
DISKRET MATEMATIK

A Proof of Warshall’s algorithm

The following note contains a simple lemma which is the key idea behind Warshall’s algorithm.
We consider a binary relation R on a set A. We say that a finite list z1, . . . , zk of elements of A connects

x and y iff

• k = 0 and R x y,

• k ≥ 1 and R x z1, R z1 z2, . . . , R zk y.

We will be concerned with the transitive closure R+ of R which may be defined as the relation R+ x y
which holds iff there exists a finite list of elements connecting x and y.

We introduce the following notation: if I a subset of A and z ∈ A then I, z is the subset of elements
x ∈ A such that x ∈ I or x = z. Also R+

I x y is the relation defined like R+ but where the elements are
required to be in I that is R+

I x y holds iff there exists a finite list whose elements are in I connecting x and
y.

Lemma: If R+
I,z x y then

• either R+
I x y,

• or R+
I x z and R+

I z y.

Proof: The proof is direct by induction on the list z1, . . . , zk connecting x and y.
If k = 0 we have R x y and hence R+

I x y.
If z1, . . . , zk, zk+1 connects x and y then z1, . . . , zk connects x and zk+1 and R zk+1 y. By induction

hypothesis, we have two cases, each of one splitting in two subcases:

• R+
I x zk+1. If zk+1εI we have R+

I x y. Otherwise zk+1 = z and hence R+
I x z and R z y (and so R+

I z y
as well),

• R+
I x z and R+

I z zk+1. Once more, there are two cases. If zk+1εI we have R+
I x z and R+

I z y.
Otherwise zk+1 = z and hence R+

I x z and R z y (and so R+
I z y as well).
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Corollary: If we have an algorithm for deciding R x y we have an algorithm for deciding R+
I x y for

any finite I.

Proof: We prove this by induction on the finite set I. If I is empty, then R+
I is R which is decidable by

hypothesis. The induction step follows from the equivalence

R+
I,z x y ≡ [R+

I x y ∨ [R+
I x z ∧R+

I z y.]]
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The same idea may be used to compute the minimal cost for connecting x and y. We suppose that for
each x and y we have a value d x y ∈ [0,∞] which gives the cost of a direct connection between x and y.
Then we can define

dI,z x y = min (dI x y) (dI x z + dI z y).

The cost c(z1, . . . , zk) of a list z1, . . . , zk connecting x and y is defined by

• d x y if k = 0,

• d x z1 + . . . + d zk y if k ≥ 1.
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We are interested in the minimal cost of connecting x and y by elements in I. If c is this minimal cost it
means that

• there exists z1, . . . , zk connecting x and y such that c(z1, . . . , zk) = c,

• for any z1, . . . , zk connecting x and y we have c ≤ c(z1, . . . , zk).

Lemma: If dI is the minimal cost function for connecting two elements by a list in I then dI,z is a
minimal cost function for connecting two elements by a list in I, z.

Proof: If z1, . . . , zk connects x and y in I, z there are two cases: either we have ziεI for all i or we can
write this list as zs1, z, zs2, . . . , z, zsp, y. In both cases the cost of z1, . . . , zk is ≥ dI,z x y. Furthermore, we
have two cases:

• dI x y ≤ dI x z +dI z y: by assumption we have zs connecting x and y in I such that c(zs) = dI x y =
dI,z x y.

• dI x z + dI z y ≤ dI x y : by assumption we have zs connecting x and z in I such that c(xz) = dI x z.
We have also ts connecting z and y in I such that c(ts) = dI z y. Hence, zs, z, ts connects x and y in
I, z and c(zs, z, ts) = dI x z + dI z y = dI,z x y.

In both cases we find us connecting x and y in I, z such that c(us) = dI,z x y. 2
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