
Weak Type Theory

1 Definitional equality

The first published version of type theory [3] contains a version which does not allow the ξ-rule. The
syntax is non standard and is described by P. Aczel as “unusual, complicated syntax of defined combi-
nators to avoid contracting a redex inside an abstraction that binds a variable in the redex”. The goal
of this note is to provide an alternative presentation.

2 Model of type theory

A model is given by a collection of contexts. If Γ,∆ are context we have a collection ∆ → Γ of substitutions
from ∆ to Γ. This should form a category: we have a substitution 1 : Γ → Γ and a composition operator
σδ : Θ → Γ if δ : Θ → ∆ and σ : ∆ → Γ. Furthermore we should have σ1 = 1σ = σ and (θσ)δ = θ(σδ).
If Γ is a context we have a collection of types over Γ. We write Γ ` A to express that A is a type over Γ.
If Γ ` A and σ : ∆ → Γ we should have ∆ ` Aσ. Furthermore A1 = A and (Aσ)δ = A(σδ). If Γ ` A we
have also a colection of elements of type A. We write Γ ` a : A to express that a is an element of type
A. If Γ ` a : A and σ : ∆ → Γ we should have ∆ ` aσ : Aσ. Furthermore a1 = a and (aσ)δ = a(σδ).

We have a context extension operation: if Γ ` A then we have a new context Γ.A. Furthermore there
is a projection p ∈ Γ.A→ Γ and a special element Γ.A ` q : Ap. If σ : ∆ → Γ and Γ ` A and ∆ ` a : Aσ
we have an extension operation (σ, a) : ∆ → Γ.A. We should have p(σ, a) = σ and q(σ, a) = a and
(σ, a)δ = (σδ, aδ) and (p, q) = 1.

If Γ ` a : A we write [a] = (1, a) : Γ → Γ.A. Thus if Γ.A ` B and Γ ` a : A we have Γ ` B[a]. If
furtermore Γ.A ` b : B we have Γ ` b[a] : B[a]. Models are usually presented by giving a class of special
maps (fibrations), in our case they are the maps p : Γ.A→ Γ, and the elements are the sections of these
fibrations, in our case the maps [a] : Γ → Γ.A determined by an element Γ ` a : A.

We suppose furthermore one operation Π A B such that Γ ` Π A B if Γ ` A and Γ.A ` B. We
should have (Π A B)σ = Π (Aσ) (Bσ+) where σ+ = (σp, q). We have an abstraction operation λb such
that Γ ` λb : Π A B if Γ.A ` b : B. We have an application operation such that Γ ` app(c, a) : B[a] if
Γ ` a : A and Γ ` c : Π A B. These operations should satisfy the equations

app(λb, a) = b[a], c = λ(app c+), (λb)σ = λ(bσ+), app(c, a)σ = app(cσ, aσ)

where we write c+ = (cp, q) and σ+ = (σp, q).
To define a model of type theory with one universe, we assume that we have a special type Γ ` U

such that Uσ = U and Γ ` A whenever Γ ` A : U . Furthermore we assume that Γ ` Π A B : U whenever
Γ ` A : U and Γ.A ` B : U .

All equations we have been using can be grouped together in the equations of C-monoid [2]. There
are the following equations of a monoid with a special constants p, q, app and operations (x, y) and λx

(xy)z = x(yz) x1 = 1x = x

p(x, y) = x q(x, y) = y (x, y)z = (xz, yz) 1 = (p, q)

app(λx, y) = x[y] (λx)y = λ(xy+) 1 = λ app

where we define [y] = (1, y) and x+ = (xp, q). We have x+(y, z) = (xy, z) and x+y+ = (xy)+ and
x+[y] = (x, y).

We can add also descibe a model of type theory with dependent sums. We should have Γ ` Σ A B
if Γ ` A and Γ.A ` B. If σ : ∆ → Γ we should have (Σ A B)σ = Σ (Aσ) (Bσ+). If Γ ` a : A and

1



Γ ` b : B[a] we should have Γ ` (a, b) : Σ A B. We require the equation (a, b)σ = aσ, bσ. We ask also
for two operations Γ ` pc : A and Γ ` qc : B[pc] if Γ ` c : Σ A B and the equations p(a, b) = a and
q(a, b) = b.

3 Model for weak conversion

When implementing λ-calculus, one does not usually reduce under an abstraction and it is natural to
consider a version of type theory which follows this restriction. The first published version of MLTT [3]
had actually this restriction. The conversion rules are

(xy)z = x(yz) x1 = 1x = x

p(x, y) = x q(x, y) = y (x, y)z = (xz, yz)

app((λx)σ, y) = x(σ, y)

For the typing rules, we remove the conversion rule (Π A B)σ = Π (Aσ) (Bσ+) and have instead the
following rules

Γ ` A Γ.A ` B σ : ∆ → Γ ∆ ` w : (Π A B)σ ∆ ` u : Aσ

∆ ` app(w, u) : B(σ, u)

and the conversion rule is

Γ ` A Γ.A ` B σ : ∆ → Γ Γ.A ` b : B ∆ ` u : Aσ

∆ ` app((λb)σ, u) = b(σ, u) : B(σ, u)

We call WMLTT this version of Type Theory and the rules are presented in Figure 2.1.

4 Computation rule

There is a natural computation system associated to this version of type theory.

σ1 → σ 1σ → σ (σδ)ν → σ(δν)

(σ, u)δ → (σδ, uδ) p(σ, u) → σ q(σ, u) → u

app(w, u)δ → app(wδ, uδ) app((λb)σ, u) → b(σ, u)

References

[1] J. Cartmell. Generalised algebraic theories and contextual categories. Ann. Pure Appl. Logic 32
(1986), no. 3, 209–243.

[2] J. Lambek and P.J. Scott. Introduction to higher order categorical logic. Cambridge studies in
advanced mathematics 7, 1986.

[3] P. Martin-Löf. An intuitionistic theory of types: predicative part. Logic Colloquium, 1973.

2



Γ `
1 : Γ → Γ

σ : ∆ → Γ δ : Θ → ∆

σδ : Θ → Γ

Γ ` A σ : ∆ → Γ

∆ ` Aσ
Γ ` t : A σ : ∆ → Γ

∆ ` tσ : Aσ

`
Γ ` Γ ` A

Γ.A `
Γ ` A

p : Γ.A→ Γ

Γ ` A
Γ.A ` q : Ap

σ : ∆ → Γ Γ ` A ∆ ` u : Aσ

(σ, u) : ∆ → Γ.A

Γ.A ` B
Γ ` Π A B

∆.Aσ ` b : B(σp, q)

∆ ` λb : (Π A B)σ

Γ.A ` B
Γ ` Σ A B

Γ.A ` B σ : ∆ → Γ ∆ ` u : Aσ ∆ ` v : B(σ, u)

∆ ` (u, v) : (Σ A B)σ

σ : ∆ → Γ ∆ ` w : (Π A B)σ ∆ ` u : Aσ

∆ ` app(w, u) : B(σ, u)

∆ ` w : (Σ A B)σ

∆ ` pw : Aσ

∆ ` w : (Σ A B)σ

∆ ` qw : B(σ, pw)

σ1 = σ 1σ = σ (σδ)ν = σ(δν)

(σ, u)δ = (σδ, uδ) p(σ, u) = σ q(σ, u) = u

app(w, u)δ = app(wδ, uδ) app((λb)σ, u) = b(σ, u)

Figure 1: Rules of WMLTT

3


