in order to focus on the study of a
definition mechanism. As a consequence there is no language facility to create
new data types.

2. Metatheory: Due to time limitations, a study on the properties of our lan-
guage as a type theory and logic system will not be included. This could be
seen as one of the directions of the future work.

3

1. Introduction

4

2
Theory

Our system could be seen as an extension to λ-calculus with dependent types and
definitions. In order for the reader to better understand the idea behind the choice
of the syntax and semantics of our language, we first illustrate some subtleties of
the system which suggest common pitfalls one should avoid in the implementation.

2.1 Subtleties of the System
We present the subtleties of the system by giving examples as the followings.

Example 1. Suppose we have declarations

x : A
y : A
b : A→ A→ A

u : (A→ A→ A)→ (A→ A→ A)
a : (A→ A)→ (A→ A)
z : A→ A→ A

Then the term below is well typed.

(λu . u (u b))(λz y x . a (z x) y) (2.1)

If we do the reduction on (2.1), we get

(λu . u (u b))(λz y x . a (z x) y) =⇒
(λz y x . a (z x) y)((λz y x . a (z x) y) b) =⇒

(λz y x . a (z x) y)(λy x . a (b x) y) =⇒
λy x . a ((λy x . a (b x) y) x) y (2.2)

At this point, we have a capture-of-variables problem. (2.2) should be the same as

λy x . a ((λy x′ . a (b x′) y) x) y

which reduces to
λy x . a (λx′ . a (b x′) x) y

5

2. Theory

But if one reduces (2.2) naively without renaming, one gets

λy x . a (λx . a (b x) x) y

which is not correct. This example comes from the PhD thesis of L.S. van Benthem
Jutting in 1977[6] when he was working on AUTOMATH. It was conjectured that
if one starts with a term where each binding variable is declared only once and
variables used in the terms forming an application are different, there will not be
any capture of variables by reduction. This example shows that this is not the case
and manifests an unusual case of the problem known as the capture of names by
preforming reductions in λ-calculus.

Example 2. In non-dependent type languages like Java and Haskell, one can interpret
the definitions by function application. For example, one can interpret the definition
of i2 in following piece of Java code

1 int i1 = 0;
2 int i2 = i1 + 1;

by i2 = (λ(x : int).x+ 1)0, and the definition of x in the following Haskell code
1 let x = 0 in x + x

by (λx.x+x) 0. This, however, is not always possible in a dependent type language.
As an example, suppose we have

a : A, P : A→ U, f : P a→ P a

then the program
1 let x : A = a, y : P x in f y

cannot be rewritten to function application (λ(x : A)(y : P x).f y) a because the
former part of the formula, λ(x : A)(y : P x).f y, is not well-typed: the type of y is
P x whereas the type of the argument to f should be P a. This example shows that
definitions in dependent type theory cannot be reduced to λ-calculus.

Example 3. Consider the formula

λ(x : Nat)(y : Nat = x)(x : Bool).y

where Nat is the type of natural numbers and Bool is the type of Boolean. In
this formula, the first declaration of x is shadowed by the second one. If we do not
treat the shadowing of names properly, we may incorrectly conclude that we have a
context where (1) the definition of y is x, (2) the type of y is Nat, whereas (3) the
type of x is Bool. This example shows that improper use and treatment of name
shadowing leads to inconsistency.

Example 1 and 3 provide us with insights into two common pitfalls one should avoid
in the implementation: (1) capture of names during reduction and (2) improper
treatment of name shadowing. As a result, we put forward two principles as a
measure to ward off these two traps.

6

2. Theory

Principle 1. Use closure to postpone reduction.

Principle 2. Forbid the practice of name shadowing.

Principle 1 comes as a measure to tackle the problem of capture of names. Here, a
closure is a computation structure consisting of a function (λ-abstraction) and an
environment where the environment is a structure which binds free variables from
the function to expressions to be substituted. The idea of postponed reduction is
that for a function application, the actual substitution is not performed until the
body of the function is clear of abstractions. For example, consider an application
(f 0) on a function f defined as follows.

f = λxλy.x+ y

By normal β-reduction, the result would be λy.0 + y. But if we reduce it by using
closure, the result would instead be 〈λy.x+ y, (x = 0)〉: a closure formed by the
function (λy.x + y) and the environment (x = 0). We do not perform substitution
at this stage because the body of f is still a λ-abstraction. If we apply the result to
another argument, say 1, because the body of the function is now free of abstractions,
the substitutions for both x and y will be performed and the result would be 0+1 = 1.
The reason why the problem of variable capture can be avoided by using closure is
that by deferring substitutions, the structure of the function body is well preserved
and by the time the substitution really happens, only the variables that are originally
bound in the body will be substituted by their binding terms. We will talk more
about closure later when we introduce the semantics of our language in section 2.3.
An example of using closures to evaluate the expression in 2.1 could be found in
appendix A.1.

Principle 2 comes as a simple strategy to avoid the pitfall revealed by example 3. It
means that during the type checking process, each declaration, including the decla-
ration of binding variable in a λ-abstraction, is checked to ensure no name collision
occurs. Another approach to the name shadowing problem is called namespaced De
Bruijn indices1, which is the technique currently adopted by Agda 2. The idea is
to decorate the variables declared with the same name with integer indices to tell
them apart from each other. However, some experience with Agda shows that the
context information inferred by Agda using indexed variables can be confusing at
times. As an example, consider the following Agda program.

1 test : N → Bool → N
2 test = λ (x : N) →
3 let y : N
4 y = x
5 in λ (x : Bool) → {!!}
6 let x : A = a, y : P x in f y

We ignore non-essential details but only illustrate the relevant points.
1For a detailed introduction, please visit the website: https://www.haskellforall.com/2021/

08/namespaced-de-bruijn-indices.html.
2Tested with version 2.6.2.

7

https://www.haskellforall.com/2021/08/namespaced-de-bruijn-indices.html
https://www.haskellforall.com/2021/08/namespaced-de-bruijn-indices.html

2. Theory

• Line 1-6 is a definition of constant test which is a function that given a natural
number and a Boolean, returns a natural number.

• Two variables with the same name x are declared, one in the outer scope at
line 2, another in the inner scope at line 5.

• The x in the outer scope has the type natural number, whereas the x in the
inner scope has the type Boolean.

• In the placeholder denoted by the text {!!}, using the interactive proof assis-
tant feature provided by Agda, we get the following context information from
Agda.

1 Goal: N
2 --------------------------------
3 y : N
4 y = x1
5 x : Bool
6 x = x1 : N (not in scope)

What Agda means in this message is that:

• y is of type N and is defined to be the x in the outer scope having index 1.

• x in the inner scope is of type Bool with no definition.

• x in the outer scope (indicated by the phrase “not in scope”) is of type N and
is renamed to x1.

The message shows that Agda is able to keep track of variables declared with the
same name correctly by labeling them with indices. However, the way it presents
the context information can cause confusion for users who are not familiar with this
feature: by reading the text y = x1, x:Bool and x = x1, one may wonder how it
is possible for both y and x to be equal with x1 since they have different types.
Another inefficiency with this approach is that the end user cannot refer to the x
in the outer scope by the name x1 because x1 is used as an internal identifier and
there is no variable in the source file having the name x1. Such an attempt will
be rejected by Agda with an error message saying that “variable not in scope”. In
summary, we consider that allowing name shadowing will cause confusion in the
context information and introduce ambiguities over the usage of names. For this
reason, we simply forbid shadowing of names in our language.

2.2 Syntax of the Language
There are two kinds of syntax related to the language: (1) The concrete syntax that
describes the grammar used in a source file, and (2) the abstract syntax translated
from the concrete syntax for clarity and better presentation. What we are going to
describe below is the abstract syntax, for the concrete syntax see appendix A.3.

8

2. Theory

The expressions in our language are defined as follows:

Definition 2.2.1 (Expression)

(i) U is an expression, which represents the universe of small types. U is an
element of itself, i.e., U ∈ U .

(ii) A special group of terms, denoted asK, are expressions and they are inductively
defined by

(a) variables, e.g., x, y, z ∈ K;

(b) terms of the form (KM) ∈ K, where K ∈ K and M is an expression.

(iii) Given two expressions A,M and a variable x, a term of the form

[x : A]M

is an expression, which is used to represent

• λ-abstraction: λx:AM - a function that given an argument x of type A,
returns a term M which may depend on x;

• Dependent Product: Πx:AM - the type of function that given an ar-
gument x of type A, returns a term of type M which may depend on x.
WhenM does not depend on x, we can ignore x and rewrite it as Π_:AM .
This is essentially the same as the type of functions A→M .

