Some Lemmas around Peskine's Proof of Zariski Main Theorem

January 7, 2008

Introduction

We present a constructive reading of Peskine's proof of Zariski Main Theorem [4].

1 Main Lemma

Lemma 1.1 Let k be a field, and P, Q two polynomials in $k[X, T]$. There exists G, P_{1}, Q_{1} in $k[X, T]$ such that $P=G P_{1}, Q=G Q_{1}$ and G belongs to the ideal $\langle P, Q>$ in $k(X)[T]$.

Proof. This follows from Theorem 4.7 of [3].
Let A be a ring and \mathfrak{m} an ideal of A. If $\phi: A \rightarrow k$ is a map from A to a field k we still write $\phi: A[X, T] \rightarrow k[X, T]$ for the canonical extension of this map to the polynomial ring $A[X, T]$ (that is $\left.\phi\left(\Sigma a_{i j} X^{i} T^{j}\right)=\Sigma \phi\left(a_{i j}\right) X^{i} T^{j}\right)$. We assume given two polynomials $P(X, T)=$ $T^{n}+p_{1}(X) T^{n-1}+\ldots+p_{n}(X)$ and $Q(X, T)=X^{m} T^{l}+\mu(X, T)$ in $A[X, T]$ with $\mu(X, T)$ in $\mathfrak{m} A[X, T]$.

Lemma 1.2 For any map $\phi: A \rightarrow k$ there exists a polynomial $S=T^{p}+\nu(X, T)$ in $A[X, T]$, with $\nu(X, T)$ in $\mathfrak{m} A[X, T]$ such that $\phi(S)$ belongs to the ideal $\langle\phi(P), \phi(Q)>$ in $k(X)[T]$.

Proof. We apply Lemma 1.1 to $\phi(P)$ and $\phi(Q)$. We have $\phi(P)=G A, \phi(Q)=G Q_{1}$ with P_{1}, Q_{1} in $k[X, T]$ and G belongs to the ideal $\langle\phi(P), \phi(Q)>$ in $k(X)[T]$. We can assume that G is of the form $T^{k}+q_{1}(X) T^{k-1}+\ldots+q_{k}(X)$. Let R be the integral closure of $\phi(A)$ in k. Using Kronecker's Theorem, we see that all coefficients of G, P_{1}, Q_{1} are in R. Modulo $\sqrt{\phi(\mathfrak{m}) R}$ we get that $\phi(Q)$ if $X^{m} T^{l}$ and hence G is T^{k} modulo $\sqrt{\phi(\mathfrak{m}) R}$. Hence all coefficients of q_{1}, \ldots, q_{k} are in $\sqrt{\phi(\mathfrak{m}) R}$. Hence [1], G divides a polynomial $\phi(S)$, with $S=T^{p}+\nu(X, T)$ in $A[X, T]$, and $\nu(X, T)$ in $\mathfrak{m} A[X, T]$.

To each ring A we can associate its spectrum for the constructible topology, which has for basic open $D(a) \cap V\left(b_{1}, \ldots, b_{n}\right)$. We have a sheaf of rings which associates to $D(a) \cap V\left(b_{1}, \ldots, b_{n}\right)$ the reduced ring $\left(A / \sqrt{\left\langle b_{1}, \ldots, b_{n}\right\rangle}\right)[1 / a]$. The stalk of this sheaf at the point \mathfrak{p} is the residual field $k_{\mathfrak{p}}$. We can apply Lemma 1.2: we obtain a continuous family of polynomials $S_{\mathfrak{p}}(X, T)=$ $T^{p_{\mathfrak{p}}}+\nu_{\mathfrak{p}}(X, T)$ in $k_{\mathfrak{p}}[X, T]$ and maps $\phi_{\mathfrak{p}}: A \rightarrow k_{\mathfrak{p}}$ such that $\phi_{\mathfrak{p}}\left(S_{\mathfrak{p}}\right)$ belongs to the ideal $<\phi_{\mathfrak{p}}(P), \phi_{\mathfrak{p}}(Q)>$ in $k_{\mathfrak{p}}(X)[T]$.

