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Introduction

We present a constructive reading of Peskine’s proof of Zariski Main Theorem [4].

1 Main Lemma

Lemma 1.1 Let k be a field, and P,(Q two polynomials in k[X,T]. There exists G, P1,Q1 in
k[X,T] such that P = GP;, Q = GQ: and G belongs to the ideal <P, Q> in k(X)[T].

Proof. This follows from Theorem 4.7 of [3]. O

Let A be a ring and m an ideal of A. If ¢ : A — k is a map from A to a field k we still
write ¢ : A[X,T] — k[X,T] for the canonical extension of this map to the polynomial ring
A[X,T] (that is ¢(Xa;; X'T7) = S¢(a;;)X"T?). We assume given two polynomials P(X,T) =
T" + pi(X)T" ' 4 ... 4 pp(X) and Q(X,T) = X™T! 4+ (X, T) in A[X,T] with u(X,T) in
mA[X, T].

Lemma 1.2 For any map ¢ : A — k there exists a polynomial S = TP + v(X,T) in A[X,T],
with v(X,T) in mA[X,T|] such that ¢(S) belongs to the ideal <¢(P), p(Q)> in k(X)[T].

Proof. We apply Lemma 1.1 to ¢(P) and ¢(Q). We have ¢(P) = GA, ¢(Q) = GQy with P, @,
in k[X,T] and G belongs to the ideal <¢(P),#(Q)> in k(X)[T]. We can assume that G is of
the form T* + ¢ (X)T* ! + ... + ¢.(X). Let R be the integral closure of ¢(A) in k. Using
Kronecker’s Theorem, we see that all coefficients of G, P, @1 are in R. Modulo /¢(m)R we
get that ¢(Q) if X™T" and hence G is T* modulo \/¢(m)R. Hence all coefficients of q1, ..., qx
are in y/¢(m)R. Hence [1], G divides a polynomial ¢(S), with S = TP + v(X,T) in A[X,T],
and v(X,T) in mA[X,T]. O

To each ring A we can associate its spectrum for the constructible topology, which has for
basic open D(a)NV (b1, ..., b,). We have a sheaf of rings which associates to D(a)NV (b1, ..., by,)
the reduced ring (A/+/<b1,...,b,>)[1/a]. The stalk of this sheaf at the point p is the residual
field k,. We can apply Lemma 1.2: we obtain a continuous family of polynomials S,(X,T) =
TP + vy(X,T) in kp[X,T] and maps ¢, : A — kp such that ¢,(Sp) belongs to the ideal
<6p(P), 35(Q)> in kp(X)[T].

More concretely, this corresponds to building a binary tree where nodes are reduced rings R
and where each branching is determined by an element a of A: to the left we change R by R[1/a]
and to the right we change R to R/v/<a>. The root of the tree is the reduced ring A/v/<0>
associated to A. To each leaf of this tree is associated a ring R; = (A/v/<b1,...,0>)[1/a1 ... ax)
which is obtained by inverting some elements a1, ..., a; and annulating some elements b1, ..., b;.



To each leaf is also associated a polynomial S; = TP + v;(X,T) in A[X,T], with v;(X,T) in
mA[X,T]. Furthermore we can write N;S; = L; P+ M;Q in R;[X,T] where L;, M; are in A[X,T],
N; is in A[X] and at least one coefficient of N; divides a power of a; ... ag.

Notice that for building this tree, A does not need to be discrete (i.e. to have a decidable
equality). Here is a simple example: P =T? —b? and Q = XT — a. We have the identity

(XT +a)(XT —a) — X*(T? = b*) = X?* — a*

So we have three cases. If a £ 0 or if a = 0 and b # 0 the ged is 1. If a = b = 0 then the ged is
T.

2 Some applications

Here is a first application of Lemma 1.2, which classically is proved by using minimal prime
ideals.