(iv) Given three expressions A,B,M and a variable x, a term of the form

[x : A = B]M

is an expression, which is used to represent a let clause:

• let x : A = B in M .

The declarations in our language are defined as follows:

Definition 2.2.2 (Declaration)

(i) A term of the form x : A is a declaration where x is a variable and A is an
expression. It declares a variable x of the type represented by A.

(ii) A definition x : A = B is a declaration where x is a variable and A,B are
expressions. It declares a variable x of type A and is defined as B.

A program3 in our language consists of a list of declarations. The name of a dec-
laration must not collide with any name of the existing declarations and a variable

3A program can also be seen as a type checking context as described in section 2.4 since they
both consist of a list of declarations.

9

2. Theory

must be declared before it is used. A summary of the syntax can be found in table
2.1, where A,M,K represent expressions; D represents definitions; Decl represents
declarations and P represents programs.

A,M ::= U | K | [x : A]M | [D]M
K ::= x | KM
D ::= x : A = M
Decl ::= x : A | D
P ::= [Decl]

Table 2.1: Syntax of the Language

The syntax of our language is a subset of Mini-TT[7]. We use the same syntax for
both dependent product and λ-abstraction as an effort to maintain simplicity. This
practice causes ambiguity only when an expression of the form [x : A]M is viewed in
isolation: it can be seen both as a dependent type and a function abstraction. This
ambiguity, however, does not cause a problem in practice because the meaning of a
term could be deduced from the context and our type checking algorithm ensures
the consistency of its usage.

The classification of a subset of expressions denoted as K indicates that expressions
in the language conform to the β-normal form, i.e., expressions of the form U M ,
([x : A]M)E are considered illegal. The former is easy to understand as U is not a
function; the latter is subject to β-reduction which is prohibitive in the language.
We use this practice as a measure to keep the brevity of the type checking algorithm.

2.3 Operational Semantics
Given a well-formed expression, we describe in this section how it is evaluated in
the semantics of our language. An expression is evaluated to a quasi-expression or
q-expression in an environment, which is a stack structure in one of the following
forms:

Definition 2.3.1 (Environment)

(i) () is an empty environment;

(ii) (ρ1, x = q) extends the environment ρ1 by binding the variable x to the q-
expression q;

(iii) (ρ1, D) extends the environment ρ1 with a definition.

A q-expression is the intermediate form of an expression under evaluation. It can
be transformed to a “normal” expression by a procedure called “readBack” which
will be introduced later in section 2.5.1.

Definition 2.3.2 (q-expression)

10

2. Theory

(i) U is a q-expression.

(ii) A variable x is a q-expression, it represents a primitive without definition.

(iii) A closure 〈[x : A]M,ρ〉 is a q-expression: it is the result of evaluating the
function [x : A]M in the environment ρ.

(iv) Given two q-expressions k, q where k is not a closure, a term of the form k q is
a q-expression which represents an application that cannot be reduced further.

The grammar of q-expressions can be summarized in table 2.2.

k ::= x | k q
q ::= U | k | 〈[x : A]M,ρ〉

Table 2.2: Q-expressions

The evaluation function, given in table 2.3, is denoted by formulas of the form
Mρ = q, meaning that the expression M evaluates to q in the environment ρ.

Uρ = U
xρ = ρ(x)
(KN)ρ = app(Kρ, Nρ)
([x : A]B)ρ = 〈[x : A]B, ρ〉
(DM)ρ = M(ρ,D)

Table 2.3: Semantics of the Language

Two auxiliary functions are used in the evaluation, with their definitions given in
table 2.4, 2.5 respectively.

• ρ(x) finds the binding q-expression of the variable x in the environment ρ.

• app(k, q) applies the function k to q.

()(x) = x
(ρ′, x′ = q)(x) = if x′ == x then q else ρ′(x)

(ρ′, x′ : A = B)(x) = if x′ == x then Bρ′ else ρ′(x)

Table 2.4: Function ρ(x)

Some readers may have noticed that the real difference between expressions and
q-expressions is the closure. A closure is an important concept in functional pro-
gramming and was first conceived by P. J. Landin in his paper The Mechanical Eval-
uation of Expressions[8]. There, the author described a closure as “. . . comprising
the λ-expression and the environment relative to which it was evaluated. . . ” which

11

2. Theory

app(〈[x : A]M,ρ〉, q) = M(ρ,x=q)
app(k, q) = k q

Table 2.5: Function app(k, q)

specified the structure of the closures we adhere to in our own implementation.
Closure is introduced to meet the need of passing functions around during evalua-
tion, and entails the introduction of q-expression as a parallel but distinct concept
from expression. One major benefit brought by using closure is the ability to defer
computation.

The meaning of deferred computation comes into twofold: first, the evaluation of the
reducible expressions in the function body is deferred, as signified by the rule about
evaluation of functions in table 2.3 where the function body is left intact; second,
the substitution process in β-reduction is deferred as indicated by the definition of
the function app in table 2.5. For an application of the function [x : A]M to an
argument q, the substitution will not happen until M is clear of abstractions. The
ability to defer computation is crucial for the definition mechanism as it makes it
possible for saving computations during the evaluation process.

2.4 Type Checking Algorithm
The aim of the type checking algorithm is to ensure that a program in our language
is well-typed. Basically, for a declaration in the form x : A, it checks that A is a
valid type, namely A ∈ U ; for a declaration in the form x : A = B, it checks that (1)
A is a valid type and (2) B is a well-typed expression and has type A. A program
is said to be well-typed when each of its declaration is well-typed.

Note that the type checking algorithm does not concern with any syntactic or se-
mantic error related with names, such as duplicated declaration of names or use of
undeclared names. Syntactic errors are checked by the lexer and parser where a
source file is parsed into a concrete syntax tree. Semantic error with regard to the
use of names are checked when the concrete syntax tree is translated to an abstract
syntax tree in a procedure called translation. It is on the abstract syntax tree that
the type checkering algorithm is applied.

Given a type checking context Γ and a lock strategy s, the three forms of judgments
used in the type checking algorithm can be given as the followings.

checkD Γ `s d⇒ Γ′ d is a valid declaration and extends Γ to Γ′
checkT Γ `s M ⇐ t M is a valid expression given type t.
checkI Γ `s K ⇒ t K is a valid expression and its type is inferred to be t.

Table 2.6: Type Checking Judgments

The lower case letter t represents a q-expression, meaning that the type inferred by

12

2. Theory

checkI or given as an input in checkT must be an evaluated expression. A type
checking context is a stack structure keeping track of the types and definitions of
the variables and comes into one of the following three forms.

Definition 2.4.1 (Type Checking Context)

(i) () is an empty context.

(ii) (Γ1, x : A) extends the context Γ1 with a declaration x : A.

(iii) (Γ1, x : A = B) extends the context Γ1 with a definition x : A = B.

In the type checking algorithm, Γ serves two main purposes: (1) provides the types
of variables declared inside the context and (2) provides the environment customized
by a lock strategy for evaluation.

A lock strategy is introduced as a part of our definition mechanism to provide the
locking/unlocking functionality on constants. A constant is locked when its defini-
tion is temporarily erased and unlocked if restored. A locked constant is in effect a
primitive variable that cannot be reduced further. Since environments are the place
where variables are mapped to their definitions or q-expressions during evaluation,
we can achieve the effect of locking/unlocking constants by removing/restoring their
definitions from/to the environment. This suggests a procedure to transform a type
checking context into an environment with the definitions of constants being erased
or restored. We introduce a function getEnv for this purpose and denote it as % in
the following discussion. If we consider the symbol s in table as 2.6 being a list of
locked variables, the function getEnv could be defined as in table 2.7.

%(s, ()) = ()
%(s, (Γ, x : A)) = %(s,Γ)
%(s, (Γ, x : A = B)) = let ρ = %(s,Γ) in if x ∈ s then ρ else (ρ, x : A = B)

Table 2.7: Function getEnv

Given a type checking context Γ and a lock strategy s, we can get the evaluated
form of the type of the variable x by the function getType. We denote this function
as Γ(s, x) and give its definition in table 2.8.

()(s, x) = error
(Γ′, x′ : A)(s, x) = if x′ == x then A%(s,Γ′) else Γ′(s, x)

(Γ′, x′ : A = B)(s, x) = if x′ == x then A%(s,Γ′) else Γ′(s, x)

Table 2.8: Function getType

In the type checking process, the convertibility of terms is expressed by a predicate
checkConvert which given a list of names, decides whether two q-expressions are
convertible. We use the notation q1 ∼ns q2 to express that q1 and q2 are convertible.
ns is a list of names and is used to ensure that names newly introduced in the

13

2. Theory

convertibility checking process do not collide with the names already existing in
the underlying type checking context. The definition of checkConvert is given in
table 2.9. Note that the rules presented here only check β-convertibility, for η-
convertibility please refer to appendix A.2.

