A category of cubical sets

Introduction

This note presents a notion of cubical set and the notion of composition structure that one can associate
to these cubical sets. Any cubical set with a composition structure is fibrant. This universe is closed by
dependent product and sum, identity types and data types. Furthermore, it is univalent, and has itself
a composition structure.

Cubical sets

Base category

The base category C is the full subcategory of the category of posets having for objects finite power of
the poset 0 < 1. We write [1] the poset 0 < 1. We write I, J, K, ... the object of Cand 17 : I — I
the identity map of I. If f : J — I and g : K — J we write fg : K — I their composition. If I is an
object of C, we have two constant maps ¢g : I — [1] and ¢; : I — [1]. We write 7y : I x [1] — I and
mg ¢ I x J — [1] the projection maps and if f : I — J and g : I — [1] we write (f,g) : I — J x [1]
the pairing map. For any object I we define eg = (17,¢0) : I = I x [1] and e; = (17,¢1) : I — I x [1].
We may write I instead of I x [1] and f* : J* — It the map f*(j,b) = (f j,b). We have the lattice
operations A,V : [1]2 — [1].

Cubical sets

A cubical set X is a presheaf on C. It is given by a family of sets X (I) together with restriction maps
X(I) — X(J), u—> uf such that ul; = u and (uf)g = u(fg) for f: J - I and g: K — J. (We write
uf for what is usually written X (f)(u).)

Sieves

If I is an object of C, a sieve L on I is a set of maps a : J — I of codomain I such that ag is in L
whenever aisin L fora:J — T and g: K — J. If L is a sieve on [ and f : J — I we define the sieve
Lf on J to be the set of maps 5 : K — J such that f8 isin L.

We define Q(7) to be the set of sieves on I. This defines a cubical set (which is the subobject classifier
of the topos of presheaves).

Definition 0.1 If L is in Q(I x [1]) we define VL in ©(I) to be the sieve of maps « : J — I such that
aT isin L.

If L is a sieve on I and X is a cubical set, we define the set X (L) to be the set of families u, in X (J)
for o in L, such that uag = uqg if g : K — J. If w is an element of X (L) and f : J — I, we define uf
element of X(Lf) by ufs = uygs.

Each element f : I — [1] determines a sieve [f = 0] on [ of maps g : J — I such that fg = ¢y, and a
sieve [f = 1] of maps g : J — I such that fg = ¢;. We define the subpresheaf F of 2 by taking F(I) to
be the set of finite union of sieves of the form [f = 0] N [g = 1].



Lemma 0.2 If L is in F(I x [1]) then V(L) is in F(I).

Informal comment: I am not yet sure how to best present the proof of this Lemma, There is a natural
notion of face maps in the base category. A face map is a map eg,e1 and if f is a face map then so is
f+. One can then show that a sieve is in F(I) if and only if it is generated by face maps of codomain I.

Composition structure on a cubical set

If X is a cubical set, we define what is a composition structure cx for X.
Tt is given by an operation c¢x (I, L, u, ag) producing an element in X (I) and taking as arguments

1. an object I

2. asieve L in F(I)

3. a family uq € X(J x [1]) for a: J — I in L such that uag = ugg+ if g: K — J
4. an element ag in X (I) such that apa = uqeg in X(J) for a: J — I in L.

The element a; = c¢x (I, L,u,ag) should be such that aja = uge;.

Furthermore, we have the uniformity condition cx (I, L,u,a0)f = cx(J,Lf,uf, aof) in X(J) for
f:J — I where ufg = uysg for §in Lf.

(Intuitively, the family u and the element ag defines an open box, and this operation build the missing
lid of an open box in X. We recover the usual Kan composition operation in the special case where L is
the boundary of I.)

We also require a similar family of operations where we swap 0 and 1.

Fibrant cubical sets

If X is a cubical set we say that X is fibrant if we can “fill any open box of X”: we have an oper-
ation fill(1, L, u, ag) producing an element in X (I x [1]) such that fill(1, L,u,ag)eg = ap in X(I) and
fill(I, L, u,ap)at = uq in X(J x [1]) for a: J — [ in L.

Proposition 0.3 If X has a composition structure, then X is fibrant. We have an operation fill(I, L,u, ag)
such that fill(I, L,u,aq)eq = ag and fill(I, L,u, ap)e; = comp(I, L,u,aq) in X (I). This operation is fur-
thermore uniform, in the sense that we have fill(I, L,u, ao) f* = fill(J, Lf,uf,aof) if f: J — I.

Proof. We define fill(1, L, u, ag) to be comp(I x [1], L', u', ay) where L is in F(I x [1]) and uj in X (J x [1])
for :J — Ix[1]in L' and af = agm in X(I x [1]). We define L’ to be the set of maps 8 : J — I x [1]
such that w18 is in L or me8 = ¢y. We define then u’ﬁ by case:

L. if B = (@, w) with « in L, then we have to define uj in X(J x [1]). We have u, in X(J x [1]) and
we take ujy = uq(1y,6) with 0 : J x [1] — [1] is defined by (j,b) = w(j) A b

2. if B = (g,co) we define ujy = aggm in X(J x [1])

This definition is coherent since if 8 = (a, ¢p) then u% = Un€QT1 = AgOT].

