Detecting termination using size-change in
parameter values

Masters Thesis in Computer Science

David Wahlstedt
Supervisor: Thierry Coquand

30 October 2000

Abstract

We present a method to automatically detect termination in a
strict, first order functional language. This is a first step towards an
application of the method on Agda [Agda]. The method is based on
a paper of Neil Jones et al [Jones 00].

To any program, seen as a set of equations defining recursive func-
tions, we associate a graph of calls, whose arcs are themselves graphs.
These graphs describe for each call the size relations between the for-
mal parameters and the actual parameters.

The termination condition can then be stated in terms of these
graphs: each infinite path in the graph of calls must contain an in-
finitely decreasing thread.

What is surprising is that this condition can then be decided by a
fully automatic algorithm. The method is quite general, and it is not
dependent of auxiliary requirements like for example lexicographically
ordered parameters. We have written a small Haskell prototype and
tested this method on some examples.

Contents

1 Introduction
1.1 Backgroundo o
1.2 Motivation for thiswork
1.3 Headlines of the algorithm

2 Language, syntax, semantics
2.1 Language
2.2 SemantiCs,
3 Call graph and size-change graphs
3.1 Size-change graphs
3.2 Callgraph
3.3 Properties of non-termination
4 Termination detection algorithm

1.4 Someexamples

4.1 Ramsey’s theorem
4.2 Termination criterion using size-change graphs

Remark on criterion by Jones et al.
Conclusions
Future work

A small implementation

Al Mainmodule,
A.2 Termination detection module
A3 Abstract syntax
A.4 Size-change graph data type

A.5 Extraction of size-change graphs and building call-graph

A.6 Example programs oL

12
12
13

16
16
17
18

20
20
21

22

23

24

25
25
25
27
28
30

1 Introduction

1.1 Background

There are several reasons for studying automated termination detection tech-
niques: One general field of application is as an aid for debugging programs,
e.g. finding loops that may cause non-termination. More issues motivating
automated termination detection — e.g partial evaluation — can be found in
[Jones 00]. An algorithm has been introduced for the functional program-
ming paradigm by [Jones 00] which is inspired from [Sagiv 91|, a termination
detection algorithm for prolog/datalog programs.

1.2 Motivation for this work

In Agda [Agda], notations of functional programming are used for repre-
senting proofs: case expressions correspond to case analysis, let expressions
represent local definitions/lemmas, and constructors represent introduction
rules for inductive definitions. It is then natural to represent inductive proofs
by using case expressions and recursive definitions. However for this proof
to be correct, the recursion has to be well-founded, i.e. recursive calls have
to be decreasing with respect to a well-founded ordering. The algorithm of
[Jones 00] provides a uniform method to ensure what may be called “struc-
tural well-founded termination”, and this can be applied to Agda’s functional
representation of proofs.

Our contribution is a detailed presentation of the algorithm of [Jones 00],
suitably adapted to programs using case notation. We limit ourselves to the
data type of unary natural numbers, but we believe that the method can be
extended to the general case of data types used in Agda.

1.3 Headlines of the algorithm

Assume we want to define the subtype relation in a Haskell-like language
given a subtype function subA for some previously defined type A, as follows:

Example 1.3.1

subA :: A -> A -> Bool
data T = Prim A | Arrow T T

sub :: T -> T -> Bool
sub (Prim al) (Prim a2) = subA al a2

sub (Arrow t1 ul) (Arrow t2 u2) = sub t2 t1 && sub ul u2
sub _ _ = False

Provided all elements of T are well-founded, we know that for instance
Arrow t1 ul is greater than both t1 and ul, because t1 and ul are sub-
terms of Arrow t1 ul. Using this information we can extract size-change
relations between the actual and formal parameters in sub summarised in
what we will call a “size-change graph” , a bipartite graph with labelled arcs.
In our diagrams of these graphs an arc (or an undirected edge) between nodes
i and j denotes that j’th formal parameter is strictly greater (or greater or
equal) than the i’th actual parameter. For each function application defined
in the body of sub we extract a size-change graph in this manner illustrated
below:

sub sub| sub sub
1 e—>=e1]1 1
2 ———=e 2|2 2
Call:[1] Call:[2]

Figure 1: The size-change graphs extracted from sub.