U ∼ns U x ∼ns x

k1 ∼ns k2 q1 ∼ns q2

k1 q1 ∼ns k2 q2

Aρ ∼ns A′ρ′ M(ρ,x=y) ∼y:ns M
′
(ρ′,x′=y)

〈[x : A]M,ρ〉 ∼ns 〈[x′ : A′]M ′, ρ′〉
where y is a new variable

Table 2.9: Predicate checkConvert

The function namesCtx, denoted as τ(Γ), is used to get the names from the context
Γ. We use this function to provide the list of names used by checkConvert.

2.4.1 checkD

Γ `s A⇐ U

Γ `s x : A⇒ (Γ, x : A)
(2.3)

Γ `s A⇐ U Γ `s B ⇐ A%(s,Γ)

Γ `s x : A = B ⇒ (Γ, x : A = B)
(2.4)

14

2. Theory

2.4.2 checkT

Γ `s U ⇐ U (2.5)

Γ(s, x) ∼τ(Γ) t

Γ `s x⇐ t
(2.6)

Γ `s KN ⇒ t′ t′ ∼τ(Γ) t

Γ `s KN ⇐ t
(2.7)

Γ `s A⇐ U (Γ, x : A) `s B ⇐ U

Γ `s [x : A]B ⇐ U
(2.8)

Γ `s A⇐ U A%(s,Γ) ∼τ(Γ) A
′
ρ′ (Γ, x : A) `s B ⇐ B′(ρ′,x′=x)

Γ `s [x : A]B ⇐ 〈[x′ : A′]B′, ρ′〉
(2.9)

Γ `s A⇐ U Γ `s B ⇐ A%(s,Γ) (Γ, x : A = B) `s M ⇐ t

Γ `s [x : A = B]M ⇐ t
(2.10)

Note that the inference rules 2.8 and 2.9 differentiate between the use of an abstrac-
tion [x : A]B as a dependent product or as a function. When used as a dependent
product, its type is U ; otherwise, its type is a closure.

2.4.3 checkI

Γ `s x⇒ Γ(s, x) (2.11)

Γ `s K ⇒ 〈[x : A]B, ρ〉 Γ `s N ⇐ Aρ

Γ `s KN ⇒ B(ρ,x=n)

(
n = N%(s,Γ)

)
(2.12)

2.5 Definition Mechanism
The motivation to build a definition mechanism is to study how to do type checking
in the presence of definitions in dependent type theory. In any typed language, one
basic problem a type checker should be able to solve is to decide, given an expres-
sion E and a type A, whether E is of type A. Usually this involves getting the
type of E, say T , by means of computation regarding the composition of E and
decide whether T and A are convertible. Some difficulties arise in dependent type
theories because (1) a type may contain any expression which could entail large

15

2. Theory

amount of computation, and (2) the use of definitions opens up the possibility to
denote arbitrary complex computation by a single constant. For a type checker of
dependent type theory to be efficient, the amount of computation it performed in
the convertibility checking should not exceed too much what are “just enough” to
establish the equivalence of the checked terms. The problem is that there is no
standard way to calculate the minimum number of reductions needed because it de-
pends on the semantics, namely the language designer’s perception of computation,
of the language. For example, consider again the two formulae (1 + 1)10 and 2(5+5).
To check the convertibility of these two terms, if we adopt the common arithmetic
definition of integer multiplication and exponentiation, and determine that any ex-
pression should be evaluated to its normal form (no redex exists), a type checker
loyal to our conception of computation will reduce both terms to 1024. However, if
we change our mind and see exponentiation as a primitive with no definition, the
same type checker with our updated conception will only reduce both terms to 210.

Our definition mechanism is an attempt to improve the performance of convertibil-
ity checking by setting limits on constants. That is, a constant acts as a unit on
which computation could be locked or charged. More advanced computation con-
trol techniques with finer granularity is desired, as can be shown by the following
example which is a variant of the example above. Consider these two formulae 2∗29

and 210. In this case, locking the definition of exponentiation will not work. One
solution for this problem is to recognize and utilize the property about exponentia-
tion 2m ∗ 2n = 2(m+n). Another way is to reduce 210 to 2 ∗ 29 using the definition of
exponentiation only once. The former suggests a mechanism to establish properties
about data types and constants, and use these properties in the following computa-
tions, a technique that has been adopted by Haskell and proof assistant systems like
Agda; the latter indicates a dynamic change of the evaluation strategy in the process
of computation, a hint for more advanced intelligence for the program. Although in
this work we didn’t go further towards either of the two directions, we do studied
and implemented a function called “linear head reduction” which could limit the
computations performed on expressions in each reduction step.

2.5.1 Linear Head Reduction
Linear head reduction was introduced in the calculus ∆Λ of AUTOMATH[9] and
is demonstrated here to show another way to limit computation. It relies on two
procedures: (1) the procedure to force the subset of expressions K to be evaluated
in “small steps” once a time instead of being fully evaluated; (2) the procedure to
eliminate closures so that the result of head reduction is an expression instead of
a quasi-expression. The first procedure is named headRedV and denoted by δ∗, its
definition is given in table 2.10.

δ∗(Γ, x) = V(Γ, x)
δ∗(Γ, K N) = let k = δ∗(Γ, K), n = N() in app(k, n)

Table 2.10: Function headRedV

16

2. Theory

The empty parentheses represents an empty environment. V(Γ, x) is the function
that gets the least evaluated form of variable x from context Γ. We call it getVal
and give its definition in table 2.11. Note that to reduce an application KN , our
approach is different with the one adopted by a Krivine machine4: instead of eval-
uating both the body and the argument of a function within a given environment
ρ (i.e., (KρNρ)), we only unfold the body but do not distribute the environment to
the argument.

V((), x) = x
V((Γ′, x′ : A), x) = if x′ == x then x else V(Γ′, x)
V((Γ′, x′ : A = B), x) = if x′ == x then B() else V(Γ′, x)

Table 2.11: Function getVal

The second procedure is named readBack and denoted by R. Given a list of names
and a q-expression, it eliminates all the closures in the q-expression to transform it
into an expression. The definition of readBack is given in table 2.12.

R(_, U) = U
R(_, x) = x
R(ns, k q) = let K = R(ns, k), N = R(ns, q) in KN
R(ns, 〈[x : A]B, ρ〉)) = let y = ν(ns, x), A′ = R(ns,Aρ),

B′ = R(y : ns,B(ρ,x=y)) in [y : A′]B′.

Table 2.12: Function readBack

Finally, the definition of linear head reduction is given in table 2.13 where the func-
tion is denoted by δ.

δ(Γ, U) = U
δ(Γ, [x : A]M) = let M ′ = δ((Γ, x : A),M) in [x : A]M ′

δ(Γ, DM) = let M ′ = δ((Γ, D),M) in DM ′

δ(Γ, K) = R(τ(Γ), δ∗(Γ, K))

Table 2.13: Function linear head reduction

As an example of linear head reduction, we apply this function continuously, first on
a constant named “loop” from a source file of our language, later on the expression
resulting from the last application, to see how the evaluation on the constant “loop”
evolves. The source file is a variation of the Hurkens paradox[10] and is given
in appendix A.5. The result of the first ten steps of head reduction are shown
in appendix A.6 and one can see that there are patterns of terms recurring and
replicating themselves as the evaluation goes further.

4Visit this website from wikipedia for an introduction.

17

https://en.wikipedia.org/wiki/Krivine_machine

2. Theory

2.5.2 Problem of Finding the Minimum Set of Constants
Regarding the definition mechanism, there is one conjecture from the unpublished
work of Bruno Barras[4] stating that for any expression M of type N , there exists
a minimum set of unfolded constants such that the type checking algorithm can
check M ∈ N . Using the notation in section 2.4, this conjecture can be stated more
formally as

Conjecture 1. Given a valid context Γ and two expressions M,N where M has type
N , there exists a unique set of constants s0 such that

Γ `s M ⇐ N iff s ⊆ s0

for an arbitrary set of locked constants s.

The idea of this conjecture comes from the fact that constants can be used as
primitives to save computations in the conversion checking of terms. During the
type checking process, we wish to lock as many constants as possible to improve the
performance without affecting the correctness of the type checking process. This
could be illustrated by a simple example using the syntax of our language as follows.