More concretely, this corresponds to building a binary tree where nodes are reduced rings R and where each branching is determined by an element a of A : to the left we change R by $R[1 / a]$ and to the right we change R to $R / \sqrt{\langle a\rangle}$. The root of the tree is the reduced ring $A / \sqrt{<0\rangle}$ associated to A. To each leaf of this tree is associated a ring $R_{i}=\left(A / \sqrt{\left.\left.<b_{1}, \ldots, b_{l}\right\rangle\right)}\left[1 / a_{1} \ldots a_{k}\right]\right.$ which is obtained by inverting some elements a_{1}, \ldots, a_{k} and annulating some elements b_{1}, \ldots, b_{l}.

To each leaf is also associated a polynomial $S_{i}=T^{p_{i}}+\nu_{i}(X, T)$ in $A[X, T]$, with $\nu_{i}(X, T)$ in $\mathfrak{m} A[X, T]$. Furthermore we can write $N_{i} S_{i}=L_{i} P+M_{i} Q$ in $R_{i}[X, T]$ where L_{i}, M_{i} are in $A[X, T]$, N_{i} is in $A[X]$ and at least one coefficient of N_{i} divides a power of $a_{1} \ldots a_{k}$.

Notice that for building this tree, A does not need to be discrete (i.e. to have a decidable equality). Here is a simple example: $P=T^{2}-b^{2}$ and $Q=X T-a$. We have the identity

$$
(X T+a)(X T-a)-X^{2}\left(T^{2}-b^{2}\right)=X^{2} b^{2}-a^{2}
$$

So we have three cases. If $a \neq 0$ or if $a=0$ and $b \neq 0$ the gcd is 1 . If $a=b=0$ then the gcd is T.

2 Some applications

Here is a first application of Lemma 1.2, which classically is proved by using minimal prime ideals.

Corollary 2.1 Let A be a ring with an ideal \mathfrak{m}. Let $B=A[x, t]$ be a reduced ring, with t integral over $A[x]$ and $x t$ is in $\sqrt{\mathfrak{m} A[x, t]}$. We assume that x is strongly transcendant over A : if $u\left(a_{0}+\ldots+a_{n} x^{n}\right)=0$ with u in B and a_{0}, \ldots, a_{n} in A then we have $u a_{0}=\ldots=u a_{n}=0$ in B. Then t belongs to $\sqrt{\mathfrak{m} A[x, t]}$.

Proof. We have $P(X, T)=T^{n}+p_{1}(X) T^{n-1}+\ldots+p_{n}(X)$ such that $P(x, t)=0$ and $Q(X, T)=$ $X^{m} T^{l}+\mu(X, T)$ in $A[X, T]$ with $\mu(X, T)$ in $\mathfrak{m} A[X, T]$ such that $Q(x, t)=0$. Applying Lemma 1.2 we get a binary tree with polynomials $S_{i}(X, T)=T^{p_{i}}+\nu_{i}(X, T)$ with $\nu_{i}(X, T)$ in $\mathfrak{m} A[X, T]$ on each leaves. Let Π be the product of all elements $S_{i}(x, t)$. We claim that we have $\Pi=0$ in B which shows that t is integral over the ideal $\mathfrak{m} A[x]$.

To simplify the presentation, we consider the case where the tree has three branches, one for $a \neq 0$, one for $a=0, b \neq 0$ and one for $a=b=0$. The argument is general however and consists, like in [2] in going through this tree systematically to the leftmost branch. We have S_{1} for $a \neq 0, S_{2}$ for $a=0, b \neq 0$ and S_{3} for $a=b=0$. We write $s_{i}=S_{i}(x, t)$. We know that x is strongly transcendant and hence that x is transcendant in $B[1 / a]$. We have also an equality $S_{1} N_{1}=L_{1} P+M_{1} Q$ with L_{1}, M_{1} in $R[1 / a][X, T]$ and N_{1} in $R[1 / a][X]$ with at least one coefficient invertible in $R[1 / a]$. Hence we have $a s_{1}=0$. Thus $a=0$ in $B\left[1 / s_{1}\right]$. This implies that $a=0$ in $B\left[1 / b s_{1}\right]$, and hence $b s_{1} s_{2}=0$ in B. This implies $b=0$ in $B\left[1 / s_{1} s_{2}\right]$ and hence $\Pi=s_{1} s_{2} s_{3}=0$ in B.

