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1 Henselian extensions

In all this paper A will be a local ring, with a detachable maximal ideal M. We let k be the
residue field A/M. If we have such a local ring A, M it is convenient to think of the elements of
M as “infinitesimal”, whereas the elements of A× are the ones that are observationally different
from 0. (The introduction of [8] is helpful there.)

We shall look at a polynomial system

f1(x1, . . . , xn) = . . . = fn(x1, . . . , xn) = 0 (∗)

which has a simple zero at (0, . . . , 0) residually: we have not only fi(0, . . . , 0) = 0 residually but
also the Jacobian of this system J(0, . . . , 0) is in A×.

We are going to associate, in an explicit way, to such a system a unitary polynomial f of
degre m which is of the form Xm−1(X − 1) residually. To this polynomial we can associate
the extension Af of A obtained by forcing f(z) = 0 and inverting all elements g(z) such that
g(1) ∈ A×. Intuitively we have added a root of f which is infinitely close to 1. The extension
Af is called a simple Hensel extension of A. One can show that Af is a local ring and we have
a local embedding of A into Af , the maximal ideal Mf being the set of elements h(z)/g(z) such
that h(1) ∈ M [1]. (This is actually rather direct since f is unitary.) For instance we have
z − 1 ∈ Mf and this expresses that z is infinitely close to 1.

The polynomial f will be such that in Af there is a solution (x1, . . . , xn) of the system (∗)
where all x1, . . . , xn are in Mf . Thus we have found a local extension of A in which the system
(∗) has a solution “infinitely close” to 0.

A unitary polynomial which is of degre m and of the form Xm−1(X − 1) residually is called
a special polynomial. Notice that if f is a special polynomial we always have f(1) = 0 and
f ′(1) = 1 residually. Notice also that z is a unit of Af . We call such an element a special unit.

We can summarise this discussion by the following result.

Theorem 1.1 There exists a special polynomial f such that the system (∗) has an infinitesimal
solution in Af .

In particular this means that it is consistent to add a root of the system (∗) and if we do
that, we do it in a conservative way over A. Furthermore, it shows that the system (∗) has a
solution in the Henselization of A, which is obtained from A by adding successively roots of
special polynomials [1].

To build such a solution, the first step is to extend the system (∗) so that we get a new
system which has the property that it implies that all xi are in MA[x1, . . . , xn].

Lemma 1.2 Assume f1, . . . , fn ∈ k[X1, . . . , Xn] are such that f1(0, . . . , 0) = . . . = fn(0, . . . , 0) =
0 and have a Jacobian J(0, . . . , 0) in k× and let k[x1, . . . , xn] be k[X1, . . . , Xn]/<f1, . . . , fn>.
Then there exists an idempotent element e ∈ 1+Σxik[x1, . . . , xn] such that ex1 = . . . = exn = 0.
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Proof. After a linear change of coordinates we can assume that we have fi = Xi − gi where
all monomials in gi are of degree > 1. This means that, if x is the column vector (x1, . . . , xn),
we can write x = Mx where M is a n × n matrix in coefficient in Σxik[x1, . . . , xn]. If e is the
determinant of In−M we have ex1 = . . . = exn = 0, and e ∈ 1+Σxik[x1, . . . , xn]. This implies
e2 = e.

Corollary 1.3 With the notations of Lemma 1.2, X1, . . . , Xn, 1 −X ∈ <f1, . . . , fm, Xe − 1>
in k[X1, . . . , Xn, X].

Proof. Indeed this ideal contains e2 − e and Xe − 1 so it contains e − 1 and X − 1. Since it
contains eX1, . . . , eXn it contains also X1, . . . , Xn.

If we lift this to A and A[X1, . . . , Xn] this means that, maybe after adding one indeterminate
and one equation, one can assume that we have ν1, . . . , νn in MA[X1, . . . , Xn] such that X1 −
ν1, . . . , Xn − νn are in <f1, . . . , fn>.

