
A computational interpretation of topos theory

Introduction

We give a computational interpretation of topos theory. A particular feature of our approach is that
we use as a metalanguage an inconsistent theory, namely a type system with a type of all types. (One
could relativize our interpretation to consistent systems if one is only interested in a predicative version
of topos theory.) This interpretation can be seen as a variation on Gandy’s interpretation of extensional
simple type theory in intensional simple type theory.

We motivate informally our semantics. An object of the topos will be interpreted by a setoid, i.e. a
type with a (type valued) equivalence relation, written ;. A morphism C → A will be interpreted by
an ordinary type theoretic function a : C → A together with a function of type∏

ρ0 ρ1:C

ρ0 ;C ρ1 −→ aρ0 ;A aρ1

The object of truth values Ω is interpreted by the type of all types with logical equivalence as equivalence
relation. If ϕ : C → Ω the judgement C ` u : ϕ will be interpreted by a section of type∏

ρ:C

ϕρ

without requiring any condition on the equality on C (on the other hand, we should have a proof of∏
ρ0 ρ1:C

ρ0 ;C ρ1 −→ ϕρ0 ↔ ϕρ1

since ϕ : C → Ω has to send equal elements of C to equal, i.e. equivalent, elements of Ω).
In this simple way, we give a computational interpretation of the axioms of topos theory. Definitional

equality of two objects, terms, proofs are interpreted by definitional equality of the corresponding inter-
pretation (in type theory, where we have a notion of definitional equality). An important point is that
in this interpretation, we justify the rule of weak conversion1

app((λb)σ, u) = b(σ, u)

but we don’t justify substitution under abstraction

(λb)σ = λb(σp, q)

This is because our notion of morphism between setoid does not require definitional preservation of the
reflexivity rule (contrary to what happens for morphisms of simplicial sets which have to commute with
degeneracy maps).

1For this we have to take as definition of equality at function type (a, a′) ; (b, b′) to be∏
ρ0 ρ1:C

ρ0 ;C ρ1 −→ aρ0 ;A bρ1

and not the following definition, like in [2] ∏
ρ:C

aρ;A bρ

1

We have a natural interpretation of equality eq : A × A → Ω by taking eq(ρ0, ρ1) to be the type
ρ0 ;A ρ1.

The reason why we can interpret topos theory, despite having only weak conversion, is because our
notion of equality of morphisms is strong: two maps a0 a1 : C → A are equal iff we have a section p of
type ∏

ρ:C

a0ρ; a1ρ

i.e. C ` p : eq(a0, a1). With this notion of equality all rules of topos theory (even with natural number
objects) are satisfied.

It is interesting to compare our interpretation of topos theory with the one in Lambek and Scott [4]
which is an interpretation in simple type theory. This interprets a function as a functional relation, why
we interpret a function as a functional term of a dependent type theory. (For instance the successor
function is interpreted here by itself, while it is interpreted by the functional relation m = n+ 1 in [4].)

1 Syntax

Type formations
A,B ::= N | Ω | A→ B | A×B | {A|ϕ}

Term formations

t, u ::= eq | p | q | t, u | λt | app(t, u) | 1 | tu | ιt | E(t, t) | Ref | ϕ

ϕ ::= ∀ϕ | ∃ϕ | ϕ ∧ ϕ | ϕ⇒ ϕ

We have two kinds of judgement t : A→ B and A ` t : ϕ if ϕ : A→ Ω
Typing rules

A `
1 : A→ A

t : A→ B u : B → C

ut : A→ C

ϕ : A→ Ω

{A | ϕ} `
ϕ : A→ Ω

p : {A | ϕ} → A

ϕ : A→ Ω

{A | ϕ} ` q : ϕp

t : C ×A→ B

λt : C → (A→ B)

w : C → A×B u : C → A

app(w, u) : C → B

t : C → A C ` u : ψt

(t, u) : C → {A | ψ}
t : C → A u : C → B

(t, u) : C → A×B
C ` t0 : ϕ0 C ` t1 : ϕ1

C ` (t0, t1) : ϕ0 ∧ ϕ1

C ` t : ϕ0 ∧ ϕ1

C ` pt : ϕ0

C ` t : ϕ0 ∧ ϕ1

C ` qt : ϕ1

ϕ : C ×A→ Ω

∀ϕ : C → Ω

ϕ : C ×A→ Ω

∃ϕ : C → Ω

C ×A ` b : ϕ

C ` λb : ∀ϕ
C ` w : ∀ϕ a : C → A

C ` app(w, a) : ϕ[a]

where [a] = (1, a) : C → C ×A if a : C → A

{C | ϕ} ` b : ψp

C ` λb : ϕ⇒ ψ

C ` w : ϕ⇒ ψ C ` u : ϕ

C ` app(w, u) : ψ

a : C → A C ` u : ϕ[a]

C ` (a, u) : ∃ϕ
C ×A ` w : ϕ⇒ ψp C ` v : ∃ϕ

C ` E(v, w) : ψ

The rules for equality are

eq : A×A→ Ω
a : C → A

C ` Ref a : eq(a, a)