1 id : * -> * = [A : *] A
2 T : *
3 t : T
4 -------------------------
5 test1 : T = t
6 test2 : id T = t

In this short program, id is a constant that given any type A returns A itself. T
is a primitive of type U and t is a primitive of type T . Suppose Γ is a context
consisting of id, T and t and we run the type checking algorithm with Γ on the
two new definitions test1 and test2. test1 will always be type checked because
t ∈ T ; test2, however, will only be type checked when the constant id is unfolded,
otherwise the type checking algorithm would consider the two terms T and id T not
convertible. This is one case showing that the definition of a constant is necessary
for the type checking algorithm to make correct judgments. On the other hand, if
we change the declaration of t to t:id T, erase the declaration of test1 and run
the type checking algorithm with Γ on test2 again, we can save the computation
involving the expansion of the constant id and one beta reduction by treating id as
a primitive.

This example shows that the motivation to find the minimum set of unfolded con-
stants is clear: for large proof systems with nontrivial definitions of constants, un-
folding constants and performing the ensuing reductions unwisely may cause huge
loss of performance. If the conjecture holds and we have an efficient algorithm to
this problem, we can achieve the highest possible performance in the current type
checking algorithm.

In our attempt to prove this conjecture, noticing that it is possible to infer the type
of any valid expression in the form of another expression, the conjecture can be

18

2. Theory

reduced to

Conjecture 2. Given a valid context Γ and two semantically equivalent expressions
M,N , there exists a unique set of constants s0 such that

M%(s,Γ) ∼τ(Γ) N%(s,Γ) iff s ⊆ s0

for an arbitrary set of locked constants s.

The function to infer the type of any valid expression in the form of an expression
is given in table 2.14, it uses the function getType (defined in table 2.8) and the
function readBack (defined in table 2.12) to get the evaluated form of the type of a
variable and transform it back into an expression. Also notice how we use s∗, the
set of all constants from Γ, in the second case and the empty environment in the
third case to avoid accidentally unlocking a constant by keeping all constants locked
in the operation.

inferT (Γ, U) = U
inferT (Γ, x) = R(τ(Γ),Γ(S, x)),

s∗ represents the set of the constants from Γ
inferT (Γ, K N) = let T = inferT(Γ, K) in R(τ(Γ), app(T(), N()))
inferT (Γ, [x : A]M) = let M ′ = inferT((Γ, x : A),M) in [x : A]M ′

inferT (Γ, DM) = let M ′ = inferT((Γ, D),M) in DM ′

Table 2.14: Function inferT

We can prove the conjecture provided the following properties hold for our system.

1. Each expression has a normal form.

2. We have a way to evaluate each expression M to its normal form step by step
in sequence such that in each step

(a) only one constant is unfolded.

(b) the selection of the unfolded constant can be proved to lead to the mini-
mum set.

If these two properties hold for our system, given two semantically equivalent ex-
pressions M,N , we can find the minimum set of unfolded constants by

1. UnfoldM to its normal form resulting in a sequence of expressionsM0, . . . ,Mp

where M0 = M .

2. Unfold N to its normal form resulting in a sequence of expressions N0, . . . , Nq

where N0 = N .

3. Compare the syntactic identity of

(M0, N0), (M1, N0), (M0, N1), (M1, N1), (M2, N0), (M2, N1), (M0, N2) . . .

19

2. Theory

until the first time we have 0 ≤ p′ ≤ p, 0 ≤ q′ ≤ q such that Mp′ == Nq′ .

4. The minimum set of constants is the union of the constants unlocked from M0
to Mp′ , N0 to N ′q. Because of the property 2.(b), this set is also unique.

Unfortunately, these two properties mentioned above do not hold in our system.
For (1), we have the constant “loop” defined in appendix A.5 that does not have a
normal form; for (2), when facing a term of the form x y, it is not clear whether
we should unlock x or y so that the set of constants found at the end is minimal.
In fact, we managed to find a counter-example for this conjecture in our system as
follows.

1 k : * -> * -> * = [A : *][B : *]A
2 a : *
3 b : *
4 c : * = b

To check the convertibility of two expressions k a b and k a c, we have two different
minimum set of unlocked constants {k} and {c}. This finding is important as it
shows that there is no optimal strategy in general for our system and it is necessary
for the user to provide a list of unfolded constants to help the type checker achieve
higher type checking efficiency.

20

3
Extension

In chapter 2 we introduced and described a definition mechanism which features a
locking/unlocking functionality on the constants of programs. In order to show that
this mechanism is flexible and scalable to incorporate more language features, we
introduce in this chapter a module system as an extension to the language and an
enhancement to the definition mechanism. A module is a list of declarations and
itself must be declared with a name by a declaration. The fact that modules can be
nested suggests a modification to the semantics of the language such that a variable
is no longer uniquely identified by its name but by its name and namespace, the
nested structures of modules in which this variable is declared. The module system
in the extended language is built on the idea ‘segment’ borrowed from the work of
AUTOMATH. For an introduction to the usage of segments in AUTOMATH we
refer the readers to H. Balsters’s work[5]. In the following discussions, we use the
words ‘segment’ and ‘module’ interchangeably and we first illustrate the concept of
segment in our language by giving an example as the following.

Example 4. The idea of segment is to have a new form of declaration

ς = Seg ds

where ς is the name of the segment and ds a list of declarations. The word Seg is
designed as a language keyword and a segment can also be seen as a module with
parameters. For example,

ς = Seg [A : ∗, id : A→ A = [a : A] a]

is a module which contains a declaration and a definition. The declaration (A : ∗) is
a parameter of the module and the definition id is the identity function defined in this
module. Segments can be instantiated by providing definitions to their parameters.
Suppose we have another declaration (A0 : ∗), then the segment ς can be instantiated
by (ς [A0]) and the expression (ς [A0]).id has (A0 → A0) as its type and closure
〈[a : A]a, (A = A0)〉 as its value.

A collection of the terminologies regarding the use of segments in the extended
language is summarized as the following. These terminologies will be used in the
description of the syntax, semantics and type checking algorithm of the extended
language.

21

3. Extension

• Segment: A segment can be declared as ς = Seg ds where ς is the name of
the segment and ds consisting of a list of declarations is the content of the
segment.

• Parent, Children: Segments can be nested, i.e., a segment can be de-
clared within another segment. The segment which contains other segments is
called the parent and the segment(s) contained in a parent is(are) called the
child(children). We use the symbol→ to denote the parent-child relation such
that a→ b iff a is the parent of b.

• Ancestors, Descendants: The children segments and their children are de-
scendants of the parent segment. For the descendants, their parent and the
parent of their parent up to ς-root are called the ancestors.

• Declaring Segment: For the variables that are declared in one segment, this
segment is called their declaring segment.

• Default Segment: There is a default segment that is implicitly inhabited at
the top-level and is denoted as ς-root.

• Path: The path of a segment is the list of names that relate ς-root to this
segment under the relation →. For example, if a segment is declared with
name “a” in the default segment, its path is [a]; if another segment is declared
with name “b” in segment a, its path is [a, b]. The path of ς-root is the empty
list.

• Namespace: The namespace of a variable or segment is the string formed by
joining the names in the path of its declaring/parent segment by the full stop
character. For example, for a variable declared in a segment whose path is
[a, b, c], its namespace is “a.b.c”. The namespace of the variables or segments
in ς-root is the empty string.

• Qualified Name, Short Name: The qualified name of a variable is the
string formed by joining its namespace and name by a full stop character. For
example, the qualified name of a variable x in the default segment is “.x”; the
qualified name of a variable x with namespace “a.b.c” is “a.b.c.x”. We also call
the usual, non-qualified name the short name. In the discussion of chapter 3,
whenever we use the word “name” we mean the short name unless otherwise
specified. We also use the notation with ‘q’ in the subscript of a lower case
letter to denote a variable in its qualified name, e.g., xq, yq.

• Relative Path: The relative path of a segment ς to an ancestor a is the list
of names that relate a to ς under the relation →. For example, if b is a child
of a and c is child of b, the relative path of c to a is [b, c].

• Relative Namespace: The relative namespace of a variable or segment to
an ancestor a is the string formed by joining the names in the relative path of
its declaring/parent segment to a by the full stop character. For example, if a

22

3. Extension

is a segment where x is declared as a variable and b is declared as a segment.
In b, y is declared as a variable. Then the relative namespace of x to a is the
empty string and the relative namespace of y to a is “b”.

• Parameter: A parameter of a segment is a declaration of the form (x : A) in
this segment.

