DISKRET MATEMATIK

A Proof of Warshall's algorithm

The following note contains a simple lemma which is the key idea behind Warshall's algorithm.
We consider a binary relation R on a set A. We say that a finite list z_{1}, \ldots, z_{k} of elements of A connects x and y iff

- $k=0$ and $R x y$,
- $k \geq 1$ and $R x z_{1}, R z_{1} z_{2}, \ldots, R z_{k} y$.

We will be concerned with the transitive closure R^{+}of R which may be defined as the relation $R^{+} x y$ which holds iff there exists a finite list of elements connecting x and y.

We introduce the following notation: if I a subset of A and $z \in A$ then I, z is the subset of elements $x \in A$ such that $x \in I$ or $x=z$. Also $R_{I}^{+} x y$ is the relation defined like R^{+}but where the elements are required to be in I that is $R_{I}^{+} x y$ holds iff there exists a finite list whose elements are in I connecting x and y.

Lemma: If $R_{I, z}^{+} x y$ then

- either $R_{I}^{+} x y$,
- or $R_{I}^{+} x z$ and $R_{I}^{+} z y$.

Proof: The proof is direct by induction on the list z_{1}, \ldots, z_{k} connecting x and y.
If $k=0$ we have $R x y$ and hence $R_{I}^{+} x y$.
If $z_{1}, \ldots, z_{k}, z_{k+1}$ connects x and y then z_{1}, \ldots, z_{k} connects x and z_{k+1} and $R z_{k+1} y$. By induction hypothesis, we have two cases, each of one splitting in two subcases:

- $R_{I}^{+} x z_{k+1}$. If $z_{k+1} \epsilon I$ we have $R_{I}^{+} x y$. Otherwise $z_{k+1}=z$ and hence $R_{I}^{+} x z$ and $R z y$ (and so $R_{I}^{+} z y$ as well),
- $R_{I}^{+} x z$ and $R_{I}^{+} z z_{k+1}$. Once more, there are two cases. If $z_{k+1} \epsilon I$ we have $R_{I}^{+} x z$ and $R_{I}^{+} z y$. Otherwise $z_{k+1}=z$ and hence $R_{I}^{+} x z$ and $R z y$ (and so $R_{I}^{+} z y$ as well).

Corollary: If we have an algorithm for deciding $R x y$ we have an algorithm for deciding $R_{I}^{+} x y$ for any finite I.

Proof: We prove this by induction on the finite set I. If I is empty, then R_{I}^{+}is R which is decidable by hypothesis. The induction step follows from the equivalence

$$
R_{I, z}^{+} x y \equiv\left[R_{I}^{+} x y \vee\left[R_{I}^{+} x z \wedge R_{I}^{+} z y .\right]\right]
$$

The same idea may be used to compute the minimal cost for connecting x and y. We suppose that for each x and y we have a value $d x y \in[0, \infty]$ which gives the cost of a direct connection between x and y. Then we can define

$$
d_{I, z} x y=\min \left(d_{I} x y\right)\left(d_{I} x z+d_{I} z y\right) .
$$

The cost $c\left(z_{1}, \ldots, z_{k}\right)$ of a list z_{1}, \ldots, z_{k} connecting x and y is defined by

- $d x y$ if $k=0$,
- $d x z_{1}+\ldots+d z_{k} y$ if $k \geq 1$.

We are interested in the minimal cost of connecting x and y by elements in I. If c is this minimal cost it means that

- there exists z_{1}, \ldots, z_{k} connecting x and y such that $c\left(z_{1}, \ldots, z_{k}\right)=c$,
- for any z_{1}, \ldots, z_{k} connecting x and y we have $c \leq c\left(z_{1}, \ldots, z_{k}\right)$.

Lemma: If d_{I} is the minimal cost function for connecting two elements by a list in I then $d_{I, z}$ is a minimal cost function for connecting two elements by a list in I, z.

Proof: If z_{1}, \ldots, z_{k} connects x and y in I, z there are two cases: either we have $z_{i} \epsilon I$ for all i or we can write this list as $z s_{1}, z, z s_{2}, \ldots, z, z s_{p}, y$. In both cases the cost of z_{1}, \ldots, z_{k} is $\geq d_{I, z} x y$. Furthermore, we have two cases:

- $d_{I} x y \leq d_{I} x z+d_{I} z y$: by assumption we have $z s$ connecting x and y in I such that $c(z s)=d_{I} x y=$ $d_{I, z} x y$.
- $d_{I} x z+d_{I} z y \leq d_{I} x y$: by assumption we have $z s$ connecting x and z in I such that $c(x z)=d_{I} x z$. We have also $t s$ connecting z and y in I such that $c(t s)=d_{I} z y$. Hence, $z s, z, t s$ connects x and y in I, z and $c(z s, z, t s)=d_{I} x z+d_{I} z y=d_{I, z} x y$.

In both cases we find $u s$ connecting x and y in I, z such that $c(u s)=d_{I, z} x y$.