We shall follow Peskine’s proof of Zariski Main Theorem [7] for proving constructively the
following formulation of this theorem.

Theorem 1.4 We assume that B = A[x1, . . . , xn] is an A-algebra such that x1, . . . , xn ∈ MB.
There exists s ∈ 1 + MB such that s, sx1, . . . , sxn are integral over A.

The statement is proved only for two elements x, y, but it holds, with the same argument as
the one we give, for n elements as well. The argument we give for Theorem 1.4 follows closely
Peskine’s proof. One main point is the elimination of the use of a generic minimal prime.

Before giving the proof of Theorem 1.4, we explain how it can be used for Theorem 1.1. We
apply it to the algebra B = A[x1, . . . , xn] where x1, . . . , xn are forced to be a solution of the
system (∗), assuming that this system implies x1, . . . , xn ∈ MB. Notice that, a priori, it may
be that 1 ∈ MB or that 1 = 0 in B. It will be a consequence of Theorem 1.1 that this is not
the case, and furthermore B is conservative over A: if a ∈ A then a = 0 in B if and only if
a = 0 in A.

By Theorem 1.4 we find s = s(x1, . . . , xn) in 1 + MB and s, sx1, . . . , sxn are integral over
A. We let D = A[s, sx1, . . . , sxn].

Lemma 1.5 For each u ∈ B there exists p such that spu is in D.

Proof. Indeed u can be written as a polynomial in x1, . . . , xn and so smu can be written as a
polynomial in s, sx1, . . . , sxn for m big enough.

Since s, sx1, . . . , sxn are integral over A, D is a finite A-module. So it is a finite A[s]-module
as well, and the generators are m0 = 1,m1, . . . ,ml where each m1, . . . ,ml is a product of powers
of sxi. So each generator m1, . . . ,ml is in MB.

Lemma 1.6 There exists p such that all spm1, . . . , s
pml are in MD.

Proof. Indeed each mi is in MB and we can apply Lemma 1.5.

Corollary 1.7 There exists a unitary polynomial d(X) = X lp + . . . which is X lp residually
such that d(s)D ⊆ A[s].

Proof. Indeed we write spmi = Σµijmj for i = 1, . . . , l and m0 = 1 where each µij is in M. By
taking the determinant d(s) of this system we obtain the result.
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This shows that each x1, . . . , xn can be expressed as a rational function of s, and we write
hi(s) = d(s)sxi = q(s)xi with q(X) = Xd(X). We let N be a bound of the degree of f1, . . . , fn

and we let Fi(z) be q(z)Nfi(h1(z)/q(z), . . . , hn(z)/q(z)).

Corollary 1.8 s is a root of the system F1(s) = . . . = Fn(s) = 0.

Notice that s − 1 ∈ MB. By using Lemma 1.5 we have N such that sN (s − 1) ∈ MD.
By using Corollary 1.7, we get d(s)sN (s − 1) ∈ MA[s]. Thus we see that s is the root of a
polynomial which is of the form Xp−1(X − 1) residually. We can get a little better and obtain
that s is the root of a special polynomial.

Lemma 1.9 Let p be minimal such that s is a root of a polynomial F of the form Xp−1(X−1)
residually. Then s is the root of a special polynomial of degree p.

Proof. We have that 1, . . . , sp−1 generates A[s] as a A-module by using Nakayama’s lemma.
Thus s is the root of a unitary polynomial of degree p. This polynomial G has to be Xp−1(X−1)
residually, otherwise s would be the root of the gcd of this polynomial F and G (we do the
computation residually). Since this polynomial divides Xp−1(X − 1) residually it has to be of
the form Xq−1(X − 1) residually with q < p.

We don’t need to be able to compute the minimal value for p, and we cannot compute it
in general. We follow the proof of Lemma 1.9 and proceed dynamically. We find in this way
a special polynomial f of which s is a root, and we can do as if this polynomial is of minimal
degree.

