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Introduction

We present a constructive reading of Peskine’s proof of Zariski Main Theorem [4].

1 Main Lemma

Lemma 1.1 Let k be a field, and P,Q two polynomials in k[X, T ]. There exists G, P1, Q1 in
k[X, T ] such that P = GP1, Q = GQ1 and G belongs to the ideal <P,Q> in k(X)[T ].

Proof. This follows from Theorem 4.7 of [3].

Let A be a ring and m an ideal of A. If φ : A → k is a map from A to a field k we still
write φ : A[X, T ] → k[X, T ] for the canonical extension of this map to the polynomial ring
A[X, T ] (that is φ(ΣaijX

iT j) = Σφ(aij)XiT j). We assume given two polynomials P (X, T ) =
Tn + p1(X)Tn−1 + . . . + pn(X) and Q(X, T ) = XmT l + µ(X, T ) in A[X, T ] with µ(X, T ) in
mA[X, T ].

Lemma 1.2 For any map φ : A → k there exists a polynomial S = T p + ν(X, T ) in A[X, T ],
with ν(X, T ) in mA[X, T ] such that φ(S) belongs to the ideal <φ(P ), φ(Q)> in k(X)[T ].

Proof. We apply Lemma 1.1 to φ(P ) and φ(Q). We have φ(P ) = GA, φ(Q) = GQ1 with P1, Q1

in k[X, T ] and G belongs to the ideal <φ(P ), φ(Q)> in k(X)[T ]. We can assume that G is of
the form T k + q1(X)T k−1 + . . . + qk(X). Let R be the integral closure of φ(A) in k. Using
Kronecker’s Theorem, we see that all coefficients of G, P1, Q1 are in R. Modulo

√
φ(m)R we

get that φ(Q) if XmT l and hence G is T k modulo
√

φ(m)R. Hence all coefficients of q1, . . . , qk

are in
√

φ(m)R. Hence [1], G divides a polynomial φ(S), with S = T p + ν(X, T ) in A[X, T ],
and ν(X, T ) in mA[X, T ].

To each ring A we can associate its spectrum for the constructible topology, which has for
basic open D(a)∩V (b1, . . . , bn). We have a sheaf of rings which associates to D(a)∩V (b1, . . . , bn)
the reduced ring (A/

√
<b1, . . . , bn>)[1/a]. The stalk of this sheaf at the point p is the residual

field kp. We can apply Lemma 1.2: we obtain a continuous family of polynomials Sp(X, T ) =
T pp + νp(X, T ) in kp[X, T ] and maps φp : A → kp such that φp(Sp) belongs to the ideal
<φp(P ), φp(Q)> in kp(X)[T ].

More concretely, this corresponds to building a binary tree where nodes are reduced rings R
and where each branching is determined by an element a of A: to the left we change R by R[1/a]
and to the right we change R to R/

√
<a>. The root of the tree is the reduced ring A/

√
<0>

associated to A. To each leaf of this tree is associated a ring Ri = (A/
√

<b1, . . . , bl>)[1/a1 . . . ak]
which is obtained by inverting some elements a1, . . . , ak and annulating some elements b1, . . . , bl.
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To each leaf is also associated a polynomial Si = T pi + νi(X, T ) in A[X, T ], with νi(X, T ) in
mA[X, T ]. Furthermore we can write NiSi = LiP +MiQ in Ri[X, T ] where Li,Mi are in A[X, T ],
Ni is in A[X] and at least one coefficient of Ni divides a power of a1 . . . ak.

Notice that for building this tree, A does not need to be discrete (i.e. to have a decidable
equality). Here is a simple example: P = T 2 − b2 and Q = XT − a. We have the identity

(XT + a)(XT − a)−X2(T 2 − b2) = X2b2 − a2

So we have three cases. If a 6= 0 or if a = 0 and b 6= 0 the gcd is 1. If a = b = 0 then the gcd is
T .

2 Some applications

Here is a first application of Lemma 1.2, which classically is proved by using minimal prime
ideals.

Corollary 2.1 Let A be a ring with an ideal m. Let B = A[x, t] be a reduced ring, with t
integral over A[x] and xt is in

√
mA[x, t]. We assume that x is strongly transcendant over A:

if u(a0 + . . . + anxn) = 0 with u in B and a0, . . . , an in A then we have ua0 = . . . = uan = 0 in
B. Then t belongs to

√
mA[x, t].

