
A category of cubical sets

Introduction

This note presents a notion of cubical set and the notion of composition structure that one can associate
to these cubical sets. Any cubical set with a composition structure is fibrant. This universe is closed by
dependent product and sum, identity types and data types. Furthermore, it is univalent, and has itself
a composition structure.

Cubical sets

Base category

The base category C is the full subcategory of the category of posets having for objects finite power of
the poset 0 6 1. We write [1] the poset 0 6 1. We write I, J,K, . . . the object of C and 1I : I → I
the identity map of I. If f : J → I and g : K → J we write fg : K → I their composition. If I is an
object of C, we have two constant maps c0 : I → [1] and c1 : I → [1]. We write π1 : I × [1] → I and
π2 : I × J → [1] the projection maps and if f : I → J and g : I → [1] we write (f, g) : I → J × [1]
the pairing map. For any object I we define e0 = (1I , c0) : I → I × [1] and e1 = (1I , c1) : I → I × [1].
We may write I+ instead of I × [1] and f+ : J+ → I+ the map f+(j, b) = (f j, b). We have the lattice
operations ∧,∨ : [1]2 → [1].

Cubical sets

A cubical set X is a presheaf on C. It is given by a family of sets X(I) together with restriction maps
X(I)→ X(J), u 7−→ uf such that u1I = u and (uf)g = u(fg) for f : J → I and g : K → J . (We write
uf for what is usually written X(f)(u).)

Sieves

If I is an object of C, a sieve L on I is a set of maps α : J → I of codomain I such that αg is in L
whenever α is in L for α : J → I and g : K → J . If L is a sieve on I and f : J → I we define the sieve
Lf on J to be the set of maps β : K → J such that fβ is in L.

We define Ω(I) to be the set of sieves on I. This defines a cubical set (which is the subobject classifier
of the topos of presheaves).

Definition 0.1 If L is in Ω(I × [1]) we define ∀L in Ω(I) to be the sieve of maps α : J → I such that
α+ is in L.

If L is a sieve on I and X is a cubical set, we define the set X(L) to be the set of families uα in X(J)
for α in L, such that uαg = uαg if g : K → J . If u is an element of X(L) and f : J → I, we define uf
element of X(Lf) by ufβ = ufβ .

Each element f : I → [1] determines a sieve [f = 0] on I of maps g : J → I such that fg = c0, and a
sieve [f = 1] of maps g : J → I such that fg = c1. We define the subpresheaf F of Ω by taking F(I) to
be the set of finite union of sieves of the form [f = 0] ∩ [g = 1].

1



Lemma 0.2 If L is in F(I × [1]) then ∀(L) is in F(I).

Informal comment: I am not yet sure how to best present the proof of this Lemma, There is a natural
notion of face maps in the base category. A face map is a map e0, e1 and if f is a face map then so is
f+. One can then show that a sieve is in F(I) if and only if it is generated by face maps of codomain I.

Composition structure on a cubical set

If X is a cubical set, we define what is a composition structure cX for X.
It is given by an operation cX(I, L, u, a0) producing an element in X(I) and taking as arguments

1. an object I

2. a sieve L in F(I)

3. a family uα ∈ X(J × [1]) for α : J → I in L such that uαg = uαg+ if g : K → J

4. an element a0 in X(I) such that a0α = uαe0 in X(J) for α : J → I in L.

The element a1 = cX(I, L, u, a0) should be such that a1α = uαe1.
Furthermore, we have the uniformity condition cX(I, L, u, a0)f = cX(J, Lf, uf, a0f) in X(J) for

f : J → I where ufβ = ufβ for β in Lf .
(Intuitively, the family u and the element a0 defines an open box, and this operation build the missing

lid of an open box in X. We recover the usual Kan composition operation in the special case where L is
the boundary of I.)

We also require a similar family of operations where we swap 0 and 1.

Fibrant cubical sets

If X is a cubical set we say that X is fibrant if we can “fill any open box of X”: we have an oper-
ation fill(I, L, u, a0) producing an element in X(I × [1]) such that fill(I, L, u, a0)e0 = a0 in X(I) and
fill(I, L, u, a0)α+ = uα in X(J × [1]) for α : J → I in L.