The claim is now that for this polynomial f the system (∗) has a root in Af . For this,
since we have Fi(z) = q(z)Nfi(h1(z)/q(z), . . . , hn(z)/q(z)) and q(1) = 1 residually the only
condition that we have to check is F1(z) = . . . = Fn(z) = 0. By the minimality condition on
f we can assume that F1(X), . . . , Fn(X) are multiple of f(X) residually. (This is an example
where we can reason dynamically: if after dividing F1, . . . , Fn by f we find some remaining
polynomial which is not 0 residually we can replace f by a smaller special polynomial. After a
finite number of such operations we are in the situation where F1(X), . . . , Fn(X) are all multiple
of f(X) residually.)

Thus we have that all F1(z), . . . , Fn(z) are infinitely small in Af . We let I be the ideal
<F1(z), . . . , Fn(z)> in Af .

Lemma 1.10 (Newton’s lemma) If C is an A-algebra, I an ideal of C, and there is a solution
(u1, . . . , un) of (∗) mod. I then there exists i1, . . . , in ∈ I such that (u1 + i1, . . . , un + in) is a
solution of (∗) mod. I2.

Lemma 1.11 In the ring Af we have I = I2.

Proof. Notice that h1(z)/q(z), . . . , hn(z)/q(z) a solution of the system (∗) mod I. By Lemma
1.10 there exits a solution y1, . . . , yn mod I2 of the system (∗). It follows that t = s(y1, . . . , yn) ∈
1+MA[y1, . . . , yn] is a root of the special polynomial f mod I2, and that we have q(t)yi = hi(t).
(Indeed, all this follows uniquely formally as soon as we have somewhere a solution of the system
(∗).) Also t is in Af infinitely close to 1. Since t is infinitely close to 1 and f(t) = 0 mod I2

it follows that we have z = t mod I2: we can write f(t) = (t − z)f ′(z) + (t − z)2u and since
t − z ∈ Mf and f ′(z) is invertible, f(t) ∈ I2 implies t − z ∈ I2. Thus q(z)yi = hi(z) mod I2

and we have F1(z), . . . , Fn(z) = 0 mod I2, as desired.
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Corollary 1.12 We have I = 0 and so h1(z)/q(z), . . . , hn(z)/q(z) is a solution of the system
(∗) in Af .

Proof. Since F1(z), . . . , Fn(z) are infinitely small in Af , the inclusion I ⊆ I2 implies (like in
Nakayma’s lemma) that I = 0.

2 Zariski Main Theorem

In the following we shall reserve the names A,B, M as described in the statement of Theorem
1.4. The monoid M = 1 + MB will play a crucial role.

Lemma 2.1 If R ⊆ S and t ∈ S satisfies an equation antn + . . . + a0 = 0 with a0, . . . , an ∈ R
then ant is integral over R.

Proof. We have, by multiplying the equation by an−1
n

(ant)n + an−1(ant)n−1 + . . . + an−1
n a0 = 0

which shows that ant is integral over R.

This is only a special case of a more important result, which comes from [3].

Lemma 2.2 If R ⊆ S and t ∈ S satisfies an equation antn + . . . + a0 = 0 with a0, . . . , an ∈ R
and we take un = an, un−1 = unt+ an−1, . . . , u0 = u1t+ a0 = 0 then un, . . . , u0 and unt, . . . , u0t
are integral over R and <u0, . . . , un> = <a0, . . . , an> as ideals of S.

Proof. By Lemma 2.21 we have first unt = ant integral over R. It follows that un−1 = tun+an−1

is integral over R. We have then

un−1t
n−1 + an−2t

n−2 + . . . + a0 = 0

so that, by Lemma 2.21 again, un−1t is integral over R[un] and so over R. In this way, we get
that un, unt, un−1, un−1t, . . . , u0 = 0 are all integral over R.