We have ufgeo = a8 in both cases. If § = (a,w) then u’ﬁeo = ugdeg = Uy = apa = agmi B = apB.
If B = (g,¢p) then u%eo = apgmieo = apg = agm B = ayf.

We can then compute comp(/ x [1], L', u’, ag)eo = u;, eo = ag and, by uniformity

comp(I x [1], L',u’,ag)e; = comp(I, L'ey,u'er, a0) = comp(I, L, u, ag)

since L'e; = L and u'e; = w.
This operation is uniform. Indeed if f : J — I we have

(aof) =aof* (Lf)y =L'f* (uf) =u'f*



The first equality follows from fm; = 71 f*. For the second equality, if v : K — J x [1] we have v in
(Lf)" if, and only if, w17y is in Lf, which is equivalent to fmyy = w1 fTy in L i.e. v in LfT, or mey = ¢y,
which is equivalent to mo Ty = ¢o. Finally, we check that we have (uf) = «/f* in X(K x [1]). Given
7= (,w) : K — J x [1] the element (uf), is defined by case. If a is in Lf then it is uf,deq = usadeo.
In this case, we also have

(ulf+)7 = u/]”r’y = u/(foz,w) = Ufa(seo

In the case where w = co we have (uf)!, = agfam; which is equal to (W' fr), = “Efa 0 = aofamy. O

Universe of cubical sets

We fix a Grothendieck universe U.

If T is an object of C, we define U(I) to be the collection of all presheaves (C/I)°? — U. An
element A of U([) is given by a family of U-sets Ay, for f : J — I, together with restriction maps
A — Ay, ur— ug for g : K — J, such that ul; = v and (ug)h = u(gh) if h: L — K.

If Ais an element of U(I) and f : J — I we can consider the element Af of U(J) defined by
Afg=Ats. We have Al = A and (Af)g = A(fg)ifg: K — J.

If A and B are in U(I) we define a map o : A — B to be a family of set-theoretic maps oy : Ay — By
for f: J — I satisfying the naturality condition (osu)g = os4(ug) if g : K — J and uw is in A;. We may
write simply o : Ay — By and the naturality condition becomes (ocu)g = o(ug).

Composition structure

If A is an element of U(I) we define what is a composition structure c4 for A. It is given by an operation
ca(f,L,u,ap) producing an element in Ay, and taking as arguments

l.amap f: JJx[1] =T

2. an element L in F(J)

3. a family uq € Apo+ such that uag™ =uqgif a: K - Jin Land g: H - K
4. an element ag in Ay, such that apa = ugep in Agega.

The element a1 = ca(f, L, u,ap) should satisfy aja = uqey.

Furthermore, we have the uniformity condition ca(f, L,u,a0)g = ca(fg*,Lg,ug,aog) in Age,, if
g: K—J.

We also require a similar family of operations where we swap 0 and 1.

We write C'S(A) the set of composition structure on A.
If ¢4 is an element of CS(A) and f : J — I we can define a composition structure ca f on CS(Af)
by taking cAf(ga L,u, (10) = CA(fga L,u, aO)'

Lemma 0.4 Ifcy is in CS(A) then caf is in CS(Af), and we have caly = ca and (caf)g = ca(fg) if
g: K —J.

Fibrant objects

If A is an element in U(I) we say that A is fibrant if we can fill any open box of A: we have an operation
fill(f, L, u, ap) producing an element in Af such that fill(f, L, u, ap)eq = ag and fill(f, L, u, ap)a™ = uq.

Proposition 0.5 If A in U(I) has a composition structure, then A is fibrant. More precisely, we have
an operation fill(ca, f, L,u, ap) producing an element in Ay such that fill(ca, f, L,u,a0)eg = ap and
fill(ca, f, L,u,ap)er = ca(f, L,u,aq). This operation is furthermore uniform, in the sense that we have
fill(ca, f, L,u,a0)g™ = fill(ca, fg©, Lg,ug,a0g) if g: K — J.



Glueing operation

If M is in F(I) we define U(M) to be the collection of families T' of sets Ty, for o in M, such that
uly=wifuisin T, and ug is in Ty f uisin Ty and g : K — J. U T isin U(M) and f : J — I we
define T'f by T'fo = Tfo if v isin M f.

For M in F(I), the glueing operation takes as argument A in U(I), and T in U(M), and a family o
of maps o : T = Aq for @ in M. This family has to be uniform: (oat)g = gag(tg) if g : K — J. If
f:J — I we define of by ofy = 0q for a in M f. The result of this operation glue(A, T, o) is then an
element in U(]) such that glue(4,T,0)f =Tf if f isin M.

For f : J — I we define the set glue(A,T,0); by (decidable) case

1. if f is in M we take glue(A,T,0); =Ty

2. otherwise glue(A, T, o)y is the set of element (u,t) where w is in Ay and ¢ is a family tg in Tyg for
B:K — Jin Mf and o¢gtg = uf and tgh =tg, for h: L — K.

