DISKRET MATEMATIK

A Proof of Warshall's algorithm

The following note contains a simple lemma which is the key idea behind Warshall's algorithm.

We consider a binary relation R on a set A. We say that a finite list z_1, \ldots, z_k of elements of A connects x and y iff

- k = 0 and R x y,
- $k \ge 1$ and $R \ x \ z_1, \ R \ z_1 \ z_2, \dots, R \ z_k \ y$.

We will be concerned with the transitive closure R^+ of R which may be defined as the relation $R^+ x y$ which holds iff there exists a finite list of elements connecting x and y.

We introduce the following notation: if I a subset of A and $z \in A$ then I, z is the subset of elements $x \in A$ such that $x \in I$ or x = z. Also $R_I^+ x y$ is the relation defined like R^+ but where the elements are required to be in I that is $R_I^+ x y$ holds iff there exists a finite list whose elements are in I connecting x and y.

Lemma: If $R_{I,z}^+ x y$ then

- either $R_I^+ x y$,
- or $R_I^+ x z$ and $R_I^+ z y$.

Proof: The proof is direct by induction on the list z_1, \ldots, z_k connecting x and y.

If k = 0 we have R x y and hence $R_I^+ x y$.

If $z_1, \ldots, z_k, z_{k+1}$ connects x and y then z_1, \ldots, z_k connects x and z_{k+1} and R z_{k+1} y. By induction hypothesis, we have two cases, each of one splitting in two subcases:

- $R_I^+ x \, z_{k+1}$. If $z_{k+1} \epsilon I$ we have $R_I^+ x \, y$. Otherwise $z_{k+1} = z$ and hence $R_I^+ x \, z$ and $R \, z \, y$ (and so $R_I^+ z \, y$ as well),
- $R_I^+ x z$ and $R_I^+ z z_{k+1}$. Once more, there are two cases. If $z_{k+1} \epsilon I$ we have $R_I^+ x z$ and $R_I^+ z y$. Otherwise $z_{k+1} = z$ and hence $R_I^+ x z$ and R z y (and so $R_I^+ z y$ as well).

Corollary: If we have an algorithm for deciding $R \ x \ y$ we have an algorithm for deciding $R_I^+ \ x \ y$ for any finite I.

Proof: We prove this by induction on the finite set *I*. If *I* is empty, then R_I^+ is *R* which is decidable by hypothesis. The induction step follows from the equivalence

$$R_{I,z}^+ \ x \ y \equiv [R_I^+ \ x \ y \lor [R_I^+ \ x \ z \land R_I^+ \ z \ y.]]$$

The same idea may be used to compute the minimal cost for connecting x and y. We suppose that for each x and y we have a value $d x y \in [0, \infty]$ which gives the cost of a direct connection between x and y. Then we can define

$$d_{I,z} x y = \min (d_I x y) (d_I x z + d_I z y)$$

The cost $c(z_1, \ldots, z_k)$ of a list z_1, \ldots, z_k connecting x and y is defined by

- d x y if k = 0,
- $d x z_1 + \ldots + d z_k y$ if $k \ge 1$.

We are interested in the *minimal cost* of connecting x and y by elements in I. If c is this minimal cost it means that

- there exists z_1, \ldots, z_k connecting x and y such that $c(z_1, \ldots, z_k) = c$,
- for any z_1, \ldots, z_k connecting x and y we have $c \leq c(z_1, \ldots, z_k)$.

Lemma: If d_I is the minimal cost function for connecting two elements by a list in I then $d_{I,z}$ is a minimal cost function for connecting two elements by a list in I, z.

Proof: If z_1, \ldots, z_k connects x and y in I, z there are two cases: either we have $z_i \in I$ for all i or we can write this list as $zs_1, z, zs_2, \ldots, z, zs_p, y$. In both cases the cost of z_1, \ldots, z_k is $\geq d_{I,z} x y$. Furthermore, we have two cases:

- $d_I x y \leq d_I x z + d_I z y$: by assumption we have zs connecting x and y in I such that $c(zs) = d_I x y = d_{I,z} x y$.
- $d_I x z + d_I z y \le d_I x y$: by assumption we have zs connecting x and z in I such that $c(xz) = d_I x z$. We have also ts connecting z and y in I such that $c(ts) = d_I z y$. Hence, zs, z, ts connects x and y in I, z and $c(zs, z, ts) = d_I x z + d_I z y = d_{I,z} x y$.

In both cases we find us connecting x and y in I, z such that $c(us) = d_{I,z} x y$.