From the figure we see that any infinite sequence of these graphs must
contain an infinite sequence of strictly decreasing adjacent arcs constituting
what we will call an infinitely descending thread. The first (and also the
second) argument decreases infinitely often. Hence an infinite computation
is not possible for any well-founded input, and the program must terminate.

The surprising fact is that the property stating that any infinite com-
position contains an argument that decreases (formally) infinitely often is
decidable. Furthermore the algorithm is relatively simple:

The termination detection method of [Jones 00] consists of two phases.
The first is to derive a set of size-change graphs from the program we want
to check. For each function definition, to each function application in the
program, a size-change graph is associated that reflects the known size re-
lations between the formal parameters of the function definition and actual
parameter values of the application. The second phase of the analysis then
decides if every infinite computation of the program gives an infinitely de-
creasing sequence with respect to the size-change graphs: We first compute
all possible finite compositions, and then we check that every idempotent
graph contains a decreasing argument (i.e. an arrow from ¢ to ¢). In this

case there is only one idempotent graph. For that graph both arguments are
decreasing.

The concept of size-change graphs will be formally described in Section 3.
The termination criterion will be treated in detail in Section 4. Our language
and its semantics is defined in Section 2, and in Section 3.3 we connect the
programming language with the termination detection criterion.

1.4 Some examples

Earlier techniques for approximating size-change termination have auxiliary
requirements on the order of the parameters, etc. In [Abel 98|, a lexico-
graphic ordering is required for termination to be detected. The tuple of
formal parameters must be strictly greater than any tuple of actual parame-
ters of any call, both direct and indirect recursive. If there is a lexicographic
ordering of the components of the tuples such that the above condition holds,
the program must terminate. This method is relatively strong and also fast,
but there are cases where it fails as we will see below.

The method of [Jones 00] contains the lexicographic ordering termination
of [Abel 98], for instance it detects termination of the Ackermann function,
that meets these requirements:

Example 1.4.1

ack(xy,x9) = case x; of
00— S(Xz)
S(x,') — case xy of
0 — ack(x1 , S(0))
S(Xgl) — ack(xl', ack(xl,x2'))

ack ack| ack ack| ack ack
lToe—=0 1|1l e—=2 1|1 e——-= 1

2. «2(2 . ¢ 2|2 —== 2
Call:[1] Call:[2] Call:[3]

Figure 2: The size-change graphs extracted from ack.

ack ack| ack ack
1o = 1|1 « o1
2 e e 22 oe— =2 2
Call:[1] Call:[3]

Figure 3: The set of all distinct compositions of graphs of ack.

The following example is a translation from a similar program in [Abel 98].
The program outputs a list of elements interleaved from the lists that are the
two arguments. In our language the program becomes an addition program
adding up ones from every other argument giving their sum as output. The
program terminates and does so by the algorithm of [Jones 00], but it does
not meet the requirement of lexicographical ordering of parameter tuples, so
this example was used in [Abel 98] to show a shortcoming of their algorithm
— it cannot detect termination due to swapped parameters.

Example 1.4.2

add(x;,x9) = case x; of
0 = xo
S(x1) — S(add(x2,x1"))

add add
1 1
2 2
Call:[1]

Figure 4: The size-change graphs extracted from add.

add add
1 1
2 2
Calls:[1,1,1]

add add|
1l e—=e1

20— >e2
Calls:[1,1]

add

2
Call:[1]

add

Figure 5: The set of all distinct compositions of graphs of add.

A less artificial example of swapped parameters is the subtype function
of Example 1.3.1 above, which unfortunately can not yet be implemented in
our language due to lack of user-definable type constructors.

The following example from [Abel 98] illustrates how [Jones 00] method
applied to a non-terminating program give a useful output that indicates
which loops (sequence of calls) may cause non-termination. In Abels example
this program shows that the lexicographical ordering requirement is violated

by an indirect call f, g, g, f.