Proposition 0.3 IfX has a composition structure, thenX is fibrant. We have an operation fill(I, L, u, a0)
such that fill(I, L, u, a0)e0 = a0 and fill(I, L, u, a0)e1 = comp(I, L, u, a0) in X(I). This operation is fur-
thermore uniform, in the sense that we have fill(I, L, u, a0)f+ = fill(J, Lf, uf, a0f) if f : J → I.

Proof. We define fill(I, L, u, a0) to be comp(I× [1], L′, u′, a′0) where L′ is in F(I× [1]) and u′β in X(J× [1])
for β : J → I × [1] in L′ and a′0 = a0π1 in X(I × [1]). We define L′ to be the set of maps β : J → I × [1]
such that π1β is in L or π2β = c0. We define then u′β by case:

1. if β = (α, ω) with α in L, then we have to define u′β in X(J × [1]). We have uα in X(J × [1]) and
we take u′β = uα(1J , δ) with δ : J × [1]→ [1] is defined by δ(j, b) = ω(j) ∧ b

2. if β = (g, c0) we define u′β = a0gπ1 in X(J × [1])

This definition is coherent since if β = (α, c0) then u′β = uαe0π1 = a0απ1.
We have u′βe0 = a′0β in both cases. If β = (α, ω) then u′βe0 = uαδe0 = uαe0 = a0α = a0π1β = a′0β.

If β = (g, c0) then u′βe0 = a0gπ1e0 = a0g = a0π1β = a′0β.
We can then compute comp(I × [1], L′, u′, a′0)e0 = u′e0e0 = a0 and, by uniformity

comp(I × [1], L′, u′, a′0)e1 = comp(I, L′e1, u
′e1, a0) = comp(I, L, u, a0)

since L′e1 = L and u′e1 = u.
This operation is uniform. Indeed if f : J → I we have

(a0f)′ = a0f
+ (Lf)′ = L′f+ (uf)′ = u′f+
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The first equality follows from fπ1 = π1f
+. For the second equality, if γ : K → J × [1] we have γ in

(Lf)′ if, and only if, π1γ is in Lf , which is equivalent to fπ1γ = π1f
+γ in L i.e. γ in Lf+, or π2γ = c0,

which is equivalent to π2f
+γ = c0. Finally, we check that we have (uf)′ = u′f+ in X(K × [1]). Given

γ = (α, ω) : K → J × [1] the element (uf)′γ is defined by case. If α is in Lf then it is ufαδe0 = ufαδe0.
In this case, we also have

(u′f+)γ = u′f+γ = u′(fα,ω) = ufαδe0

In the case where ω = c0 we have (uf)′γ = a0fαπ1 which is equal to (u′f+)γ = u′(fα,ω) = a0fαπ1.

Universe of cubical sets

We fix a Grothendieck universe U .
If I is an object of C, we define U(I) to be the collection of all presheaves (C/I)op → U . An

element A of U(I) is given by a family of U-sets Af , for f : J → I, together with restriction maps
Af → Afg, u 7−→ ug for g : K → J , such that u1J = u and (ug)h = u(gh) if h : L→ K.

If A is an element of U(I) and f : J → I we can consider the element Af of U(J) defined by
Afg = Afg. We have A1I = A and (Af)g = A(fg) if g : K → J .

If A and B are in U(I) we define a map σ : A→ B to be a family of set-theoretic maps σf : Af → Bf
for f : J → I satisfying the naturality condition (σfu)g = σfg(ug) if g : K → J and u is in Af . We may
write simply σ : Af → Bf and the naturality condition becomes (σu)g = σ(ug).

Composition structure

If A is an element of U(I) we define what is a composition structure cA for A. It is given by an operation
cA(f, L, u, a0) producing an element in Afe1 and taking as arguments

1. a map f : J × [1]→ I

2. an element L in F(J)

3. a family uα ∈ Afα+ such that uαg
+ = uαg if α : K → J in L and g : H → K

4. an element a0 in Afe0 such that a0α = uαe0 in Afe0α.