We deduce from this the following way of building integral elements that are in the monoid
M .

Corollary 2.3 If A ⊆ C ⊆ B and t ∈ B satisfies an equation antn + . . . + a0 = 0 with
a0, . . . , an ∈ C and at least one of them in M then there exists u in M such that u, ut are
integral over C.

Proof. By Lemma 2.2 we first find un, . . . , u0 ∈ B such that un, unt, . . . , u0, u0t are integral over
C and by Lemma 2.2 at least one ui is in M .

Corollary 2.3 can be formulated as follow: if t is the root of a polynomial in C[T ] which is
not 0 mod MB then there exists u in M such that u, ut are integral over C.

Lemma 2.4 If t is integral over R[x] and p(x) is a monic polynomial in R[x] such that tp(x)
is in R[x] then there exists q in R[x] such that t− q is integral over R.

Proof. We write tp = r(x) in R[x]. We do the Euclidian division of r(X) by p(X) and get
r = pq + r1. We can then write (t − q)p = r1. This shows that we have p = (t − q)−1r1 in
R[(t − q)−1][x] and hence that x is integral over R[(t − q)−1]. Since t − q is integral over R[x]
we get that t− q is integral over R[(t− q)−1] and hence over R.
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Lemma 2.6 is a variation on this lemma. With Corollary 2.3 this gives the second way of
building integral elements.

Lemma 2.5 If t is integral over R[x] then there exists l such that for all a ∈ R we have that
alt is integral over R[ax].

Proof. We have an equation for t of the form tn + p1(x)tn−1 + . . . + pn(x) = 0. Let l be the
greatest exponent of x in this expression. By multiplying by al we get an equality of the form

altn + q1(ax)tn−1 + . . . + qn(ax) = 0

and hence, by Lemma 2.1, alt is integral over R[ax].

Lemma 2.6 If t is integral over R[x] and p(x) = akx
k + . . . + a0 is a polynomial in R[x] such

that tp(x) is in R[x] then there exists q in R[x] and m such that am
k t− q is integral over R.

Proof. By Lemma 2.5 we have l such that alt is integral over R[ax] for all a. We write tp(x) =
r(x) and by multiplying by a suitable power of ak we get an tam

k P (akx) ∈ R[akx] with m ≥ l
and P monic. We can then apply Lemma 2.4.

Corollary 2.7 If t is integral over R[x] and R is integrally closed in R[x, t] and t(akx
k + . . . +

a0) ∈ R[x] then there exists m such that am
k t ∈ R[x].

We assume now t integral over R[x] of degree n and R integrally closed in S = R[x, t]. We
define J = (R[x] : S).

Lemma 2.8 If u ∈ S we have u ∈ J if and only if u, ut, . . . , utn−1 ∈ R[x].

Proof. This is clear since all elements of S can be written qn−1(x)tn−1 + . . . + q0(x).

Lemma 2.9 If u ∈ S and a0, . . . , ak ∈ R and u(a0 + . . . + akx
k) ∈ J then there exists m such

that uam
k ∈ J .

Proof. We have by Lemma 2.8

(a0 + . . . + akx
k)u, (a0 + . . . + akx

k)ut, . . . , (a0 + . . . + akx
k)utn−1 ∈ R[x]

All elements utj are integral over R[x] and R is integrally closed in R[x, utj ]. Hence by Corollary
2.7 we find m such that am

k utj ∈ A[x].

We consider now the radical
√

J of J in S.

Corollary 2.10 If u ∈ S and a0, . . . , ak ∈ R and u(a0 + . . . + akx
k) ∈

√
J then ua0, . . . , uak ∈√

J.

Proof. We have l such that ul(a0 + . . . + akx
k)l ∈ J . By Lemma 2.9 we have m such that

ul(al
k)

m ∈ J and hence uak ∈
√

J . It follows that uakx
k ∈

√
J and so u(a0+. . .+ak−1x

k−1) ∈
√

J
and we get successively uak−1, . . . , ua0 ∈

√
J .