• Instantiation: A segment can be instantiated by giving a list of expressions.
If the segment has no parameter, the list must be empty; otherwise the ex-
pressions in the list must have the same type as the parameters of the segment
correspondingly. The result is a new segment with the variables of the parame-
ters in the old segment bound to the expressions provided as their definitions.
For example, for a segment ς with parameters [x : A, y : B, z : C], it can
be instantiated by a term of the form s [M1,M2,M3] where M1,M2,M3 are
expressions of types A,B,C respectively.

• Direct access: Items, variables and segments, in a segment ς or its descen-
dants can be accessed by the dot operation (.): on the left of the operator is
the relative namespace of the object to the segment ς whereas on the right is
the name of the object. If the relative namespace is the empty string, which
means the item is declared in ς, then this item is referred directly by its name.
Both of the relative namespace and the name are used without quotes, i.e., if
the relative namespace is “a.b.c” and the name is “x”, variable x in segment c
could be accessed from the parent of segment a by term a.b.c.x. This form of
access is called the direct access.

• Access By Instantiation: The other form of access is access by instantiation
where the segment referred by the name at the end of a relative path is instan-
tiated before the object is accessed. It has the form ς1.ςn [M1, . . . ,Mn] . x,
where [ς1, . . . , ςn] is the relative path of the segment ςn to the parent of segment
ς1, and [M1, . . . ,Mn] are the expressions used to instantiate ςn.

• Reference Confinement: Expressions in a segment ς can only refer to the
items from ς or its descendants that have already been declared. This means
that terms of the form (ς1 [M1, . . . ,Mi]ςn [N1, . . . , Nj] . x) is not needed
because instantiation on the ancestors has no effect on the descendants. We
take a step further and consider terms of this form illegal in our language. We
call this The Rule of Reference Confinement.

3.1 Syntax of the Extended Language
We introduce below the abstract syntax of the extended language, for the concrete
syntax see appendix A.4. Expressions in the extended language are defined as
follows:

Definition 3.1.1 (Expression)

23

3. Extension

(i) Terms of the form U , [x : A]M , [D]M as defined in 2.2.1 are expressions in
the extended language with the same meaning.

(ii) Given a non-empty list of names [ς1, . . . , ςn], a name x and a possibly empty
list of tuples [(M1, x1), . . . , (Mi, xi)] where Mj represents an expression and xj
a name, a new form of term

ς1.ςn [(M1, x1), . . . , (Mi, xi)] . x

is an expression which belongs to the subset K. When the list of tuples is not
empty, it represents an access by instantiation to the variable x in the segment
ςn, whose relative path to the current segment is [ς1, . . . , ςn]. In this case, x1
to xi represent the names of the parameters of ςn that should be bound to
expressions M1 to Mi correspondingly; otherwise it represents a direct access
to the variable x in the segment ςn. Pairing each expression with the name
of its corresponding parameter is not mandatory but helps to facilitate the
evaluation and type checking procedure.

Declarations in the extended language are defined as follows.

Definition 3.1.2 (Declaration)

(i) Terms of the form x : A, x : A = B as defined in 2.2.2 are still declarations in
the extended language and have the same meaning.

(ii) Given a name ς and a possibly empty list of declarations ds, a term of the form

ς = Seg ds

is a declaration of a segment ς consisting of the list of declarations ds.

(iii) Given a name ς, a non-empty list of names [ς1, . . . , ςn] and a possibly empty
list of tuples [(M1, x1), . . . , (Mi, xi)], a term of the form

ς = ς1.ςn [(M1, x1), . . . , (Mi, xi)]

is a declaration of a segment ς by the instantiation of another segment ςn. The
relative path of ςn to the current segment is [ς1, . . . , ςn].

A program in the extended language consists of a list of declarations which belong
to the default segment ς-root. Each segment is uniquely identified by its path and
each variable is uniquely identified by its qualified name. A summary of the syntax
of the extended language can be found in table 3.1.

3.2 Operational Semantics
In the evaluation operation, each segment has a representation of an environment.
The fact that segments can be nested suggests a tree-like structure for the environ-
ment.

24

3. Extension

A,M ::= U | K | [x : A]M | [D]M
K ::= x | ς1.ςn [(M1, x1), . . . , (Mi, xi)] . x | KM
D ::= x : A = M
Seg ::= ς = Seg [Decl] | ς = ς1.ςn [(M1, x1), . . . , (Mi, xi)]
Decl ::= x : A | D | Seg
P ::= [Decl]

Table 3.1: Syntax of the Extended Language

Definition 3.2.1 (Environment)
An environment ρ is a stack structure with an attribute p which represents the path
of its corresponding segment and can be expressed in one of the following forms.

• () represents an empty environment.

• (ρ1, x = q) extends a smaller environment ρ1 by binding a variable x to a
q-expression q; ρ shares the same path with ρ1.

• (ρ1, D) extends a smaller environment ρ1 by a definition; ρ shares the same
path with ρ1.

• (ρ1, ς = ρ′) extends a smaller environment ρ1 by a sub-environment ρ′ which
is a child segment with name ς; ρ shares the same path with ρ1. If we denote
the path of ρ as ρp, then the path of ρ′ is ρ′p = ρp + [ς].

The definition of q-expression in the extended language is the same as 2.3.2 and we
still use the notation Mρ = q to express that the expression M is evaluated to q in
the environment ρ. Semantics of the extended language is given in table 3.2.

Uρ = U
(KN)ρ = app(Kρ, Nρ)
([x : A]B)ρ = 〈[x : A]B, ρ〉
([D]M)ρ = M(ρ,D)
xρ = ρ(x)
(ς1.ςn [(M1, x1), . . . , (Mi, xi)] . x)ρ = let ρ1 = ιρ([ς1, . . . , ςn], [(M1, x1) . . . , (Mi, xi)])

in ρ1(x)

Table 3.2: Semantics of the Extended Language

The evaluation rules for expressions in forms of U, (KN), [x : A]M, [D]M remain
the same as that in table 2.3. To evaluate variables from the current segment and
variables accessed by instantiation, two auxiliary functions are needed.

• ρ(x): evaluates the variable x in environment ρ.1

• ιρ(rp, ens): gets the environment corresponding to the segment which is the
1We overload this function with a new definition.

25

3. Extension

result of instantiation on another segment by a list of tuples ens. The relative
path of the segment being instantiated to ρ2 is rp.

Function ρ(x) relies on function Q(ρp, x): given the path of ρ, it returns the qualified
name of variable x in ρ. The definition of ρ(x) is given in table 3.3.

()(xq) = xq
()(x) = Q(()p, x)

(ρ, x′ = q)(x) = if x == x′ then q else ρ(x)
(ρ, x′ : A = B)(x) = if x == x′ then Bρ else ρ(x)

(ρ, ς = ρ′)(x) = ρ(x)

Table 3.3: Function ρ(x)

Function ι relies further on function findSegEnv and two operations mfst, msnd.

• findSegEnv(rp, ρ): finds the environment ρ1 whose relative path to ρ is rp. We
use the notation ρ1 = rp ρ to express this function for brevity.

• mfst: extracts the first element from each tuple in a list, so for a list of tuples
of the form [(a1, b1), . . . , (an, bn)], the result is [a1, . . . , an].

• msnd: extracts the second element from each tuple in a list, so for a list of
tuples of the form [(a1, b1), . . . , (an, bn)], the result is [b1, . . . , bn].

The definition of ι is given in table 3.4, where esρ represents the evaluation on a list
of expressions es in the environment ρ; (ρ1,

∑
i(xi = qi)) represents the environment

which extends ρ1 by binding the variables xi from the list ns to the q-expressions qi
from qs.

ιρ(rp, ens) = let ρ1 = rp ρ, es = mfst(ens),
ns = msnd(ens), qs = esρ
in (ρ1,

∑
i(xi = qi)), xi ∈ ns, qi ∈ qs

Table 3.4: Function ι

3.3 Type Checking Algorithm
During the type checking process, each segment has a representation of a type
checking context which is constructed in a tree-like structure.

2More precisely, it should be the segment represented by ρ. To avoid verbosity, we adopt the
practice to use the word “environment (ρ)” instead of the phrase “the segment represented by the
environment (ρ)” whenever there is no ambiguity. We use the same practice when we talk about
type checking context in the following sections.

26

3. Extension

Definition 3.3.1 (Type Checking Context)
A type checking context Γ is a stack structure with an attribute p which represents
the path of its corresponding segment and can be expressed in one of the following
forms.

• () represents an empty context.

• (Γ1, x : A) extends a smaller context Γ1 by a declaration; Γ shares the same
path with Γ1.

• (Γ1, D) extends a smaller context Γ1 by a definition; Γ shares the same path
with Γ1.