Example 1.4.3

f(x1,%x2) = case x; of
0—0

S(x,') — case x of
0—>0

S(x2') — h(g(x1',%2), £(S(S(x1)), %2))

g(x1,x2) = case x; of
0—0

S(x;) — case x of
0—=0

S(x2') = h(f(x1,%2),8(x1 ,8(x2)))

h(x1,x2) = case x; of

0 — case x9 of
0—0

S(x') — h(xy,x5)
S(X1) — h(X1 ,X2)

1 e——=e1

26— 2

Call:[2]

2 e—>0 2

Call:[3]

g h
1o o1
2. o 2
Call:[4]

g f |g g |h h
loe—e1|1 e—> 11—l
2e—22(2¢ ¢2(2e—22
Call:[5] [Call[6] |Call[7]

1 e——==1

2 e—e2

Call:[8]

Figure 6: The size-change graphs extracted from f, g, h.

f f g g

1o o 1(1 o o 1
2 e 2(2 . 2
Calls:[2,6,5,3] |Calls:[5,3,2,6]

Figure 7: Compositions of graphs of f, g, h identifying a loop that may cause
non-termination.

The algorithm of [Jones 00] is PSPACE-hard in program size, which may
appear to be a problem. Here follows an example program containing nine
The fixed point iteration giving all finite compositions give 565
distinct graphs. To find out that this program is not terminating by the
algorithm, we have to find and idempotent graph that has no decreasing
argument.

graphs.

Example 1.4.4

fo(x1,%2,%3,%4,%X5) = case xj of
0—0
S(x1') — case x4 of
0—0
S(xa') = £1(x2', %2, %4, x4, 5(S(x5)))
f1(x1,%9,%3,%4,X5) = case x5 of
0—0
S(x5') — f2(x2,%1,%3,%4,%5)
fg(xl,XQ,Xg,X4,X5) = case x3 of
0—0
S(Xgl) — case x4 of
0 — case x5 of
0—>0
/ / /
S(X5) — f3(X1,X2,X3 ,X4,X5)
S(x4') — case x3 of
0—0
S(X5I) — f5(X1,X2,X3,X4’,X5’)
f3(X1,X2,X3,X4,X5) = case x5 of
0—0
S(X5’) — f4(X1,X2,X4,X3,X5I)
f4(x1,%9,%3,%4,%X5) = case x1 of
0—0
S(x;') — case x of
0 — case x5 of
0—>0
S(X5’) — fg(xll,XQ,Xg,X4,X5,)
S(xo') — case xj of
0—0
S(X5’) — fg(Xl,XQI,X3,X4,X5’)
f5(X1,X2,X3,X4,X5) = case x5 of
0—0
S(X5’) — fe(Xg,Xl,Xg,X4,X5’)
fs(xl,XQ,X3,X4,X5) = case Xj of
0—0
S(X5I) — fo(Xl,Xg,X4,X3,X5’)

10

fO f1 [(f1 f2 | f2 £f3 |[f2 f5 | £f3 f4 | f4 £3 |f4 f2 | f5 f6 [f6 f0
1. 1{1 {1l e—= 1|1 e—= 1|1 e—= 1|1 e—=e 1|1 e—— 1|1 1{1 e—1
2 22><22-—-22-—-22-—-22-—-22%22><22-—-2
3 e 3|3 e—= 3|3 o> 3|3 «—= 3|3 3|3 e 3|3 e—2 3[3 e—= 3|3 3
Call:[1] |Call:[2] |Call:[3] |[Call:[4] |Call:[5] |Call:[6] [Call:[7] [Call:[8] |Call:[9]
Figure 8: The size-change graphs extracted from example 1.4.4

fO fo |(f1 f1 |f2 f2(f2 f2 |£f3 {£f3|(f4 £f4 |f5 {£5 |f6 £6
1 e ill. illillill.ﬁllﬁllill. ?:1
| Dy | sl | DO el 1 PN PO
De eH|be e5H|De eH|he o505 eH|He e5H5e eH|He 5
[1,2,3,5,7,4,8,9] |[2,3,5,7,4,8,9,1] |[3,5,7,4,8,9,1,2] |[4,8,9,1,2,3,5,7] |[5,7,4,8,9,1,2,3] |[7.,4,8,9,1,2,3,5] |[8.9,1,2,3,5,7,4] |[9,1,2,3,5,7,4,8]

Figure 9: The sources of possible non-termination from example 1.4.4
— cyclic idempotent compositions of size-change graphs. The lists of
numbers indicate the sequences of size-change graphs from Figure 8 that
produced the corresponding composition.

