Uniform Kan filling

Let \mathcal{C} the following category. The objects are finite sets I, J, \ldots A morphism $\operatorname{Hom}(J, I)$ is a map $I \rightarrow \mathrm{dM}(J)$ where $\mathrm{dM}(J)$ is the free de Morgan algebra on J. The presheaf \mathbb{I} is defined by $\mathbb{I}(J)=\mathrm{dM}(J)$. The presheaf \mathbb{F} is defined by taking $\mathbb{F}(J)$ to be the free distributive lattice generated by formal elements $(j=0),(j=1)$ for j in J, with the relations $(j=0) \wedge(j=1)=0$.

If i is in I, we have maps $(i b)$ in $\operatorname{Hom}(I-i, I)$ sending i to b, for $b=0$ or 1 . A face map is a composition of such maps. A strict map $\operatorname{Hom}(J, I)$ is a map $I \rightarrow \mathrm{dM}(J)$ which never takes the value 0 or 1 . Any map f can be written uniquely $f=g h$ where g is a face map and h is strict.

The lattice $\mathbb{F}(I)$ has a greatest element <1, the boundary element δ_{I}, which is the disjunction of all $(i=0) \vee(i=1)$ for i in I.

Using the canonical de Morgan algebra structure of $[0,1]$, we can define a functor

$$
\mathcal{C} \rightarrow \text { Top, } I \longmapsto[0,1]^{I}
$$

If u is in $[0,1]^{I}$, think of u as an environment giving values in $[0,1]$ to each i in I, so that $i u$ in $[0,1]$ if i in I. Any f in $\operatorname{Hom}(I, J)$ defines then $f:[0,1]^{I} \rightarrow[0,1]^{J}$ by $j(f u)=(j f) u$. If ψ is in $\mathbb{F}(I)$ and u in $[0,1]^{I}$ then ψu is a truth value.

If $b=0$ or 1 and i is in I, let $(i b):[0,1]^{I-i} \rightarrow[0,1]^{I}$ be the map defined by by $i(i b) u=b$ and $j(i b) u=j u$ if $j \neq i$ in I.

We assume given a family of idempotent functions $r_{I}:[0,1]^{I} \times[0,1] \rightarrow[0,1]^{I} \times[0,1]$ such that

1. $r_{I}(u, z)=(u, z)$ iff $\delta_{I} u=1$ or $z=0$ and
2. for any strict f in $\operatorname{Hom}(I, J)$ we have $r_{J}(f \times \mathrm{id}) r_{I}=r_{J}(f \times \mathrm{id})$

The last property can be reformulated as $r_{I}(u, z)=r_{I}\left(u^{\prime}, z^{\prime}\right) \rightarrow r_{J}(f u, z)=r_{J}\left(f u^{\prime}, z^{\prime}\right)$.
Such a family can for instance be defined as in [1] Figure 1.3 ("retraction from above center") ${ }^{1}$.
Using this family, we can define for each ψ in $\mathbb{F}(I)$ an idempotent function

$$
r_{\psi}:[0,1]^{I} \times[0,1] \rightarrow[0,1]^{I} \times[0,1]
$$

having for fixed-points the element (u, z) such that $\psi u=1$ or $z=0$. This function r_{ψ} is completely characterized by the following properties

1. $r_{\psi}=$ id if $\psi=1$
2. $r_{\psi}=r_{\psi} r_{I}$ if $\psi \neq 1$
3. $r_{\psi}(u, z)=(u, z)$ if $z=0$
4. $r_{\psi}((i b) \times \mathrm{id})=((i b) \times \mathrm{id}) r_{\psi(i b)}$

For instance, these properties imply $r_{\delta_{I}}(u, z)=(u, z)$ if $\delta_{I} u=1$ or $z=0$ and so they imply $r_{\delta_{I}}=r_{I}$.
They also imply that $r_{\psi}(u, z)=(u, z)$ if $\psi u=1$.
From these properties follows the uniformity of the family of functions r_{ψ}.

