Weak Type Theory

1 Definitional equality

The first published version of type theory [3] contains a version which does not allow the ξ-rule. The syntax is non standard and is described by P. Aczel as "unusual, complicated syntax of defined combinators to avoid contracting a redex inside an abstraction that binds a variable in the redex". The goal of this note is to provide an alternative presentation.

2 Model of type theory

A model is given by a collection of contexts. If Γ, Δ are context we have a collection $\Delta \rightarrow \Gamma$ of substitutions from Δ to Γ. This should form a category: we have a substitution $1: \Gamma \rightarrow \Gamma$ and a composition operator $\sigma \delta: \Theta \rightarrow \Gamma$ if $\delta: \Theta \rightarrow \Delta$ and $\sigma: \Delta \rightarrow \Gamma$. Furthermore we should have $\sigma 1=1 \sigma=\sigma$ and $(\theta \sigma) \delta=\theta(\sigma \delta)$. If Γ is a context we have a collection of types over Γ. We write $\Gamma \vdash A$ to express that A is a type over Γ. If $\Gamma \vdash A$ and $\sigma: \Delta \rightarrow \Gamma$ we should have $\Delta \vdash A \sigma$. Furthermore $A 1=A$ and $(A \sigma) \delta=A(\sigma \delta)$. If $\Gamma \vdash A$ we have also a colection of elements of type A. We write $\Gamma \vdash a: A$ to express that a is an element of type A. If $\Gamma \vdash a: A$ and $\sigma: \Delta \rightarrow \Gamma$ we should have $\Delta \vdash a \sigma: A \sigma$. Furthermore $a 1=a$ and $(a \sigma) \delta=a(\sigma \delta)$.

We have a context extension operation: if $\Gamma \vdash A$ then we have a new context $\Gamma . A$. Furthermore there is a projection $\mathrm{p} \in \Gamma . A \rightarrow \Gamma$ and a special element $\Gamma . A \vdash \mathrm{q}: A \mathrm{p}$. If $\sigma: \Delta \rightarrow \Gamma$ and $\Gamma \vdash A$ and $\Delta \vdash a: A \sigma$ we have an extension operation $(\sigma, a): \Delta \rightarrow \Gamma . A$. We should have $\mathrm{p}(\sigma, a)=\sigma$ and $\mathrm{q}(\sigma, a)=a$ and $(\sigma, a) \delta=(\sigma \delta, a \delta)$ and $(\mathrm{p}, \mathrm{q})=1$.

If $\Gamma \vdash a: A$ we write $[a]=(1, a): \Gamma \rightarrow \Gamma . A$. Thus if $\Gamma . A \vdash B$ and $\Gamma \vdash a: A$ we have $\Gamma \vdash B[a]$. If furtermore $\Gamma . A \vdash b: B$ we have $\Gamma \vdash b[a]: B[a]$. Models are usually presented by giving a class of special maps (fibrations), in our case they are the maps $\mathrm{p}: \Gamma . A \rightarrow \Gamma$, and the elements are the sections of these fibrations, in our case the maps $[a]: \Gamma \rightarrow \Gamma . A$ determined by an element $\Gamma \vdash a: A$.

We suppose furthermore one operation $\Pi A B$ such that $\Gamma \vdash \Pi A B$ if $\Gamma \vdash A$ and $\Gamma . A \vdash B$. We should have $(\Pi A B) \sigma=\Pi(A \sigma)\left(B \sigma^{+}\right)$where $\sigma^{+}=(\sigma \mathrm{p}, \mathrm{q})$. We have an abstraction operation λb such that $\Gamma \vdash \lambda b: \Pi A B$ if $\Gamma . A \vdash b: B$. We have an application operation such that $\Gamma \vdash \operatorname{app}(c, a): B[a]$ if $\Gamma \vdash a: A$ and $\Gamma \vdash c: \Pi A B$. These operations should satisfy the equations

$$
\operatorname{app}(\lambda b, a)=b[a], \quad c=\lambda\left(\operatorname{app} c^{+}\right), \quad(\lambda b) \sigma=\lambda\left(b \sigma^{+}\right), \quad \operatorname{app}(c, a) \sigma=\operatorname{app}(c \sigma, a \sigma)
$$

where we write $c^{+}=(c \mathbf{p}, \mathbf{q})$ and $\sigma^{+}=(\sigma \mathbf{p}, \mathbf{q})$.
To define a model of type theory with one universe, we assume that we have a special type $\Gamma \vdash U$ such that $U \sigma=U$ and $\Gamma \vdash A$ whenever $\Gamma \vdash A: U$. Furthermore we assume that $\Gamma \vdash \Pi A B: U$ whenever $\Gamma \vdash A: U$ and $\Gamma . A \vdash B: U$.