Proof. We have P (X, T ) = Tn +p1(X)Tn−1 + . . .+pn(X) such that P (x, t) = 0 and Q(X, T ) =
XmT l + µ(X, T ) in A[X, T ] with µ(X, T ) in mA[X, T ] such that Q(x, t) = 0. Applying Lemma
1.2 we get a binary tree with polynomials Si(X, T ) = T pi + νi(X, T ) with νi(X, T ) in mA[X, T ]
on each leaves. Let Π be the product of all elements Si(x, t). We claim that we have Π = 0 in
B which shows that t is integral over the ideal mA[x].

To simplify the presentation, we consider the case where the tree has three branches, one
for a 6= 0, one for a = 0, b 6= 0 and one for a = b = 0. The argument is general however and
consists, like in [2] in going through this tree systematically to the leftmost branch. We have
S1 for a 6= 0, S2 for a = 0, b 6= 0 and S3 for a = b = 0. We write si = Si(x, t). We know
that x is strongly transcendant and hence that x is transcendant in B[1/a]. We have also an
equality S1N1 = L1P +M1Q with L1,M1 in R[1/a][X, T ] and N1 in R[1/a][X] with at least one
coefficient invertible in R[1/a]. Hence we have as1 = 0. Thus a = 0 in B[1/s1]. This implies
that a = 0 in B[1/bs1], and hence bs1s2 = 0 in B. This implies b = 0 in B[1/s1s2] and hence
Π = s1s2s3 = 0 in B.

The following Lemma is proved in a constructive way in [4].

Lemma 2.2 Let B = A[x, t] be such that t is integral over A[x]. Let R be the subring of B
of elements that are integral over A and let α be the conductor (R[x] : B). Then x is strongly
transcendant in B/

√
α.

An application of Corollary 2.1 and Lemma 2.2 is then the following result.

Proposition 2.3 Let A be a ring with an ideal m. If B is an extension of A with x in B such
that B is integral over A[x] and t in B such that xt is in

√
mB. If α is the conductor (R[x] : B)

then α meets tN + mB.

Corollary 2.4 Let A be a ring with an ideal m. If B is an extension of A with x in B such
that B is integral over A[x] and t in B such that xt is in

√
mB. There exists a0, . . . , an in B

such that a0 + . . . + anxn = 0 and <a0, . . . , an> meets tN + mB.
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Proof. Let R be the integral closure of A in B. Using Corollary 2.1 and Lemma 2.2 we find s
of the form tl + ν, with ν in mB such that s is in (R[x] : B). In particular s and st are in R[x]
and we can write s = s0 + s1x + . . . and at = r0 + r1x + . . . with si, rj in R. Using that xt is
integral over mA[x] we get a relation of the form xntn = µ(x, t) with µ(x, t) ∈ mA[x, t]. If we
multiply by a large enough power of s we get a polynomial relation

a0 + a1x + . . . + anxn = 0

Furthermore a0+a1X + . . . is the product of s0+s1X + . . . and r0+r1X + . . . in B[X] mod. mB.
Using the fact that the product of primitive polynomials is primitive, we have that <a0, . . . , an>
meets tN + mB.

Corollary 2.5 Let A be a ring with an ideal m. If B is an extension of A with x in B such
that B is integral over A[x] and t in B such that xt is in

√
mB. There exists b0, . . . , bn such

that <b0, . . . , bn> meets tN + mB and b0, . . . , bn, b0x, . . . , bnx are integral over A.

We can now state our constructive version of Zariski Main Theorem.

Theorem 2.6 Let A be a ring with an ideal m. If B integral extension of A[x1, . . . , xn], and
let R be the integral closure of A in B. Assume that we have primitive polynomials p1, . . . , pn

in A[X] such that pi(xi) is in
√

mB then there exists f1, . . . , fk in R such that all elements fjxi

are in R and 1 = <f1, . . . , fk> in B.

Corollary 2.7 Let A be a ring and B is a 0-dimensional extension of A. Let R be the integral
closure of A in B. There exists f1, . . . , fk in R such that 1 = <f1, . . . , fk> in B and Bfi

= Rfi
.

References

[1] M. Atiyah, L. MacDonald. Introduction to Commutative Algebra. Addison Wesley series in
Mathematics, 1969.

[2] H. Lombardi, C. Quitté On Seminormality Theoretical Computer Science, to appear

[3] R. Mines, F. Richman and W. Ruitenburg. A Course in Constructive Algebra. Springer-
Verlag, 1988
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