11

2

2.1

Language, syntax, semantics

Language

We consider a strict first-order functional language:

P € Prog , the set of programs

def € Fundef , the set of function definitions
f € FunName , the set of function names

e € Ezxp , the set of expressions

t € Term , the set of non-case expressions
x,y € Var , the set of variable names

Programs in abstract notation are defined inductively as follows:

A program p in this language is a list of definitions defy,... ,def,,.

A function definition def; is written £;(x1,... , Xar(¢;)) = s,, where all
the formal parameters x1, ... ,Xqr(¢,) are distinct and ar(f;) denotes the
arity of function f;. The expression ey, is called the function body of
£;.

An expression e is either a term t or a case-expression case x e; €.
To make it more comprehensible we will write
case x of 0 = e; S(x') — ey.

A term t is either a variable x, 0, or the successor of a term S(t)
or a function application f;(ty,...,tar()), Where t; are the actual
parameters of the application.

We use variable names that are of the form x; or x’, where x is a variable
name. We define x*) as follows:

x = xO
x®' = g1

12

Definition 2.1.1 (Free variables)

(y=2x) or (y free in ey) or (y # x' and y free in ey)
y free in (case x of 0 — e; S(x') — ey)

y free in'y

y free in t
y free in S(t)

3j.y free in t;
y free in £;(tq, ... 7ta7"(fi))

Definition 2.1.2 (Call) The pair (£;,£;(t1,... ,tare;))) is a call for
fi(X1, - Xarey)), if £i(1, ..., tare;)) 08 a sub-term of es,.

Definition 2.1.3 (Syntactical size relation)

Define the relations > and > in Exp X Exp as follows:
x; > S if k>
x; > 8'(x") if k=1

From now on, we assume given a program p with the following property:
The set of free variables in e, is contained in {xi,... X4}, the formal
parameters of £;, for each i.

2.2 Semantics

A denotational semantics will be given for the language. D is the usual flat
domain of natural numbers. If D; and Dj are domains, let [D; — Ds] be the
domain of continuous functions from D; to Ds.

Figure 10: The semantic domain D

13

Let

D=NU{Ll}

VarEnv =Var — D

FunEnv = erFunName[DaT(f) - D]

£ € Exp — [FunEnv — [VarEnv — D||
P € Prog — [D*®) — D]

Syntactical constructors 0 and S are distinguished from the value constructors
0 and S for elements of IN, to avoid confusion.

Definition 2.2.1 (Variable environments)

Given p = (X1 =nq,... ,Xx = nyg), then
plxi) = { 1, otherwise.

where p € VarEnwv.

Definition 2.2.2 (Predecessor function)

n , ifd=8(n),n €N

PRED(d):{ 1, otherwise.

Definition 2.2.3 The tuple (dy,... ,d,) € D" is well-defined if and only if
all of its components are distinct from L.

Definition 2.2.4 The semantics of a program is defined as follows:

14

g o], =0

1 , fEJE], =1L
€¢|[S(t)]]p :{ §(5¢[[t]]p) , otherwise.

& Jxil, = p(xi)

£ [x], = PRED(E [x],)

Ecase x of 0 —e; S(x') = ey], =
1 L i K], = L
Eferl, . €I, =0
E e, . ifEJxl, =8(n), for somen € IN.

g¢|[fi(t17 < :tm‘(fi))]]p =
d(£)(d) , if d is well-defined
L , otherwise.
where d = (5¢[[t1]]p, . ,£¢[[tm.(fi)]]p).

Let

7; € [FunEnv — [DE) — DJ]
¢ — ((dl, ce ,dm«(fi)) — £¢|[efi]]
T € [FunEnv — FunEnv|

¢ — £, — TZ(¢)

2 € FunEnv

£, — (dl, . ,da,«(fi)) — L

(xl =di,... 7xar(fi):dar(fi)))

Let ¢, denote the least fized point of T, a solution of T(p) = ¢:
Boo = |_{r* (D)}
k=0

Then,

Pl[fl(xla s axar‘(fl)) = ©€f,.-. afm(xla s ’Xar(fm)) = efm]] = ¢m(f1)

Thus, the first function in the list of definitions is considered as being the
entry function of the program.