[^0]Theorem 0.1 If f is in $\operatorname{Hom}(I, J)$ and ψ is in $\mathbb{F}(J)$ then $r_{\psi}(f \times \mathrm{id})=(f \times \mathrm{id}) r_{\psi f}$
A particular case is $r_{J}(f \times \mathrm{id})=(f \times \mathrm{id}) r_{\delta_{J} f}$. Remark that, in general, $\delta_{J} f$ is not δ_{I}.
Proof. We prove this by induction on the number of element of I (the result being clear if I is empty). Using the last property (4) above, we can then assume that f is strict.

If $\psi f=1$ then for any u in $[0,1]^{I}$ and z in $[0,1]$ we have $\psi f u=1$ and so $r_{\psi}(f u, z)=(f u, z)$
If $\psi f \neq 1$ then we have $r_{\psi f}=r_{\psi f} r_{I}$ and $\psi \neq 1$, so $r_{\psi}=r_{\psi} r_{J}$. We thus have

$$
(f \times \mathrm{id}) r_{\psi f}(u, z)=(f \times \mathrm{id}) r_{\psi f} r_{I}(u, z)
$$

We write $\left(u^{\prime}, z^{\prime}\right)=r_{I}(u, z)$. We have $\delta_{I} u^{\prime}=1$ or $z^{\prime}=0$.
If $z^{\prime}=0$, then $r_{J}(f \times \mathrm{id})(u, z)=r_{J}(f \times \mathrm{id}) r_{I}(u, z)=\left(f u^{\prime}, 0\right)$ and so

$$
r_{\psi}(f \times \mathrm{id})(u, z)=r_{\psi} r_{J}(f \times \mathrm{id})(u, z)=r_{\psi}\left(f u^{\prime}, 0\right)=\left(f u^{\prime}, 0\right)=(f \times \mathrm{id}) r_{\psi f}(u, z)
$$

If $\delta_{I} u^{\prime}=1$ then we can write $u^{\prime}=(i b) v^{\prime}$ for some i in I and v^{\prime} in $[0,1]^{I-i}$. We then have

$$
\begin{array}{rlr}
(f \times \mathrm{id}) r_{\psi f}(u, z) & =(f \times \mathrm{id}) r_{\psi f}\left((i b) v^{\prime}, z^{\prime}\right) & \\
& =(f \times \mathrm{id})((i b) \times \mathrm{id}) r_{\psi f(i b)}\left(v^{\prime}, z^{\prime}\right) & \\
& =(f(i b) \times \mathrm{id}) r_{\psi f(}(i b)\left(v^{\prime}, z^{\prime}\right) & \\
& =r_{\psi}(f(i b) \times \mathrm{id})\left(v^{\prime}, z^{\prime}\right) & \\
& =r_{\psi} r_{J}(f(i b) \times \mathrm{id})\left(v^{\prime}, z^{\prime}\right) & \psi \neq 1 \\
& =r_{\psi} r_{J}(f \times \mathrm{id})\left((i b) v^{\prime}, z^{\prime}\right) & \\
& =r_{\psi} r_{J}(f \times \mathrm{id}) r_{I}(u, z) & \\
& =r_{\psi} r_{J}(f \times \mathrm{id})(u, z) & \\
& =r_{\psi}(f \times \mathrm{id})(u, z) & \psi \neq 1
\end{array}
$$

So that $r_{\psi}(f \times \mathrm{id})=(f \times \mathrm{id}) r_{\psi f}$ as required.

References

[1] R. Brown, P. J. Higgins and R. Sivera. Nonabelian Algebraic Topology: Filtered spaces, crossed complexes, cubical homotopy groupoids. volume 15 of EMS Monographs in Mathematics, European Mathematical Society, 2011.

[^0]: ${ }^{1}$ Indeed, in this case, $r_{I}(u, z)=r_{I}\left(u^{\prime}, z^{\prime}\right)$ is equivalent to $\left(2-z^{\prime}\right)(-1+2 u)=(2-z)\left(-1+2 u^{\prime}\right)$, which implies $\left(2-z^{\prime}\right)(-1+2 f u)=(2-z)\left(-1+2 f u^{\prime}\right)$ if f is strict.