• (Γ1, ς = Γ′) extends a smaller context Γ1 by a sub-context Γ′ which represents
the child segment with name ς; Γ shares the same path with Γ1. If we denote
the path of Γ as Γp, the path of Γ′ is Γ′p = Γp + [ς].

Given a type checking context Γ and a lock strategy s, we can get the evaluated form
of the type of a variable x by the function getType which is denoted as Γ(s, x). The
function Γ(s, x) will always succeed because only variables from Γ or its descendants
are queried for types. This is guaranteed by (1) the rule of Reference Confinement
which regulates that variables outside a segment cannot be referred in the segment
and (2) a translation procedure which converts a concrete syntax tree to an abstract
syntax tree where proper declaration and usage of variables are checked. If x appears
in the form of a short name, it is declared in Γ; otherwise x is declared in a descendant
of Γ. To find the type of a variable in a descendant segment, we introduce a function
locateSeg which given a context Γ and a variable x in its qualified name, finds the
relative path of the declaring segment of x to Γ. The relative path rp returned from
this function can be used to get the context of the descendant with the function
findSegCtx. We use the notation Γ1 = rp Γ to express that Γ1 is the descendant
of Γ whose relative path is rp. For a qualified name xq, the function sname(xq)
returns the short name of the variable x. The definition of Γ(s, x) is given in table
3.5.

Γ(s, xq) = let rp = locateSeg(Γ, xq), Γ1 = rp Γ
x = sname(xq) in Γ1(s, x)

(Γ′, x′ : A)(s, x) = if x′ == x then A%(s,Γ′) else Γ′(s, x)
(Γ′, x′ : A = B)(s, x) = if x′ == x then A%(s,Γ′) else Γ′(s, x)

(Γ′, ς = Γ1)(s, x) = Γ′(s, x)

Table 3.5: Function getType

For the type checking algorithm, the lock strategy in the extended language has the
same meaning as that of the basic language except that variables to be locked are
now specified by their qualified names. There are four forms of judgments:

27

3. Extension

checkD Γ `s d⇒ Γ′ d is a valid declaration and extends Γ to Γ′.
checkT Γ `s M ⇐ t M is a valid expression given type t.
checkI Γ `s K ⇒ t K is a valid expression and its type is inferred to be t.
checkInst Γ,Γ′ `s (M,x)⇒ Γ1 M has the same type as the variable x in Γ′. Γ1 is the

segment resulting from the instantiation on the param-
eter x of segment Γ′ by M .

Table 3.6: Forms of Judgment

3.3.1 checkD

Γ `s A⇐ U

Γ `s x : A⇒ (Γ, x : A)
(3.1)

Γ `s A⇐ U Γ `s B ⇐ A%(s,Γ)

Γ `s x : A = B ⇒ (Γ, x : A = B)
(3.2)

Γ0 `s d1 ⇒ Γ1...
Γn−1, s `s dn ⇒ Γn

Γ `s ς = Seg [d1, . . . , dn]⇒ (Γ, ς = Γn)

(
Γ0 = ε(Γp + [ς])

)
(3.3)

Γ,Γ0 `s (M1, x1)⇒ Γ1...
Γ,Γi−1 `s (Mi, xi)⇒ Γi

Γ `s ς = ς1.ςn [(M1, x1), . . . , (Mi, xi)]⇒ (Γ, ς = Γi)

(
rp = [ς1, . . . ςn]
Γ0 = rp Γ

)
(3.4)

ε(Γp+[ς]) in rule 3.3 is a function that given a path Γp+[s] returns an empty context
with that path.

3.3.2 checkInst

Γ `s M ⇐ Γ′(s, x)
Γ,Γ′ `s (M,x)⇒ U(Γ′, x,M%(s,Γ))

(3.5)

U(Γ′, x, q) is a function that turns the parameter x of the segment Γ′ to a definition,
i.e., suppose x is declared as x : A in Γ′, this function returns a new context with
the same content as Γ′ except that x has a definition x : A = q.

28

3. Extension

3.3.3 checkT

Γ `s U ⇐ U (3.6)

Γ(s, x) ∼τ(Γ) t

Γ `s x⇐ t
(3.7)

Γ `s KN ⇒ t′ t′ ∼τ(Γ) t

Γ `s KN ⇐ t
(3.8)

Γ `s A⇐ U (Γ, x : A) `s B ⇐ U

Γ `s [x : A]B ⇐ U
(3.9)

Γ `s A⇐ U A%(s,Γ) ∼τ(Γ) A
′
ρ′ (Γ, x : A) `s B ⇐ B′(ρ′,x′=xq)

Γ `s [x : A]B ⇐ 〈[x′ : A′]B′, ρ′〉

(
xq = Q(Γp, x)

)
(3.10)

Γ `s A⇐ U Γ `s B ⇐ A%(s,Γ) (Γ, x : A = B) `s M ⇐ t

Γ `s [x : A = B]M ⇐ t
(3.11)

Γ,Γ0 `s (M1, x1)⇒ Γ1...
Γ,Γi−1 `s (Mi, xi)⇒ Γi Γi(s, x) ∼τ(Γ) t

Γ `s ς1.ςn [(M1, x1), . . . , (Mi, xi)].x⇐ t

(
rp = [ς1, . . . ςn]
Γ0 = rp Γ

)
(3.12)

Q(Γp, x) in rule 3.10 is a function that given the path of Γ returns the qualified
name of variable x from Γ.

3.3.4 checkI

Γ `s x⇒ Γ(s, x) (3.13)

Γ `s K ⇒ 〈[x : A]B, ρ〉 Γ `s N ⇐ Aρ

Γ `s KN ⇒ B(ρ,x=n)

(
n = N%(s,Γ)

)
(3.14)

Γ,Γ0 `s (M1, x1)⇒ Γ1...
Γ,Γi−1 `s (Mi, xi)⇒ Γi

Γ `s ς1.ςn [(M1, x1), . . . , (Mi, xi)].x⇒ Γi(s, x)

(
rp = [ς1, . . . , ςn]
Γ0 = rp Γ

)
(3.15)

29

3. Extension

3.4 Linear Head Reduction
The function linear head reduction in the extended language has the same definition
as that in table 2.13, so does the function readBack. The definition of headRedV,
however, is different because of the introduction of segments.

δ∗(Γ, x) = V(Γ, x)
δ∗(Γ, ς1.ςn
[(M1, x1), . . . , (Mi, xi)] . x)

= let rp = [ς1, . . . , ςn], ρ = %([],Γ),
ρ1 = ιρ(rp, [(M1, x1), . . . , (Mi, xi)]),
in V(ρ1, x)

δ∗(Γ, K N) = let k = δ∗(Γ, K), n = N() in app(k, n)

Table 3.7: Function headRedV in the Extended Language

The function getVal (V) in table 3.7 is overloaded to express: (1) V(Γ, x), the
function that gets the least evaluated form of variable x in the context Γ; and
(2) V(ρ, x), the function that gets the least evaluated form of variable x in the
environment ρ. A difference with table 2.11 is that the variable x here could be
in the form of its qualified name xq. In this case, the function needs to locate the
sub-context where x is declared in a similar way as that of table 3.5. We give the
definition of getVal for both cases in table 3.8.

V(Γ, xq) = let rp = locateSeg(Γ, xq), Γ′ = rp Γ, x = sname(xq) in V(Γ′, x)
V((), x) = Q(()p, x)
V(Γ′, ς = Γ1) = V(Γ′, x)
V((Γ′, x′ : A), x) = if x′ == x then Q(Γ′p, x) else V(Γ′, x)
V((Γ′, x′ : A = B), x) = if x′ == x then B() else V(Γ′, x)

V((), x) = Q(()p, x)
V(ρ′, x′ = ρ1) = V(ρ′, x)
V((ρ′, x′ : A = B), x) = if x′ == x then B() else V(ρ′, x)

Table 3.8: Function getVal

An example of the function head reduction in the extended language is given in
appendix A.8, which is the result of applying head reduction repeatedly to the
constant “loop” and the results are given in appendix A.7. It shows the same result
as in appendix A.6 but is performed with the involvement of segment.

30

4
Results

The theoretical result of this project is that we designed and implemented a de-
pendently typed language. Particularly, we studied and implemented a definition
mechanism where the constants of a program can be locked/unlocking during the
type checking process. This definition mechanism with its locking/unlocking func-
tionality prove to be an effective way to improve the efficiency in the type checking
algorithm in the dependent type theory. By extending the language with a module
system, we showed that the definition mechanism is flexible and scalable enough to
incorporate more language features.