15

Lemma 2.2.1 Ifx; Rt, and € [t], # L, where R € {>,>}, then

p(XZ) R 5¢[[t]lp.
Proof: Assume x; > t, and £ [t], # L. Then by Definition 2.1.3, we must
- : (*)
have t = 8'(x,)), where k > I. By assumption & [t] # L, 50 p(x;7) # L.
So L # p(x;) = m > k. By Definition 2.2.4, 5¢|[Sl(xi(’“))]]p = S'(p(x;) — k) =
m — k + 1 < m, because k > [. The proof for > is similar. [

3 Call graph and size-change graphs

3.1 Size-change graphs
Definition 3.1.1 Foracallc= (f;,£;(t1,... ,tar(e;))) for fi(Xe, -, Xar(zy)),
we define its size-change graph to be a bipartite graph,

G, = ([1..ar(£,;)],[1..ar(£;)], E)

where E is a set of labelled arcs: E C [1..ar(£;)] x {>,>} x [L..ar(£;)], where
(m, R,n) € E if and only if Xy, R t,, according to Definition 2.1.5.

We will say that a size-change graph (V,V, E) is decreasing if it contains
an arc of the form (7,>,14) for some i € V.

Definition 3.1.2 The set of size change graphs G, of a program p is defined
as follows:

Go ={G. | c is a call (£;,£(t1,... ,tar(e;))) in program p }

Definition 3.1.3 By juxtaposition the relations >,> are composed as fol-

lows:
> if Ry is > or Ry 1s >
R1R2 —) f 1 i 2
> . otherwise.

Definition 3.1.4 Given arc sets
Ey = {(i1, R, i2)|i1 € [1..ar(£,)], 42 € [1..ar(£;)], Ry € {>,>}}
and
Ey = {(ia, R3, 13) i € [1..ar(£;)], 45 € [1..ar(£x)], Rs € {>,>}}
their composition E1Fy is defined as follows:
E\Ey = {(i, RR",k) | (i, R, j) € Eu, (j, R, k) € Ey}

Definition 3.1.5 Given size-change graphs G = (V1, Vs, E) and H = (V3, V3, E')
their composition is GH = (V1, Vs, EE'), where EE' is the composition of
arc sets E and E'.

16

3.2 Call graph

Definition 3.2.1 The call graph T';, of program p = defi,...,def,, is
the directed graph (V,E) whose edges E = G, and whose vertices V =
[1..m], the indices of the function names in p. FEach arc G, of I'y has a
source and a target (s,t)G. = (i,j) among the vertices i,j € V, such that
(fi, £5(t1,- .- s tar(e;))) 5 a call in p.

Figure 11: Call graph of Example 1.4.3. The arc ¢; is associated to the i’'th
size-change graph in Figure 6.

Definition 3.2.2 A path
v==G¢, G- .-

in I'p is a sequence of arcs of T’y that may be finite or infinite, such that

t(Ge,) = 5(G0i+1) .

Definition 3.2.3 We define a thread of a path G,,G.,, ... as a sequence of
arcs

(mq, Ry, my), (ma, R3, ms3), ...

such that (mg, Ryy1, mey1) is an arc of G, ;.

Definition 3.2.4 A path is said to be infinitely descending if and only if
it contains a thread v = (my, Re, ms), (mo, R3,m3), ... such that there are
infinitely many indices k where Ry, is > in the thread v.

17

Definition 3.2.5 Given
v=G1,Gy, ... ,Gy
a finite path of I'y, let G, denote the composition:
GGy ... Gy

Remark:
If (49, R, ix) is an arc of G, then v has a thread

(7;0, R]_, 7;1), (/[/1, RQ, Z.Q), cee g (ikf]_’ Rk, ik)

such that R = R R, ... R;. See Figure 12 below for an intuition.

Gy
[] [] [] []

A Ry [} 10 R [}
\ ik ° ik
[J [J [J

Gg G1G2...Gy

Figure 12: An example of a thread in v and a corresponding arc in G,.