The element a1 = cA(f, L, u, a0) should satisfy a1α = uαe1.
Furthermore, we have the uniformity condition cA(f, L, u, a0)g = cA(fg+, Lg, ug, a0g) in Afe1g if

g : K → J .
We also require a similar family of operations where we swap 0 and 1.

We write CS(A) the set of composition structure on A.
If cA is an element of CS(A) and f : J → I we can define a composition structure cAf on CS(Af)

by taking cAf(g, L, u, a0) = cA(fg, L, u, a0).

Lemma 0.4 If cA is in CS(A) then cAf is in CS(Af), and we have cA1I = cA and (cAf)g = cA(fg) if
g : K → J .

Fibrant objects

If A is an element in U(I) we say that A is fibrant if we can fill any open box of A: we have an operation
fill(f, L, u, a0) producing an element in Af such that fill(f, L, u, a0)e0 = a0 and fill(f, L, u, a0)α+ = uα.

Proposition 0.5 If A in U(I) has a composition structure, then A is fibrant. More precisely, we have
an operation fill(cA, f, L, u, a0) producing an element in Af such that fill(cA, f, L, u, a0)e0 = a0 and
fill(cA, f, L, u, a0)e1 = cA(f, L, u, a0). This operation is furthermore uniform, in the sense that we have
fill(cA, f, L, u, a0)g+ = fill(cA, fg

+, Lg, ug, a0g) if g : K → J .
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Glueing operation

If M is in F(I) we define U(M) to be the collection of families T of sets Tα, for α in M , such that
u1J = u if u is in Tα and ug is in Tαg if u is in Tα and g : K → J . If T is in U(M) and f : J → I we
define Tf by Tfα = Tfα if α is in Mf .

For M in F(I), the glueing operation takes as argument A in U(I), and T in U(M), and a family σ
of maps σα : Tα → Aα for α in M . This family has to be uniform: (σαt)g = σαg(tg) if g : K → J . If
f : J → I we define σf by σfα = σfα for α in Mf . The result of this operation glue(A, T, σ) is then an
element in U(I) such that glue(A, T, σ)f = Tf if f is in M .

For f : J → I we define the set glue(A, T, σ)f by (decidable) case

1. if f is in M we take glue(A, T, σ)f = Tf

2. otherwise glue(A, T, σ)f is the set of element (u, t) where u is in Af and t is a family tβ in Tfβ for
β : K → J in Mf and σfβtβ = uβ and tβh = tβh for h : L→ K.

We then define, for g : K → J , the element (u, t)g by case. If fg is in M , we take tg. Otherwise we
take (ug, tg) with tgγ = tgγ for γ in Mfg.

This defines an element glue(A, T, σ) in U(I).

Lemma 0.6 The map σ : T → A can be extended to a map δ : B → A

Proof. Given f : J → I we have to define a set-theoretic map δ : Bf → Af . If f is in M we have
Bf = Tf and we take δ = σ. If f is not in M then v in Bf is a pair (a, t) with a in Af and we take
δ(a, t) = a. We have to verify that (δv)g = δ(vg) for g : K → J . If f is in M then v is in Tf and
(δv)g = (σv)g = σ(vg) = δ(vg). If f is not in M there are two cases. If fg is in M then (δv)g = ag and
vg = tg with σtg = δtg = ag. If fg is not in M then vg = (ag, tg) and δ(vg) = ag.

Equivalence structure

An equivalence structure on σ is given by two operations q1σ(f, L, u, b) in Af and q2σ(f, L, u, b) in Bfπ1

and taking as arguments

1. f : J → I

2. L in F(J)

3. a family of elements uα in Afα for α : K → J in L such that uαg = uαg in Afαg if g : H → K

4. an element b in Bf such that bα = σuα in Bfα if α is in L

We should have

q1σ(f, L, u, b)α = uα q2σ(f, L, u, b)e0 = σ q1σ(f, L, u, b) q2σ(f, L, u, b)e1 = b

Furthermore we have the uniformity conditions

q1σ(f, L, u, b)g = q1σ(fg, Lg, ug, bg) q2σ(f, L, u, b)g+ = q2σ(fg, Lg, ug, bg)

if g : K → J .