Corollary 2.11 Assume S = R[x, t] with t integral over R[x] and R is integrally closed in S.
We take J = (R[x] : S). If we take D = S/

√
J and C = R/R ∩

√
J then D = C[x, t] is a

reduced ring with a subring C such that t is integral over C[x] and x is transcendent over C in
the strong sense that we have for all u ∈ D and a0, . . . , ak ∈ C, if u(a0 + . . . + akx

k) = 0 then
ua0 = . . . = uak = 0.
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Let S be an R-algebra and let I be an ideal of R. We say that t ∈ B is integral over I if
and only if it satisfies a relation tn + a1t

n−1 + . . . + an = 0 with a1, . . . , an in I. The integral
closure of I in S is the ideal of elements of S that are integral over I.

Lemma 2.12 If S is integral over R then the integral closure of I in S is
√

IS.

Proof. See [2] Lemma 5.14.

Lemma 2.13 If Xk + a1X
k−1 + . . . + ak divides Xn + b1X

n−1 + . . . + bn then a1, . . . , ak are
integral over b1, . . . , bn

Proof. We can assume Xk + a1X
k−1 + . . . + ak = (X − t1) . . . (X − tk). We have then t1, . . . , tk

integral over b1, . . . , bn and hence also a1, . . . , ak since they are (symmetric) polynomials in
t1, . . . , tk.

From now on, we assume that D is a reduced C-algebra and that x ∈ D is strongly transcen-
dent over C in the sense that we have for all u ∈ D and a0, . . . , an ∈ C, if u(a0x

n + . . .+an) = 0
then ua0 = . . . = uan = 0. This hypothesis is stable by localisation: x is still strongly tran-
scendent over C in D[1/u] for any u ∈ D. More generally, if U is a monoid of D then x
is still strongly transcendent over C in DU . We assume also that I is an ideal of C, that
P (T,X) = Tm+a1(X)Tm−1+. . .+am(X) and Q(T,X) = XnTn+µ1(X)Xn−1Tn−1+. . .+µn(X)
in C[X, T ] are such that µ1(X), . . . , µn(X) ∈ IC[X], m ≤ n and that t ∈ D is such that
P (t, x) = Q(t, x) = 0. The goal is to show that, under these hypotheses, we have t integral over
IC[x]1. By Lemma 2.12 this is equivalent to say that 0 belongs to the monoid tN + IC[x, t],
and by localising at this monoid U , i.e. replacing D by DU , we are reduced to show that 1 = 0
in D.

Lemma 2.14 Assume C1 ⊆ D, that x is transcendent over C1 and that G(T, x) = T k +
b1(x)T k−1 + . . . + bk(x) divides Q(T, x), with b1(x), . . . , bk(x) ∈ C1[x] and G(t, x) = 0. Then D
is a trivial ring.

Proof. Since x is transcendent over C1 we have that G(T,X) = T k + b1(X)T k−1 + . . . + bk(X)
divides Q(T,X) = XnTn + µ1(X)Xn−1Tn−1 + . . . + µn(X). By taking T = XN we see that
XNk + b1(X)XN(k−1) + . . . + bk(X) divides XnXNn + µ1(X)Xn−1XN(n−1) + . . . + µn(X). If N
is big enough we can apply Lemma 2.13 and conclude that all coefficients of b1(X), . . . , bk(X)
are integral over I. Since G(t, x) = tk + b1(x)tk−1 + . . . + bk(x) = 0 it follows that t is integral
over IC[x], and so D is a trivial ring.

Lemma 2.15 If u ∈ D and u, ux are integral over C then u = 0.