The following Lemma is proved in a constructive way in [4].
Lemma 2.2 Let $B=A[x, t]$ be such that t is integral over $A[x]$. Let R be the subring of B of elements that are integral over A and let α be the conductor $(R[x]: B)$. Then x is strongly transcendant in $B / \sqrt{\alpha}$.

An application of Corollary 2.1 and Lemma 2.2 is then the following result.
Proposition 2.3 Let A be a ring with an ideal \mathfrak{m}. If B is an extension of A with x in B such that B is integral over $A[x]$ and t in B such that $x t$ is in $\sqrt{\mathfrak{m} B}$. If α is the conductor $(R[x]: B)$ then α meets $t^{\mathbb{N}}+\mathfrak{m} B$.

Corollary 2.4 Let A be a ring with an ideal \mathfrak{m}. If B is an extension of A with x in B such that B is integral over $A[x]$ and t in B such that $x t$ is in $\sqrt{\mathfrak{m} B}$. There exists a_{0}, \ldots, a_{n} in B such that $a_{0}+\ldots+a_{n} x^{n}=0$ and $\left\langle a_{0}, \ldots, a_{n}\right\rangle$ meets $t^{\mathbb{N}}+\mathfrak{m} B$.

Proof. Let R be the integral closure of A in B. Using Corollary 2.1 and Lemma 2.2 we find s of the form $t^{l}+\nu$, with ν in $\mathfrak{m} B$ such that s is in $(R[x]: B)$. In particular s and st are in $R[x]$ and we can write $s=s_{0}+s_{1} x+\ldots$ and $a t=r_{0}+r_{1} x+\ldots$ with s_{i}, r_{j} in R. Using that $x t$ is integral over $\mathfrak{m} A[x]$ we get a relation of the form $x^{n} t^{n}=\mu(x, t)$ with $\mu(x, t) \in \mathfrak{m} A[x, t]$. If we multiply by a large enough power of s we get a polynomial relation

$$
a_{0}+a_{1} x+\ldots+a_{n} x^{n}=0
$$

Furthermore $a_{0}+a_{1} X+\ldots$ is the product of $s_{0}+s_{1} X+\ldots$ and $r_{0}+r_{1} X+\ldots$ in $B[X] \bmod . \mathfrak{m} B$. Using the fact that the product of primitive polynomials is primitive, we have that $<a_{0}, \ldots, a_{n}>$ meets $t^{\mathbb{N}}+\mathfrak{m} B$.

Corollary 2.5 Let A be a ring with an ideal \mathfrak{m}. If B is an extension of A with x in B such that B is integral over $A[x]$ and t in B such that $x t$ is in $\sqrt{\mathfrak{m} B}$. There exists b_{0}, \ldots, b_{n} such that $<b_{0}, \ldots, b_{n}>$ meets $t^{\mathbb{N}}+\mathfrak{m} B$ and $b_{0}, \ldots, b_{n}, b_{0} x, \ldots, b_{n} x$ are integral over A.

We can now state our constructive version of Zariski Main Theorem.
Theorem 2.6 Let A be a ring with an ideal \mathfrak{m}. If B integral extension of $A\left[x_{1}, \ldots, x_{n}\right]$, and let R be the integral closure of A in B. Assume that we have primitive polynomials p_{1}, \ldots, p_{n} in $A[X]$ such that $p_{i}\left(x_{i}\right)$ is in $\sqrt{\mathfrak{m} B}$ then there exists f_{1}, \ldots, f_{k} in R such that all elements $f_{j} x_{i}$ are in R and $1=<f_{1}, \ldots, f_{k}>$ in B.

Corollary 2.7 Let A be a ring and B is a 0-dimensional extension of A. Let R be the integral closure of A in B. There exists f_{1}, \ldots, f_{k} in R such that $1=<f_{1}, \ldots, f_{k}>$ in B and $B_{f_{i}}=R_{f_{i}}$.

References

[1] M. Atiyah, L. MacDonald. Introduction to Commutative Algebra. Addison Wesley series in Mathematics, 1969.
[2] H. Lombardi, C. Quitté On Seminormality Theoretical Computer Science, to appear
[3] R. Mines, F. Richman and W. Ruitenburg. A Course in Constructive Algebra. SpringerVerlag, 1988
[4] C. Peskine. Une généralisation du "main theorem" de Zariski. Bull. Sci. Math. (2) 901966 119-127.