3.3 Properties of non-termination

Lemma 3.3.1 If € Je], = L and p(x) # L for all x free in e, then e has a
sub-term £;(ty,... , taps,)) sSuch that
gd,[[fi(tl; ce . ,ta,,-(fi))]lp = J_, and \V/j.5¢|[tj]|p 75 1.

Proof:

By structural induction on e:

Assume € Je] , = L and p(x) # L for all x free in e.
Then either:

1. eis a free variable x. This is not possible because p(x) # L by assump-
tion.

2. e is 0. This is obviously not possible.

18

3. e is S(t). Then apply Lemma 3.3.1 recursively on t.

4. eis case x of 0 — e; S(x') — ey. Then either:

= S(d). Now, x’ may be free in e, but p(x’) = d # L. Hence
an apply Lemma 3.3.1 recursively on es.

5. e is fi(t1,... ,tares,;)). Then either:

(a) 3j € [1..ar(£;)].€,[t;], = L. Then apply Lemma 3.3.1 recursively
on tj.

(b) Vj € [l..ar(£:)].€ [t;], # L. Then Lemma 3.3.1 holds.

Since e is finite, case 5b is the only valid terminal alternative, which must
apply to some sub-term of e. [

Lemma 3.3.2 If ¢oo(£i,)(do) = L, where dy is well-defined, then there erists
an infinite sequence

(Cl,CTl),(CQ,CZQ) ,Cz;;),...

’ (C3
such that (m, R,n) € G, = J;(m) R J;-H(n), where J; is well-defined, for
all j € N and ¢, is a call for £,,.

Proof: Assume ¢oo(£;,)(do) = L and dy is well-defined. Then, according to
Definition 2.2.4, £¢oo[[efi0]]p = L, where p = (x1 = do(1),... ,%a;, = do(a,)).
Recall that from the hypothesis of Section 2.1 that these are the only possible
free variables of er, - By Lemma 3.3.1, e, contains a call ¢; =

(fioa fil (tl, . ,tar(fil))) such that 5¢00[[fi1 ('tl, . ’ta""(fil))]lp =1, where

(€, e, - - ,5¢°°|[ta¢1]]p) = d; and d; is well-defined.

Now assume (m, R,n) is an arc of G.,. Then by Definition 3.1.1, we
have x,, R t,. This implies p(x,,) R €¢oo|[tn]]p, by Lemma 2.2.1 because
€¢w[[tn]]p ié 1. Since p(xn) = do(m) and &, ltal, = dy(n), we must have
do(m) R dl (n) .

We have that ¢ (£f;,)(d1) = L, so we can proceed repeatedly in the
same way to build the infinite sequence (c1,dy), (co, da), (¢2,d3), - . ., with the
properties stated above. [

19

Theorem 3.3.1 If every infinite path in I'y is infinitely descending, then p
terminates on all well-defined input.

Proof: Assume P[p](dy) = L, where dy is well-defined, and that all the
infinite paths of I', are infinitely descending. Then ¢ (£f1)(dy) = L, so by
Lemma 3.3.2 there exists an infinite sequence s = (c1,d;), (¢, do), (cs, d), - ..

such that c{; is well-defined and c; 1 = (f;;, i, (t1,- - ,tar(f%l))) is a call
for £;; (x1,... ,xar(fij)), where iy = 1, and whenever (m, R,n) is an arc of
Gy, then dy(m) R djya(n)

Consider the infinite path v = G.,,G,,, G¢,, - .. By assumption 7 is in-
finitely descending, so there is a thread of ~:

(my, Riv1, mug1), (Mugr, Riga, musa), (Muygo, Rigs, Mygs), - - .

starting at some index [in 7, such that (m;, Rj11,m;+1) € G where there

Cj+17
are infinitely many j such that R; is >. Let us define dj = ci;c(mk). Recall
that by Lemma 3.3.2 we have dy, Ry, dy,1 with R,y € {>,>}, forall k > 1,
and the set {j | R;4; is > } is infinite. Hence d;, di41, di1o, . .. is an infinitely
descending sequence in IN, which is absurd. [J

4 Termination detection algorithm

4.1 Ramsey’s theorem

Definition 4.1.1 Let [A]* denote the set {B C A : |B| = 2}. By a “finite
coloration” of [A]°, we mean a function from [A]*> into a finite set.

