Some Lemmas around Peskine's Proof of Zariski Main Theorem

January 7, 2008

Introduction

We present a constructive reading of Peskine's proof of Zariski Main Theorem [4].

1 Main Lemma

Lemma 1.1 Let k be a field, and P, Q two polynomials in k[X,T]. There exists G, P₁, Q₁ in k[X,T] such that $P = GP_1$, $Q = GQ_1$ and G belongs to the ideal $\langle P, Q \rangle$ in k(X)[T].

Proof. This follows from Theorem 4.7 of [3].

Let A be a ring and \mathfrak{m} an ideal of A. If $\phi : A \to k$ is a map from A to a field k we still write $\phi : A[X,T] \to k[X,T]$ for the canonical extension of this map to the polynomial ring A[X,T] (that is $\phi(\Sigma a_{ij}X^iT^j) = \Sigma \phi(a_{ij})X^iT^j)$. We assume given two polynomials P(X,T) = $T^n + p_1(X)T^{n-1} + \ldots + p_n(X)$ and $Q(X,T) = X^mT^l + \mu(X,T)$ in A[X,T] with $\mu(X,T)$ in $\mathfrak{m}A[X,T]$.

Lemma 1.2 For any map $\phi : A \to k$ there exists a polynomial $S = T^p + \nu(X, T)$ in A[X, T], with $\nu(X, T)$ in $\mathfrak{m}A[X, T]$ such that $\phi(S)$ belongs to the ideal $\langle \phi(P), \phi(Q) \rangle$ in k(X)[T].

Proof. We apply Lemma 1.1 to $\phi(P)$ and $\phi(Q)$. We have $\phi(P) = GA$, $\phi(Q) = GQ_1$ with P_1, Q_1 in k[X,T] and G belongs to the ideal $\langle \phi(P), \phi(Q) \rangle$ in k(X)[T]. We can assume that G is of the form $T^k + q_1(X)T^{k-1} + \ldots + q_k(X)$. Let R be the integral closure of $\phi(A)$ in k. Using Kronecker's Theorem, we see that all coefficients of G, P_1, Q_1 are in R. Modulo $\sqrt{\phi(\mathfrak{m})R}$ we get that $\phi(Q)$ if $X^m T^l$ and hence G is T^k modulo $\sqrt{\phi(\mathfrak{m})R}$. Hence all coefficients of q_1, \ldots, q_k are in $\sqrt{\phi(\mathfrak{m})R}$. Hence [1], G divides a polynomial $\phi(S)$, with $S = T^p + \nu(X,T)$ in A[X,T], and $\nu(X,T)$ in $\mathfrak{m}A[X,T]$.

To each ring A we can associate its spectrum for the constructible topology, which has for basic open $D(a) \cap V(b_1, \ldots, b_n)$. We have a sheaf of rings which associates to $D(a) \cap V(b_1, \ldots, b_n)$ the reduced ring $(A/\sqrt{\langle b_1, \ldots, b_n \rangle})[1/a]$. The stalk of this sheaf at the point \mathfrak{p} is the residual field $k_{\mathfrak{p}}$. We can apply Lemma 1.2: we obtain a continuous family of polynomials $S_{\mathfrak{p}}(X,T) =$ $T^{p_{\mathfrak{p}}} + \nu_{\mathfrak{p}}(X,T)$ in $k_{\mathfrak{p}}[X,T]$ and maps $\phi_{\mathfrak{p}} : A \to k_{\mathfrak{p}}$ such that $\phi_{\mathfrak{p}}(S_{\mathfrak{p}})$ belongs to the ideal $\langle \phi_{\mathfrak{p}}(P), \phi_{\mathfrak{p}}(Q) \rangle$ in $k_{\mathfrak{p}}(X)[T]$.