The practical result of the project is a REPL (read-evaluate-print-loop) program
developed in Haskell where a source program of our language could be loaded and
type checked. The program features a static context and a dynamic context. The
former is the context formed by loading a source program and can be extended
by declarations from the user input. The latter serves as a buffer where the user
can give names to expressions. Values of the constants from the static context
cannot be changed, while variables from the dynamic context can be bound to
new expressions without restriction. The feature of the dynamic context, together
with other commands such as hRed (head reduction) are provided for ease of use
to experiment with the definition mechanism built into the language. The source
code of the program could be found at the Github repository: https://github.
com/WANG-QUFEI/Master-Thesis. A summary of the commands provided by the
program is listed in appendix A.9.

31

https://github.com/WANG-QUFEI/Master-Thesis
https://github.com/WANG-QUFEI/Master-Thesis

4. Results

32

5
Conclusion

In this paper we presented a language of dependent type theory as an extension to
the pure lambda calculus with dependent types and definitions. We studied and
implemented a definition mechanism in the language where convertibility checking
with the presence of definitions during the type checking process could be handled
more efficiently. As an application of the definition mechanism, we extended the
language with a module system to show that the core concepts used in this mech-
anism, such as using closures to defer computation, transforming constants into
primitives to avoid definition expansion, checking the convertibility of terms on the
level of their intermediate form of evaluation by their syntactic identity, etc., could
be adapted to support new language features. The experience we got in the design
and implementation of the language helps us understand better the dependent type
theory and the inherent difficulties in its type checking algorithm.

Our work could be seen as a study into the basic problem of how definitions in the
dependent type theory should be presented in an efficient way. As larger programs
and more sophisticated problems put more demand on the performance of the proof
assistant systems, a practical and efficient definition mechanism is crucial to tackle
these challenges for the further development of the dependent type theory.

Future work based on this project could be conducted in three directions:

1. More language facilities towards a well defined core language for functional
programming: such as language support for basic data types, functions with
the ability to pattern match on expressions and user defined (inductive) data
types.

2. Metatheory study on the properties of this language as a logic system, such
as the decidability of the type checking algorithm.

3. Incorporation of the languages formulated in the work of AUTOMATH. As
one of the pioneering work in the field of dependent type theory, AUTOMATH
provides ideas that are borrowed by this work and more left to be studied for
a better understanding of the dependent type theory and the foundation of
mathematical logic.

33

5. Conclusion

34

Bibliography

[1] N. G. De Bruijn, “A survey of the project automath,” in Studies in Logic and
the Foundations of Mathematics, vol. 133, pp. 141–161, Elsevier, 1994.

[2] G. Huet, G. Kahn, and C. Paulin-Mohring, “The coq proof assistant a tutorial,”
Rapport Technique, vol. 178, 1997.

[3] U. Norell, “Dependently typed programming in agda,” in International school
on advanced functional programming, pp. 230–266, Springer, 2008.

[4] B. Barras, “A module system based on opacity,” 2016.

[5] H. Balsters, “Lambda calculus extended with segments: Chapter 1, sections 1.1
and 1.2 (introduction),” in Studies in Logic and the Foundations of Mathemat-
ics, vol. 133, pp. 339–367, Elsevier, 1994.

[6] L. van Benthem Jutting, Checking Landau’s "Grundlagen" in the Automath
system. StichtingMathematisch Centrum, 1977.

[7] T. Coquand, Y. Kinoshita, B. Nordström, and M. Takeyama, “A simple type-
theoretic language: Mini-tt,” From Semantics to Computer Science; Essays in
Honour of Gilles Kahn, pp. 139–164, 2009.

[8] P. J. Landin, “The mechanical evaluation of expressions,” The computer jour-
nal, vol. 6, no. 4, pp. 308–320, 1964.

[9] N. G. de Bruijn, “Generalizing automath by means of a lambda-typed lambda
calculus,” in Studies in Logic and the Foundations of Mathematics, vol. 133,
pp. 313–337, Elsevier, 1994.

[10] A. J. Hurkens, “A simplification of girard’s paradox,” in International Confer-
ence on Typed Lambda Calculi and Applications, pp. 266–278, Springer, 1995.

35

Bibliography

36

A
Appendix

A.1 Evaluation Using Closure
In the following demonstration, we use→λ to denote the erase of λs in β-reduction,
→s to denote the substitution and ()e to denote the environment.

(λu . u (u b))(λz y x . a (z x) y)→λ

(u (u b))(u = λz y x . a (z x) y)e →s

(λz y x . a (z x) y)((λz y x . a (z x) y) b)→λ

(λy x . a (z x) y)(z = (λz y x . a (z x) y) b)e

To show that the problem of capture of names could be avoided, we apply the result
to arguments y0, x0.

(λy x . a (z x) y)(z = (λz y x . a (z x) y) b)e y0 x0 →λ

(a (z x) y)(z = (λz y x . a (z x) y) b, y = y0, x = x0)e →s

a (((λz y x . a (z x) y) b) x0) y0 →λ

a ((λy x . a (z x) y)(z = b)e x0) y0 →λ

a (λx . a (z x) y)(z = b, y = x0)e y0

Suppose we apply the closure in the middle to another argument x1, we get

(λx . a (z x) y)(z = b, y = x0)e x1 →λ

(a (z x) y)(z = b, y = x0, x = x1)e →s

a (b x1) x0

which is correct.

A.2 η-Conversion
To check η-convertibility, instead of using a predicate as that in table 2.9, two new
forms of judgments are needed.

I

A. Appendix

checkCI Γ `s q1 q2 ⇒ t q1 and q2 are convertible and their type can be inferred as t
checkCT Γ `s q1 q2 ⇐ t q1 and q2 are convertible given t as their type

Table A.1: New Judgments for Checking η-Convertibility

A.2.1 CheckCI

Γ `s U ∼ U ⇒ U (A.1)

x == y

Γ `s x ∼ y ⇒ Γ(s, x) (A.2)

Γ `s k1 ∼ k2 ⇒ 〈[x : A]B, ρ〉 Γ `s v1 ∼ v2 ⇐ Aρ

Γ `s (k1 v1) ∼ (k2 v2)⇒ B(ρ,x=v1)
(A.3)

Γ `s 〈[x : A]B, ρ〉 ∼ 〈[x′ : A′]B′, ρ′〉 ⇐ U

Γ `s 〈[x : A]B, ρ〉 ∼ 〈[x′ : A′]B′, ρ′〉 ⇒ U
(A.4)

A.2.2 CheckCT

(Γ, y : Aρ) `s (k1 y)%(s,Γ) ∼ (k2 y)%(s,Γ) ⇐ B(ρ,x=y)

Γ `s k1 ∼ k2 ⇐ 〈[x : A]B, ρ〉

(
y = ν(τ(Γ), x)

)
(A.5)

Γ `s Aρ ∼ A′ρ′ ⇐ U (Γ, y : Aρ),`s B(ρ,x=y) ∼ B′(ρ′,x′=y) ⇐ U

Γ `s 〈[x : A]B, ρ〉 ∼ 〈[x′ : A′]B′, ρ′〉 ⇐ U

(
y = ν(τ(Γ), x1)

)
(A.6)

Γ `s v1 ∼ v2⇒ t′ Γ `s t ∼ t′ ⇒ _
Γ `s v1 ∼ v2⇐ t

(A.7)

A.3 Concrete Syntax for the Basic Language
position token Id ((char - ["\\\n\t[]():;,.0123456789 "])

(char - ["\\\n\t[]():;,. "])*);

entrypoints Context, CExp, CDecl;

Ctx. Context ::= [CDecl];

II

A. Appendix

CU. CExp2 ::= "*";
CVar. CExp2 ::= Id;
CApp. CExp1 ::= CExp1 CExp2;
CArr. CExp ::= CExp1 "->" CExp;
CPi. CExp ::= "[" Id ":" CExp "]" CExp;
CWhere. CExp ::= "[" Id ":" CExp "=" CExp "]" CExp ;

CDec. CDecl ::= Id ":" CExp;
CDef. CDecl ::= Id ":" CExp "=" CExp;

terminator CDecl ";";

coercions CExp 3;

layout toplevel;

comment "--";

comment "{-" "-}";

A.4 Concrete Syntax for the Extended Language
position token Id ((char - ["\\\n\t[]():;,.0123456789 "])

(char - ["\\\n\t[]():;,. "])*);

entrypoints Context, Exp, Decl;

Ctx. Context ::= [Decl] ;