2

a0 a1 : C → A C ` u : eq(a0, a1) C ` v : ϕ[a0]

C ` J(u, v) : ϕ[a1]

We have extensionality and a weak form of univalence

C ` u : ∀eq(b0, b1)

C ` ext(u) : eq(λb0, λb1)

C ` u : (ϕ0 ⇒ ϕ1) ∧ (ϕ1 ⇒ ϕ0)

C ` univ(u) : eq(ϕ0, ϕ1)

Equations (definitional equality)

t1 = t = 1t p(t, u) = t q(t, u) = u

(t0, t1)u = (t0u, t1u) app(t0, t1)u = app(t0u, t1u) E(t0, t1)u = E(t0u, t1u)

app((λb)u, v) = b(u, v) E((a, u), w) = app(w[a], u)

These equations will be justified by the semantics in the next section. Notice that this semantics does
not justify the rule

(λb)σ = λb(σp, q)

2 Semantics

The semantics is really a translation in a type system with a type of all types extended with strong sums.
For the translation we call object the types of the interpreted theory, while we call types the type of the
interpreting theory.

An object is interpreted by a setoid i.e. a type A with a relation (;) : A → A → Type. A
term b : A → B is interpreted by a pair of type theoretic functions bρ : B for ρ : A with a function
bα : bρ0 ; bρ1 if α : ρ0 ; ρ1. The object Ω is interpreted by Type with the relation A ; B defined as
A ↔ B = (A → B) × (B → A). A term C ` aϕ is then interpreted by a section aρ : ϕρ if ρ : C. The
setoid A → B is the setoid of pairs (f, f ′) where f : A → B and f ′α : fρ0 ; fρ1 if α : ρ0 ; ρ1. The
relation (f, f ′) ; (g, g′) is defined to be∏

u0 u1:A

u0 ;A u1 −→ f u0 ;B g u1

This translation can be seen as a computational justification of the rules. For instance we have

app(w, u)ρ = wρ (uρ)

and
app(w, u)α = wα (uρ0) (uρ1) (uα)

if α : ρ0 ; ρ1.
It can then be used to check conversion during the type checking: for checking that we have

t = u : C → A

we check that we have
ρ : C ` tρ = uρ : A

and
ρ0 ρ1 : C,α : ρ0 ;C ρ1 ` tα = uα : tρ0 ;A tρ1

The last rules concern the description axiom. It gives a computational interpretation of Church’s
description symbol ι. We have two maps x0, x1 : C ×A×A→ C ×A and we define

∃61ϕ = ∀∀ϕx0 ∧ ϕx1 ⇒ eq(x0, x1)

3

and ∃!ϕ = ∃ϕ ∧ ∃61ϕ. We have thus
C ` (a, u, v) : ∃!ϕ

provided a : C → A and C ` u : ϕ[a] and C ` v : ∃61ϕ. Given ψ : A→ Ω the description rule is

C ` w : ∃!ψp
ι(w) : C → {A | ψ}

and the interpretation is
ι(w)ρ = (u, u′)

where wρ = (u, u′, p) with u : A and u′ : ψu. Given α : ρ0 ;C ρ1 we compute wρ0 = (u0, u
′
0, p0) and

wρ1 = (u1, u
′
1, p1) where ui : A, u′i : ψui and

pi :
∏
x y:A

ψx× ψy → x;A y

We can then take
ι(w)α = p1 u0 u1 (u′0, u

′
1) : u0 ; u1

so that we have
ι(w)α : ι(w)ρ0 ; ι(w)ρ1

as required.
In this type system, it should be possible to define the quotient type using equivalence classes, and

for instance, to define Z as a quotient of N×N. Voevodsky had such a development using resizing rules
and equivalence and it would be interesting to see if we get a natural computational content of this
development in this way.

References

[1] J. Cartmell. Generalised algebraic theories and contextual categories. Ann. Pure Appl. Logic 32
(1986), no. 3, 209–243.

[2] R. Gandy. On The Axiom of Extensionality -Part I. The Journal of Symbolic Logic, Vol. 21, 1956.

[3] M. Hofmann. Extensional concepts in intensional type theory. Ph.D. thesis, Edinburgh, 1994.

[4] J. Lambek and P.J. Scott. Introduction to higher order categorical logic. Cambridge studies in
advanced mathematics 7, 1986.

[5] P. Martin-Löf. An intuitionistic theory of types: predicative part. Logic Colloquium, 1973.

[6] P. Martin-Löf. About models for intuitionistic type theories and the notion of definitional equality
Proceedings of the Third Scandinavian Symposium, North-Holland, 1975.

[7] A. Prouté. On the role of description. JPAA 158 (2001) 295-307.

[8] B. Russell. The Theory of Implications. American Journal of Mathematics, 1906.

[9] V. Voevodsky. Univalent foundations project. NSF grant application, 2010.

4