More concretely, this corresponds to building a binary tree where nodes are reduced rings R and where each branching is determined by an element a of A: to the left we change R by R[1/a] and to the right we change R to $R/\sqrt{\langle a \rangle}$. The root of the tree is the reduced ring $A/\sqrt{\langle 0 \rangle}$ associated to A. To each leaf of this tree is associated a ring $R_i = (A/\sqrt{\langle b_1, \ldots, b_l \rangle})[1/a_1 \ldots a_k]$ which is obtained by inverting some elements a_1, \ldots, a_k and annulating some elements b_1, \ldots, b_l .

To each leaf is also associated a polynomial $S_i = T^{p_i} + \nu_i(X,T)$ in A[X,T], with $\nu_i(X,T)$ in $\mathfrak{m}A[X,T]$. Furthermore we can write $N_iS_i = L_iP + M_iQ$ in $R_i[X,T]$ where L_i, M_i are in A[X,T], N_i is in A[X] and at least one coefficient of N_i divides a power of $a_1 \dots a_k$.

Notice that for building this tree, A does not need to be discrete (i.e. to have a decidable equality). Here is a simple example: $P = T^2 - b^2$ and Q = XT - a. We have the identity

$$(XT + a)(XT - a) - X^{2}(T^{2} - b^{2}) = X^{2}b^{2} - a^{2}$$

So we have three cases. If $a \neq 0$ or if a = 0 and $b \neq 0$ the gcd is 1. If a = b = 0 then the gcd is T.

2 Some applications

Here is a first application of Lemma 1.2, which classically is proved by using minimal prime ideals.

Corollary 2.1 Let A be a ring with an ideal \mathfrak{m} . Let B = A[x,t] be a reduced ring, with t integral over A[x] and xt is in $\sqrt{\mathfrak{m}A[x,t]}$. We assume that x is strongly transcendant over A: if $u(a_0 + \ldots + a_n x^n) = 0$ with u in B and a_0, \ldots, a_n in A then we have $ua_0 = \ldots = ua_n = 0$ in B. Then t belongs to $\sqrt{\mathfrak{m}A[x,t]}$.

Proof. We have $P(X,T) = T^n + p_1(X)T^{n-1} + \ldots + p_n(X)$ such that P(x,t) = 0 and $Q(X,T) = X^mT^l + \mu(X,T)$ in A[X,T] with $\mu(X,T)$ in $\mathfrak{m}A[X,T]$ such that Q(x,t) = 0. Applying Lemma 1.2 we get a binary tree with polynomials $S_i(X,T) = T^{p_i} + \nu_i(X,T)$ with $\nu_i(X,T)$ in $\mathfrak{m}A[X,T]$ on each leaves. Let Π be the product of all elements $S_i(x,t)$. We claim that we have $\Pi = 0$ in B which shows that t is integral over the ideal $\mathfrak{m}A[x]$.

To simplify the presentation, we consider the case where the tree has three branches, one for $a \neq 0$, one for $a = 0, b \neq 0$ and one for a = b = 0. The argument is general however and consists, like in [2] in going through this tree systematically to the leftmost branch. We have S_1 for $a \neq 0$, S_2 for $a = 0, b \neq 0$ and S_3 for a = b = 0. We write $s_i = S_i(x, t)$. We know that x is strongly transcendant and hence that x is transcendant in B[1/a]. We have also an equality $S_1N_1 = L_1P + M_1Q$ with L_1, M_1 in R[1/a][X, T] and N_1 in R[1/a][X] with at least one coefficient invertible in R[1/a]. Hence we have $as_1 = 0$. Thus a = 0 in $B[1/s_1]$. This implies that a = 0 in $B[1/bs_1]$, and hence $bs_1s_2 = 0$ in B. This implies b = 0 in $B[1/s_1s_2]$ and hence $\Pi = s_1s_2s_3 = 0$ in B.

The following Lemma is proved in a constructive way in [4].

Lemma 2.2 Let B = A[x,t] be such that t is integral over A[x]. Let R be the subring of B of elements that are integral over A and let α be the conductor (R[x] : B). Then x is strongly transcendant in $B/\sqrt{\alpha}$.