Proof. We have (ux)l + c1(ux)n−1 + . . . + cl = 0 for some c1, . . . , cl in C. From cl = −(ux)l −
c1(ux)n−1 − . . .− cl−1ux and the fact that u is integral over C and that D is reduced it follows
that we have cl = 0. We have then ux((ux)l−1 + . . . + cl−1) = 0 and similarly uxcl−1 = 0 and
so ucl−1 = 0. In this way we deduce ucl−2 = . . . = u = 0.

Corollary 2.16 If C1 ⊆ D and C1 is integral over C then x is strongly transcendent over C1.

1At this point, Peskine’s argument is essentially to introduce a minimal prime of D to reduce the proof to the
case where D is an integral domain. We avoid the use of this minimal prime ideal by considering all subresultants
instead of the gcd of the polynomials P (T, x) and Q(T, x).
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Lemma 2.17 If C1 ⊆ D and x is strongly transcendent over C1 and a ∈ C then x is strongly
transcendent over C1[1/a] in D[1/a].

Lemma 2.18 D is a trivial ring.

Proof. We compute the subresultants of P (T, x) and Q(T, x) in C[x][T ] and we show that
they are all 0, i.e. P (T, x) has to divide Q(T, x). The conclusion follows then from Lemma
2.14. We consider one such subresultant s0(x)T k + c1(x)T k−1 + . . . + ck(x) asssuming that
all previous subresultants have been shown to be 0. We can assume s0(x) to be invertible,
replacing D by D[1/s0]. We let a be the leading coefficient of s0(x) and we show a = 0. We
write bi(x) = ci(x)/s0(x). Since T k + b1(x)T k−1 + . . . + bk(x) divides P (T, x) we have that
b1(x), . . . , bk(x) are integral over C[x] by Lemma 2.13. By Lemma 2.4, b1(x), . . . , bk(x) are in
C1[1/a][x] with C1 integral over C. By Corollary 2.16 and Lemmas 2.14 and 2.17, we have 1 = 0
in D[1/a] and hence a = 0 in D.

Corollary 2.19 If S = R[x, t] and R is integrally closed in S and t is integral over R[x] and I
ideal of R such that tx ∈

√
IS then t ∈

√
IS mod

√
J where J = (R[x] : S).

Proof. This follows from Corollary 2.11 and Lemma 2.18.

Corollary 2.20 If A ⊆ C[x] ⊆ B and t in M and t is integral over C[x] and tx ∈
√

MC[x, t]
then there exists u in M such that u, ux are integral over C.

Proof. Let R be the integral closure of C in S = C[x, t]. By Corollary 2.3, it is enough to find
a polynomial in R[T ], with one coefficient in M , of which x is a root. By Corollary 2.19 we get
a ∈ J ∩M . Since a, at ∈ M ∩ R[x] both are polynomial in R[x] and both have their constant
coefficient in M . Using tx ∈ MC[x, t] we get a polynomial in R[T ], with one coefficient in M ,
of which x is a root.

Lemma 2.21 If t, ty are integral over A[x] and s, sx integral over A then there exists N such
that sN t, sN tx, sN ty are integral over A.

Proof. We write tk + a1(x)tk−1 + . . . + ak(x) = 0 and tlyl + b1(x)tl−1yl−1 + . . . + bl = 0. Let
xd be the highest power of x that appears in these expressions. We have that sdt and sdty are
integral over s, sx and so over A, and we take N = d + 1.

We now have all the elements for the proof of main Theorem.

Theorem 2.1 We assume that B = A[x, y] is an A-algebra such that x, y ∈ MB. There exists
s ∈ 1 + MB such that s, sx, sy are integral over A.

Proof. We can write y = µ(y) with µ(y) ∈ M[x][y]. The polynomial T −µ(T ) in A[x][T ] is then
a polynomial, which is 1 mod MB, of which y is a root. Hence by Corollary 2.3 there exists w
in M such that w,wy integral over A[x]. We can even assume wy ∈ A[x].