All equations we have been using can be grouped together in the equations of C-monoid [2]. There are the following equations of a monoid with a special constants $\mathrm{p}, \mathrm{q}, \mathrm{app}$ and operations (x, y) and λx

$$
\begin{gathered}
(x y) z=x(y z) \\
\mathrm{p}(x, y)=x \quad \mathrm{q}(x, y)=y \\
\mathrm{app}(\lambda x, y)=x[y] \quad(x, y) z=(x z, y z) \quad 1=(\mathrm{p}, \mathrm{q}) \\
(\lambda x) y=\lambda\left(x y^{+}\right) \quad 1=\lambda \mathrm{app}
\end{gathered}
$$

where we define $[y]=(1, y)$ and $x^{+}=(x \mathbf{p}, \mathbf{q})$. We have $x^{+}(y, z)=(x y, z)$ and $x^{+} y^{+}=(x y)^{+}$and $x^{+}[y]=(x, y)$.

We can add also descibe a model of type theory with dependent sums. We should have $\Gamma \vdash \Sigma A B$ if $\Gamma \vdash A$ and $\Gamma . A \vdash B$. If $\sigma: \Delta \rightarrow \Gamma$ we should have $(\Sigma A B) \sigma=\Sigma(A \sigma)\left(B \sigma^{+}\right)$. If $\Gamma \vdash a: A$ and
$\Gamma \vdash b: B[a]$ we should have $\Gamma \vdash(a, b): \Sigma A B$. We require the equation $(a, b) \sigma=a \sigma, b \sigma$. We ask also for two operations $\Gamma \vdash \mathrm{p} c: A$ and $\Gamma \vdash \mathrm{q} c: B[\mathrm{p} c]$ if $\Gamma \vdash c: \Sigma A B$ and the equations $\mathrm{p}(a, b)=a$ and $\mathrm{q}(a, b)=b$.

3 Model for weak conversion

When implementing λ-calculus, one does not usually reduce under an abstraction and it is natural to consider a version of type theory which follows this restriction. The first published version of MLTT [3] had actually this restriction. The conversion rules are

$$
\begin{gathered}
(x y) z=x(y z) \quad x 1=1 x=x \\
\mathrm{p}(x, y)=x \quad \begin{array}{c}
\mathrm{q}(x, y)=y \quad(x, y) z=(x z, y z) \\
\operatorname{app}((\lambda x) \sigma, y)=x(\sigma, y)
\end{array}
\end{gathered}
$$

For the typing rules, we remove the conversion rule ($\Pi A B) \sigma=\Pi(A \sigma)\left(B \sigma^{+}\right)$and have instead the following rules

$$
\begin{array}{cccc}
\Gamma \vdash A & \Gamma . A \vdash B & \sigma: \Delta \rightarrow \Gamma \quad \Delta \vdash w:(\Pi A B) \sigma & \Delta \vdash u: A \sigma \\
\hline & \Delta \vdash \operatorname{app}(w, u): B(\sigma, u)
\end{array}
$$

and the conversion rule is

$$
\frac{\Gamma \vdash A \quad \Gamma \cdot A \vdash B \quad \sigma: \Delta \rightarrow \Gamma \quad \Gamma \cdot A \vdash b: B \quad \Delta \vdash u: A \sigma}{\Delta \vdash \operatorname{app}((\lambda b) \sigma, u)=b(\sigma, u): B(\sigma, u)}
$$

We call WMLTT this version of Type Theory and the rules are presented in Figure 2.1.