Corollary 2.1 Let A be a ring with an ideal m. Let B = A[z,t] be a reduced ring, with t
integral over Alx] and zt is in \/mA[x,t]. We assume that z is strongly transcendant over A:
ifu(ap+ ...+ apz™) =0 with w in B and ay, . ..,a, in A then we have uag = ... = ua, =0 in

B. Then t belongs to \/nm

Proof. We have P(X,T) = T" +p1(X)T" 1 +... 4 pn(X) such that P(z,t) = 0 and Q(X,T) =
XM+ (X, T) in A[X, T] with u(X,T) in mA[X, T] such that Q(x,t) = 0. Applying Lemma
1.2 we get a binary tree with polynomials S;(X,T) = TP + v;(X,T) with v;(X,T) in mA[X, T]
on each leaves. Let II be the product of all elements S;(x,t). We claim that we have II = 0 in
B which shows that ¢ is integral over the ideal mA|zx].

To simplify the presentation, we consider the case where the tree has three branches, one
for a # 0, one for a = 0,b # 0 and one for a = b = 0. The argument is general however and
consists, like in [2] in going through this tree systematically to the leftmost branch. We have
Sy for a # 0, Sg for a = 0,b # 0 and S5 for a = b = 0. We write s; = S;(z,t). We know
that x is strongly transcendant and hence that x is transcendant in B[1/a]. We have also an
equality S1N; = L1 P+ M;Q with Ly, M; in R[1/a][X,T] and Ny in R[1/a][X] with at least one
coefficient invertible in R[1/a]. Hence we have as; = 0. Thus a = 0 in B[1/s;]. This implies
that @ = 0 in B[1/bs1], and hence bsysp = 0 in B. This implies b = 0 in B[1/s1s2] and hence
II = 518983 = 0 in B. [l

The following Lemma is proved in a constructive way in [4].

Lemma 2.2 Let B = Alx,t] be such that t is integral over A[z]. Let R be the subring of B
of elements that are integral over A and let o be the conductor (R[z] : B). Then x is strongly
transcendant in B/y/c.

An application of Corollary 2.1 and Lemma 2.2 is then the following result.

Proposition 2.3 Let A be a ring with an ideal m. If B is an extension of A with x in B such
that B is integral over Alz] and t in B such that xt is in vmB. If « is the conductor (R[x] : B)
then o meets t +mB.

Corollary 2.4 Let A be a ring with an ideal m. If B is an extension of A with x in B such
that B is integral over Alx] and t in B such that xzt is in vmB. There exists ay,...,a, in B
such that ag + ...+ apz™ = 0 and <aq, . ..,a,> meets t" +mB.



Proof. Let R be the integral closure of A in B. Using Corollary 2.1 and Lemma 2.2 we find s
of the form # + v, with v in mB such that s is in (R[z] : B). In particular s and st are in R[z]
and we can write s = 5o + s1z + ... and at = ro + r1x + ... with s;,7; in R. Using that xt is
integral over mA[x] we get a relation of the form z"t" = p(xz,t) with p(z,t) € mAx,t]. If we
multiply by a large enough power of s we get a polynomial relation

ag+ a1z +...+a,z" =0

Furthermore ag+a1 X +. .. is the product of so+s; X +...and ro+r X +...in B[X]| mod. mB.
Using the fact that the product of primitive polynomials is primitive, we have that <ag, ..., a,>
meets tN + mB. O

Corollary 2.5 Let A be a ring with an ideal m. If B is an extension of A with x in B such
that B is integral over A[z] and t in B such that xt is in vmB. There exists by, ...,b, such
that <by, ..., by,> meets tY +mB and by, ..., by, boz, ..., byx are integral over A.

We can now state our constructive version of Zariski Main Theorem.

Theorem 2.6 Let A be a ring with an ideal m. If B integral extension of Alx1,...,x,], and
let R be the integral closure of A in B. Assume that we have primitive polynomials p1, ..., pn
in A[X] such that p;(z;) is in vmB then there exists f1,..., fr in R such that all elements f;z;

arein R and 1= <f,..., fyr>in B.

Corollary 2.7 Let A be a ring and B is a 0-dimensional extension of A. Let R be the integral
closure of A in B. There exists f1,..., fi in R such that 1 = <f1,..., fx> in B and By, = Ry,.
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