We then define, for g : K — J, the element (u,t)g by case. If fg is in M, we take t,. Otherwise we
take (ug,tg) with tg, = t4, for v in M fg.
This defines an element glue(A, T, o) in U(I).

Lemma 0.6 The map o : T — A can be extended to a map § : B — A

Proof. Given f : J — I we have to define a set-theoretic map 6 : By — Ay. If f is in M we have
By = Ty and we take § = 0. If f is not in M then v in By is a pair (a,t) with a in A; and we take
d(a,t) = a. We have to verify that (dv)g = d(vg) for g : K — J. If fis in M then v is in Ty and
(6v)g = (ov)g = o(vg) = §(vg). If f is not in M there are two cases. If fg is in M then (dv)g = ag and
vg =ty with oty = 0ty = ag. If fg is not in M then vg = (ag,tg) and é(vg) = ag. 0

Equivalence structure

An equivalence structure on o is given by two operations ¢l(f, L,u,b) in A¢ and ¢2(f, L,u,b) in By,
and taking as arguments

1. f:J—=1
2. LinF(J)

it

a family of elements u, in Ay, for a : K — J in L such that uag = tag in Afag if g: H = K
4. an element b in By such that bar = ouy in By, if aisin L

We should have

q;(f,L,u,b)Oz:ua Q§(f»LaUab)60:UQi(vaauyb) qs-(f7Lau7b)61:b

Furthermore we have the uniformity conditions

ar(f, Lou,b)g = qo(fg, Lg,ug,bg)  q2(f,L,u,b)g* = ¢2(fg, Lg, ug,bg)
ifg: K — J.

Ifo:A— Band f:J — I we can define of : Af — Bf by taking (cf), = oy, and if ¢, q2 is
an equivalence structure on o we define ¢l f, g2 f equivalence structure on o f by taking ¢’ f(g, L,u,b) =
q.(fg, Lyu,b) if g : K — J.

Lemma 0.7 Given A,T in U(I), and c4 (resp. cr) a comsposition structure on A (resp. T'). Let o be
amap T — A. Assume furthermore given

I.amap f:Jx[1] =1



2. an element L in F(J)
3. a family vy € To+ such that vagT = vag if o : K — Jin L and g: H— K
4. an element tg in T, such that toav = vaeg in Tepa-
We can build u = pres(ca, cr, L, v, tg) in Ay such that
ueg = ca(f, L,ov,oty)  uey = oer(f,L,v,tg) uat = oveeim

Furthermore, pres(ca, cr, L,v,to)g" = pres(cag, crg, Lg,vg,tog) if g : K — J.

If L is in F(I), we can generalize the notion of composition structure for an element of U(L) and
the notion of equivalence structure for a map between two elements of U(L). We can now refine the
operation of glueing in the following way.

Theorem 0.8 Given L in F(I), A in U(I), and T in U(L), and a map o between T and A, we can
build a composition structure glue(ca, cr,qs) on glue(A,T, o) given a composition structure c4 on A
and a composition structure ¢y on T and an equivalence structure q, on ¢ in such a way that we have
glue(ca, cr,qo)ae = cra if v is in L

If L is in F(I) and T, A are in U(L) and o is a map T — A then for each f : J — I in L we can
consider T'f, Af in U(J) and the map of : Tf — Af.

Proof of the main Theorem

The goal of this section is to prove Theorem 0.8. We write B = glue(A,T,0) and want to define a
composition structure cg on B.

Using Lemma 0.6, the map o : T — A extends to a map ¢ : B — A.

We give f: Jx[1] = I and M in F(J) and v, in By,+ for a in M and by in By, such that bya = vaeq
for o in M. We want to compute by = cg(f, M, v,by) in By, such that bya = veeq for o in M.

We define ag = dby and u, = dv,. Since ¢ is a map B — A we have aga = uqneg. We can then form

ay = ca(f, M, u,ag) which satisfies aja = uqe; for a in M.

We can consider three sieves on J. One is the given sieve M. From the sieve Lf on J x [1] we can
derive the sieve Lfe; in F(J). We can also define the sieve N = V(L f) of maps 8 : K — J such that g%
is in Lf. Notice that N is a subsieve of Lfey: if f37 is in L then so is f3Te; = fe;3. By Lemma 0.2
we know that N is in F(J).

The universe of types

If T is an object of C we let Up(I) be the set of element (A, c4) where A is in U(I) and ¢4 is in CS(A).
If f:J — I wedefine (A,ca)f = (Af,caf) which is an element of Ur(J) by Lemma 0.4. In this way
we define a new cubical set Ur.

Lemma 0.9 Given E in U(I x[1]) and a composition structure cg on E we can define A = Eey, B = Ee;
in U(I) and cgeg is in CS(A) and cge; is in CS(B). We can also define a map o : A — B by
oa = comp(f,0,0,a) in By for a in Ay and f :J — I and o has an equivalence structure.

Notice that if E is of the form Am with A in U(I) then B = Fe; = A and this map o : A — A does
not need to be the identity map.

We can use Theorem 0.8 and Lemma 0.9 to prove the following result.

Theorem 0.10 The cubical set Ur has a composition operation.
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