Since x ∈ MB we have xwl ∈ MA[x,w,wy] for l big enough. If we take t = wl it follows
from Lemma 2.12 that we have xt ∈

√
MS where S = A[x, t]. By Corollary 2.20 we find u ∈ M

such that u, ux are integral over A. We can then take s = tuN for N big enough using Lemma
2.21.
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We show that the same argument works with B = A[x1, x2, x3]. We have νi(X1, X2, X3) ∈
MA[X1, X2, X3] such that

x1 = ν1(x1, x2, x3), x2 = ν2(x1, x2, x3), x3 = ν3(x1, x2, x3)

Using Corollary 2.3 we compute first t in M such that t is integral over A[x1, x2] and tx3 ∈
A[x1, x2]. We have then for some l that x2t

l is in MA[x1, x2, t, tx3] and hence is in
√

MA[x1, x2, tl].
Using 2.19 we find u in M such that utl is in C[x2] where C is the integral closure of A[x1].
Then using x2 ∈

√
MA[x1, x2, tl] again we find a polynomial in C[T ], which is 1 mod MB, of

which x2 is a root, and hence we can find v in M such that v, vx2 are in C, i.e. are integral
over A[x1]. Taking w = tvN for v large enough, we get w in M such that w,wx3, wx2 are
integral over A[x1]. Since x1 = ν1(x1, x2, x3) we can find p large enough such that x1w

p is in
MA[x1, w, wx2, wx3] and using Corollary 2.20 we find s in M such that s, sx1 are integral over
A. We can then finish by taking wsM for M big enough.

3 Examples

3.1 One variable

If we have a system x = a0+a2x
2+. . .+anxn with a0 ∈ M. We first take t = 1−a2x−. . .−anxn−1

and we have xt = a0. In this case it is easy to compute the equation for t since t − 1 =
−a2x − . . . − anxn−1 and hence tn−1(t − 1) = −a2a0t

n−2 − . . . − anan−1
0 . We find in this way

the change of variables of [1].

3.2 Two variables

We analyse the example where A is the local ring Q[a, b]S , S being the monoid of elements
p(a, b) ∈ Q[a, b] such that p(0, 0) 6= 0. We take next B = A[x, y] where x, y are defined by the
equations

−a + x + bxy + 2bx2 = 0, − b + y + ax2 + axy + by2 = 0 (∗)

We shall compute s ∈ B integral over A such that sx, sy integral over B and s = 1 mod MB.
Following the proof we take t = 1 + ax + by. We have that t = 1 mod MB and t, ty integral

over A[x]. We have even ty = y + axy + by2 = b− ax2 in A[x]. The equation for t is

t2 − (1 + ax)t− b + ax2

We have then
tx = x + ax2 + bxy = a + (a− 2b)x2

and so
(t− (a− 2b)x)x = a

If we take u = t − (a − 2b)x = 1 + 2bx + by we have u = 1 mod MB and ux in A and u is
integral over A. Indeed u is integral over A[1/u] since x is in A[1/u] and u is integral over A[x].

If we take s = tu2 we have s, sx, sy integral over A. Indeed, ux is in A and since t2 −
(1 + ax)t − b + ax2 we have tu and hence s integral over A. Since ty = b − ax2 we have
sy = vu2 − a(ux)2 integral over A. Finally sx = (tu)(ux) is integral over A.

For this example, it can be checked that u satisfies the equation f(u) = 0 with

f(u) = u4 − u3 + (a2 − 4ab− b2)u2 + a(2b− a)u + a2b(4b− a)

8



One can then check that if we take

x =
a

u
, y =

bu2 − a

u(u2 − a(2b− a))

then one has identically −b + y + ax2 + axy + by2 = 0 and the equation f(u) = 0 implies
−a + x + bxy + 2bx2 = 0. Thus, the system (∗) has a solution in Af which is a simple Hensel
extension of A.
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