If σ : A → B and f : J → I we can define σf : Af → Bf by taking (σf)g = σfg and if q1σ, q
2
σ is

an equivalence structure on σ we define q1σf, q
2
σf equivalence structure on σf by taking qiσf(g, L, u, b) =

qiσ(fg, L, u, b) if g : K → J .

Lemma 0.7 Given A, T in U(I), and cA (resp. cT ) a comsposition structure on A (resp. T ). Let σ be
a map T → A. Assume furthermore given

1. a map f : J × [1]→ I
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2. an element L in F(J)

3. a family vα ∈ Tfα+ such that vαg
+ = vαg if α : K → J in L and g : H → K

4. an element t0 in Tfe0 such that t0α = vαe0 in Tfe0α.

We can build u = pres(cA, cT , L, v, t0) in Af such that

ue0 = cA(f, L, σv, σt0) ue1 = σcT (f, L, v, t0) uα+ = σvαe1π1

Furthermore, pres(cA, cT , L, v, t0)g+ = pres(cAg, cT g, Lg, vg, t0g) if g : K → J .

If L is in F(I), we can generalize the notion of composition structure for an element of U(L) and
the notion of equivalence structure for a map between two elements of U(L). We can now refine the
operation of glueing in the following way.

Theorem 0.8 Given L in F(I), A in U(I), and T in U(L), and a map σ between T and A, we can
build a composition structure glue(cA, cT , qσ) on glue(A, T, σ) given a composition structure cA on A
and a composition structure cT on T and an equivalence structure qσ on σ in such a way that we have
glue(cA, cT , qσ)α = cTα if α is in L

If L is in F(I) and T,A are in U(L) and σ is a map T → A then for each f : J → I in L we can
consider Tf,Af in U(J) and the map σf : Tf → Af .

Proof of the main Theorem

The goal of this section is to prove Theorem 0.8. We write B = glue(A, T, σ) and want to define a
composition structure cB on B.

Using Lemma 0.6, the map σ : T → A extends to a map δ : B → A.
We give f : J×[1]→ I and M in F(J) and vα in Bfα+ for α in M and b0 in Bfe0 such that b0α = vαe0

for α in M . We want to compute b1 = cB(f,M, v, b0) in Bfe1 such that b1α = vαe1 for α in M .

We define a0 = δb0 and uα = δvα. Since δ is a map B → A we have a0α = uαe0. We can then form
a′1 = cA(f,M, u, a0) which satisfies a′1α = uαe1 for α in M .

We can consider three sieves on J . One is the given sieve M . From the sieve Lf on J × [1] we can
derive the sieve Lfe1 in F(J). We can also define the sieve N = ∀(Lf) of maps β : K → J such that β+

is in Lf . Notice that N is a subsieve of Lfe1: if fβ+ is in L then so is fβ+e1 = fe1β. By Lemma 0.2
we know that N is in F(J).

The universe of types

If I is an object of C we let UF (I) be the set of element (A, cA) where A is in U(I) and cA is in CS(A).
If f : J → I we define (A, cA)f = (Af, cAf) which is an element of UF (J) by Lemma 0.4. In this way
we define a new cubical set UF .

Lemma 0.9 Given E in U(I×[1]) and a composition structure cE on E we can define A = Ee0, B = Ee1
in U(I) and cEe0 is in CS(A) and cEe1 is in CS(B). We can also define a map σ : A → B by
σa = comp(f, ∅, ∅, a) in Bf for a in Af and f : J → I and σ has an equivalence structure.

Notice that if E is of the form Aπ1 with A in U(I) then B = Ee1 = A and this map σ : A→ A does
not need to be the identity map.

We can use Theorem 0.8 and Lemma 0.9 to prove the following result.

Theorem 0.10 The cubical set UF has a composition operation.
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