4 Computation rule

There is a natural computation system associated to this version of type theory.

$$
\begin{array}{ccc}
\sigma 1 \rightarrow \sigma & 1 \sigma \rightarrow \sigma & (\sigma \delta) \nu \rightarrow \sigma(\delta \nu) \\
(\sigma, u) \delta \rightarrow(\sigma \delta, u \delta) & \mathrm{p}(\sigma, u) \rightarrow \sigma & \mathrm{q}(\sigma, u) \rightarrow u \\
\operatorname{app}(w, u) \delta \rightarrow \operatorname{app}(w \delta, u \delta) \quad & \operatorname{app}((\lambda b) \sigma, u) \rightarrow b(\sigma, u)
\end{array}
$$

References

[1] J. Cartmell. Generalised algebraic theories and contextual categories. Ann. Pure Appl. Logic 32 (1986), no. 3, 209-243.
[2] J. Lambek and P.J. Scott. Introduction to higher order categorical logic. Cambridge studies in advanced mathematics 7, 1986.
[3] P. Martin-Löf. An intuitionistic theory of types: predicative part. Logic Colloquium, 1973.

$$
\begin{aligned}
& \frac{\Gamma \vdash}{1: \Gamma \rightarrow \Gamma} \quad \frac{\sigma: \Delta \rightarrow \Gamma \quad \delta: \Theta \rightarrow \Delta}{\sigma \delta: \Theta \rightarrow \Gamma} \\
& \frac{\Gamma \vdash A \quad \sigma: \Delta \rightarrow \Gamma}{\Delta \vdash A \sigma} \quad \frac{\Gamma \vdash t: A \quad \sigma: \Delta \rightarrow \Gamma}{\Delta \vdash t \sigma: A \sigma} \\
& \digamma \quad \frac{\Gamma \vdash \Gamma \vdash A}{\Gamma \cdot A \vdash} \quad \frac{\Gamma \vdash A}{\mathrm{p}: \Gamma \cdot A \rightarrow \Gamma} \quad \frac{\Gamma \vdash A}{\Gamma \cdot A \vdash \mathrm{q}: A \mathrm{p}} \\
& \frac{\sigma: \Delta \rightarrow \Gamma \quad \Gamma \vdash A \quad \Delta \vdash u: A \sigma}{(\sigma, u): \Delta \rightarrow \Gamma . A} \\
& \frac{\Gamma \cdot A \vdash B}{\Gamma \vdash \Pi A B} \quad \frac{\Delta \cdot A \sigma \vdash b: B(\sigma \mathrm{p}, \mathrm{q})}{\Delta \vdash \lambda b:(\Pi A B) \sigma} \\
& \frac{\Gamma . A \vdash B}{\Gamma \vdash \Sigma A B} \quad \frac{\Gamma . A \vdash B \quad \sigma: \Delta \rightarrow \Gamma \quad \Delta \vdash u: A \sigma \quad \Delta \vdash v: B(\sigma, u)}{\Delta \vdash(u, v):(\Sigma A B) \sigma} \\
& \frac{\sigma: \Delta \rightarrow \Gamma \quad \Delta \vdash w:(\Pi A B) \sigma \quad \Delta \vdash u: A \sigma}{\Delta \vdash \operatorname{app}(w, u): B(\sigma, u)} \\
& \frac{\Delta \vdash w:(\Sigma A B) \sigma}{\Delta \vdash \mathrm{p} w: A \sigma} \quad \frac{\Delta \vdash w:(\Sigma A B) \sigma}{\Delta \vdash \mathrm{q} w: B(\sigma, \mathrm{p} w)} \\
& \sigma 1=\sigma \quad 1 \sigma=\sigma \quad(\sigma \delta) \nu=\sigma(\delta \nu) \\
& (\sigma, u) \delta=(\sigma \delta, u \delta) \quad \mathrm{p}(\sigma, u)=\sigma \quad \mathrm{q}(\sigma, u)=u \\
& \operatorname{app}(w, u) \delta=\operatorname{app}(w \delta, u \delta) \quad \operatorname{app}((\lambda b) \sigma, u)=b(\sigma, u)
\end{aligned}
$$

Figure 1: Rules of WMLTT