An application of Corollary 2.1 and Lemma 2.2 is then the following result.

Proposition 2.3 Let A be a ring with an ideal \mathfrak{m} . If B is an extension of A with x in B such that B is integral over A[x] and t in B such that xt is in $\sqrt{\mathfrak{m}B}$. If α is the conductor (R[x]:B) then α meets $t^{\mathbb{N}} + \mathfrak{m}B$.

Corollary 2.4 Let A be a ring with an ideal \mathfrak{m} . If B is an extension of A with x in B such that B is integral over A[x] and t in B such that xt is in $\sqrt{\mathfrak{m}B}$. There exists a_0, \ldots, a_n in B such that $a_0 + \ldots + a_n x^n = 0$ and $\langle a_0, \ldots, a_n \rangle$ meets $t^{\mathbb{N}} + \mathfrak{m}B$.

Proof. Let R be the integral closure of A in B. Using Corollary 2.1 and Lemma 2.2 we find s of the form $t^l + \nu$, with ν in $\mathfrak{m}B$ such that s is in (R[x] : B). In particular s and st are in R[x] and we can write $s = s_0 + s_1 x + \ldots$ and $at = r_0 + r_1 x + \ldots$ with s_i, r_j in R. Using that xt is integral over $\mathfrak{m}A[x]$ we get a relation of the form $x^n t^n = \mu(x, t)$ with $\mu(x, t) \in \mathfrak{m}A[x, t]$. If we multiply by a large enough power of s we get a polynomial relation

$$a_0 + a_1 x + \ldots + a_n x^n = 0$$

Furthermore $a_0 + a_1 X + \ldots$ is the product of $s_0 + s_1 X + \ldots$ and $r_0 + r_1 X + \ldots$ in B[X] mod. $\mathfrak{m}B$. Using the fact that the product of primitive polynomials is primitive, we have that $\langle a_0, \ldots, a_n \rangle$ meets $t^{\mathbb{N}} + \mathfrak{m}B$.

Corollary 2.5 Let A be a ring with an ideal \mathfrak{m} . If B is an extension of A with x in B such that B is integral over A[x] and t in B such that xt is in $\sqrt{\mathfrak{m}B}$. There exists b_0, \ldots, b_n such that $\langle b_0, \ldots, b_n \rangle$ meets $t^{\mathbb{N}} + \mathfrak{m}B$ and $b_0, \ldots, b_n, b_0x, \ldots, b_nx$ are integral over A.

We can now state our constructive version of Zariski Main Theorem.

Theorem 2.6 Let A be a ring with an ideal \mathfrak{m} . If B integral extension of $A[x_1, \ldots, x_n]$, and let R be the integral closure of A in B. Assume that we have primitive polynomials p_1, \ldots, p_n in A[X] such that $p_i(x_i)$ is in $\sqrt{\mathfrak{m}B}$ then there exists f_1, \ldots, f_k in R such that all elements $f_j x_i$ are in R and $1 = \langle f_1, \ldots, f_k \rangle$ in B.

Corollary 2.7 Let A be a ring and B is a 0-dimensional extension of A. Let R be the integral closure of A in B. There exists f_1, \ldots, f_k in R such that $1 = \langle f_1, \ldots, f_k \rangle$ in B and $B_{f_i} = R_{f_i}$.

References

- M. Atiyah, L. MacDonald. Introduction to Commutative Algebra. Addison Wesley series in Mathematics, 1969.
- [2] H. Lombardi, C. Quitté On Seminormality Theoretical Computer Science, to appear
- [3] R. Mines, F. Richman and W. Ruitenburg. A Course in Constructive Algebra. Springer-Verlag, 1988
- [4] C. Peskine. Une généralisation du "main theorem" de Zariski. Bull. Sci. Math. (2) 90 1966 119–127.