U. Exp2 ::= "*" ;
Var. Exp2 ::= Ref ;
SegVar. Exp2 ::= Ref "[" [Exp] "]" "." Id ;
App. Exp1 ::= Exp1 Exp2 ;
Arr. Exp ::= Exp1 "->" Exp ;
Abs. Exp ::= "[" Id ":" Exp "]" Exp ;
Let. Exp ::= "[" Id ":" Exp "=" Exp "]" Exp ;

Dec. Decl ::= Id ":" Exp ;
Def. Decl ::= Id ":" Exp "=" Exp ;
Seg. Decl ::= Id "=" "seg" "{" [Decl] "}" ;
SegInst. Decl ::= Id "=" Ref "[" [Exp] "]" ;

Ri. Ref ::= Id ;
Rn. Ref ::= Ref "." Id ;

separator Decl ";" ;

separator Exp "," ;

III

A. Appendix

coercions Exp 3;

layout "seg";

layout toplevel;

comment "--";

comment "{-" "-}";

A.5 Variation of Hurkens Paradox
Pow : * -> * =

[X : *] X -> *

T : * -> * =
[X : *] Pow (Pow X)

abs : * = [X : *] X

not : * -> * = [X : *] X -> abs

A : * = [X : *] (T X -> X) -> X

intro : T A -> A =
[t : T A][X : *][f : T X -> X] f ([g : Pow X] t ([z : A] g (z X f)))

match : A -> T A =
[z : A]z (T A) ([t : T (T A)][g : Pow A] t ([x : T A] g (intro x)))

delta : A -> A = [z : A] intro (match z)

Q : T A = [p : Pow A][z : A]match z p -> p z

cDelta : Pow A -> Pow A = [p : Pow A][z:A]p (delta z)

a0 : A = intro Q

lem1 : [p : Pow A]Q p -> p a0 = [p : Pow A][h : Q p]h a0 ([x : A]h (delta x))

Ed : Pow A = [z:A][p:Pow A]match z p -> p (delta z)

lem2 : Ed a0 = [p:Pow A]lem1 (cDelta p)

B : Pow A = [z : A] not (Ed z)

lem3 : Q B = [z : A] [k : match z B] [l : Ed z] l B k ([p:Pow A]l (cDelta p))

IV

A. Appendix

lem4 : not (Ed a0) = lem1 B lem3

loop : abs = lem4 lem2

A.6 Example of Head Reduction
1: lem4 lem2
2: lem1 B lem3 lem2
3: lem3 a0 ([x : A] lem3 (delta x)) lem2
4: lem2 B ([x : A] lem3 (delta x)) ([p : Pow A] lem2 (cDelta p))
5: lem1 (cDelta B) ([x : A] lem3 (delta x))

([p : Pow A] lem2 (cDelta p))
6: lem3 (delta a0) ([x : A] lem3 (delta (delta x)))

([p : Pow A] lem2 (cDelta p))
7: lem2 (cDelta B) ([x : A] lem3 (delta (delta x)))

([p : Pow A] lem2 (cDelta (cDelta p)))
8: lem1 (cDelta (cDelta B)) ([x : A] lem3 (delta (delta x)))

([p : Pow A] lem2 (cDelta (cDelta p)))
9: lem3 (delta (delta a0)) ([x : A] lem3 (delta (delta (delta x))))

([p : Pow A] lem2 (cDelta (cDelta p)))
10: lem2 (cDelta (cDelta B)) ([x : A] lem3 (delta (delta (delta x))))

([p : Pow A] lem2 (cDelta (cDelta (cDelta p))))

A.7 Variation of Hurkens Paradox with Segment
lambek = seg

T : * -> *

mon : [X : *][Y : *] (X -> Y) -> (T X -> T Y)

A : * = [X : *] (T X -> X) -> X

intro : T A -> A =

[z : T A][X : *][f : T X -> X]

[u : A -> X = [a : A] a X f]

[v : T A -> T X = mon A X u] f (v z)

match : A -> T A = [a : A] a (T A) (mon (T A) A intro)

mint : T A -> T A =

[z : T A] match (intro z)

V

A. Appendix

Pow : * -> * = [X:*] X -> *

T : * -> * = [X : *] Pow (Pow X)

mon0 : [X:*][Y:*](X -> Y) -> (T X -> T Y) =

[X:*][Y:*][f:X -> Y][u : T X][v: Pow Y] u ([x:X] v (f x))

s = lambek [T, mon0]

A : * = s.A

intro : T A -> A = s.intro

match : A -> T A = s.match

abs : * = [X : *] X

not : * -> * = [X : *] X -> abs

delta : A -> A = [z : A] intro (match z)

Q : T A = [p : Pow A][z : A] match z p -> p z

cDelta : Pow A -> Pow A = [p : Pow A] [z:A] p (delta z)

a0 : A = intro Q

lem1 : [p : Pow A] Q p -> p a0 = [p : Pow A][h : Q p] h a0 ([x : A] h (delta x))

Ed : Pow A = [z:A][p:Pow A] match z p -> p (delta z)

lem2 : Ed a0 = [p:Pow A] lem1 (cDelta p)

B : Pow A = [z : A] not (Ed z)

lem3 : Q B = [z : A] [k : match z B] [l : Ed z] l B k ([p:Pow A] l (cDelta p))

lem4 : not (Ed a0) = lem1 B lem3

loop : abs = lem4 lem2

A.8 Example of Head Reduction With Segment
1: lem4 lem2
2: lem1 B lem3 lem2
3: lem3 a0 ([x : A] lem3 (delta x)) lem2
4: lem2 B ([x : A] lem3 (delta x)) ([p : Pow A] lem2 (cDelta p))

VI

A. Appendix

5: lem1 (cDelta B) ([x : A] lem3 (delta x)) ([p : Pow A] lem2 (cDelta p))
6: lem3 (delta a0) ([x : A] lem3 (delta (delta x)))

([p : Pow A] lem2 (cDelta p))
7: lem2 (cDelta B) ([x : A] lem3 (delta (delta x)))

([p : Pow A] lem2 (cDelta (cDelta p)))
8: lem1 (cDelta (cDelta B)) ([x : A] lem3 (delta (delta x)))

([p : Pow A] lem2 (cDelta (cDelta p)))
9: lem3 (delta (delta a0)) ([x : A] lem3 (delta (delta (delta x))))

([p : Pow A] lem2 (cDelta (cDelta p)))
10: lem2 (cDelta (cDelta B)) ([x : A] lem3 (delta (delta (delta x))))

([p : Pow A] lem2 (cDelta (cDelta (cDelta p))))

A.9 REPL Command List
<statement> A statement could be an expression or a declaration.

For an expression, it will be type checked and evaluated and the
result will be bound to the name “_it” in the dynamic context.
For an declaration, it will be type checked and added to the static
context.

:load <file_path> Load the file of path <file_path> with the current locking strat-
egy. Once successfully loaded, the context of the file will become
the new static context and the dynamic context will be reset to
its initial state.

:let <name> = <expression> Bind an expression to a name. The expression will be type checked
first and if it is valid, its type will be inferred and a definition
consisting of the name, the type and the expression will be added
to the dynamic context.

:type <expression> Infer the type of an expression after it is type checked.
:hRed <expression> Apply head reduction on an expression after it is type checked.
:show -lock | -context Option “-lock”: show the current lock strategy;

Option “-context”: show the current type checking context.
:lock -all | -none | -add | -remove Change lock strategy. “-all”: lock all constants; “-none”: lock no

constant; “-add [variables]”: add a list of names to be locked; “-
remove [variables]”: remove a list of names to be locked. Default
strategy is “-none”.

:set -conversion <beta | eta> Set the convertibility check support, β-conversion or η-conversion.
:check_convert <exp1> ∼ <exp2> Check the convertibility of two expressions if they are both valid
:quit Stop and quit.
:?, :help Show this usage message.

Table A.2: REPL Command List

VII

	List of Tables
	Introduction
	Background
	Aim
	Organization
	Limitations

	Theory
	Subtleties of the System
	Syntax of the Language
	Operational Semantics
	Type Checking Algorithm
	checkD
	checkT
	checkI

	Definition Mechanism
	Linear Head Reduction
	Problem of Finding the Minimum Set of Constants

	Extension
	Syntax of the Extended Language
	Operational Semantics
	Type Checking Algorithm
	checkD
	checkInst
	checkT
	checkI

	Linear Head Reduction

	Results
	Conclusion
	Bibliography
	Appendix
	Evaluation Using Closure
	-Conversion
	CheckCI
	CheckCT

	Concrete Syntax for the Basic Language
	Concrete Syntax for the Extended Language
	Variation of Hurkens Paradox
	Example of Head Reduction
	Variation of Hurkens Paradox with Segment
	Example of Head Reduction With Segment
	REPL Command List