Theorem 4.1.1 Ramsey’s theorem (Binary infinite version ')
Given any finite colouring x of []1\1]2, there exists an infinite subset T of IN,
such that [T]* is monochromatic under x (that is x is constant on [T]*).

Proof: Define the infinite sequence of infinite sets S; as follows:

’L) Let Sl = NN.
i1) Having chosen S;, choose z; € S; arbitrarily.
it7) Let T; ={ue S| x(z;,u) =3}

Then {T; | j € x} is a finite partition on S; \ {z;}. Choose S;;1 to be one of
the infinite 7;. The sequence

X:.Il,l‘g,ﬂ??,,...

!The proof principally follows [Graham 80], page 16.

20

has the property that x(z;,z;) = x(xi,zx) for all j > i,k > 4, because if
k > j, then S; C S;. Define a colouring x* of the singletons x;

X" (z;) = ¢ such that x(z;,z;) = ¢ for all j > 1.

Then x* is a finite partition on the sequence X. So for some colour j, there
must be an infinite sequence

! __
X = Li1sLigy Ligs - -

where iy, 19,13, ... are indices of elements in X, such that x*(x;,) = j for all
s. But for any 1 < s < t,

X (@i, 23,) = X" (23,) = -

Hence [X']? is monochromatic under y. [

4.2 Termination criterion using size-change graphs

Definition 4.2.1 Define S to be the set {G, | v is a finite path of I';p}.

Note that S is a finite set, because for each finite path v in I'y, where G, =
(Vi, Vo, E) there is only a finite set of possible configurations of E. And there
is only a finite number of pairs of vertices in I',.

Theorem 4.2.1 All the infinite paths of T'y are infinitely descending if and
only if for every G € S such that G?> = G there is an arc (n,>,n) in G.

Proof: Suppose for every G € S such that G* = G there is an arc (n,>,n)
in G. Choose an infinite path v of I';. We label the edges of v as follows:

7:G15G25G3a"'

Let 7;; denote the finite section G, Gi1,...,G;j-1 of 7v. Then we can
define the function ¥y : []N]2 — S as: x(i,7) = G, for j > .

S is a finite set, since there is only a finite number of possible size-change
graphs of fixed arity. So yx is a finite colouring of []N]2. By Ramsey’s Theorem,
there is an infinite subset I of IN such that [I]* is monochromatic under .
Consider the sorted sequence %1, 79, 73, ... of elements of I. For each j,k € IN
we have x(i;,) = Gy, = G for some G in S.

So v can be sectioned 714, Viyiys Vigis, - - - » Where each section 7;,;, has
composition G%.jik which is G. But then also G? = G, because G, , G =

Yigig
G*=@G =G.

Yiiig

YiyigsVigiz G’Y’ilis

21

By assumption G has an arc (n, >, n) and then by the remark of Definition
3.2.5 each section v;,;;,, has a thread

(mo, R, mq), (mq, Ra, ma), ..., (my_1, Ry, my)

where my = n = my,q = iy — i;, and at least one of Ry,..., R, equals >,
because RiRy... R, = >. Hence < is infinitely descending.

For the reverse implication, assume G = (V,V,E) € S, and G = G?,
where there is no arc of the form (v, >, v) in G. Now suppose that every infi-
nite path of Iy is infinitely descending, and from this deduce a contradiction.

We have G' € S, so G is a composition G, of some finite path v =
G1,Gs,Gs, ... ,Gg in I',. The left hand side set of vertices in G which is V/,
is the same as the right hand side set of vertices in G, since G = (V,V, E).

Consider the infinite path v = 7, 7,7, By assumption 7 is infinitely
descending, and by Definition 3.2.4, +* contains an infinitely descending
thread v = (myg, R1,m1), (m1, R, my), (M2, R3,m3), ..., starting in some arc
of 7, then passing through + infinitely often.

It is clear that v passes through arcs of G; infinitely often. By the pigeon
hole principle there must be an infinite subset of these arcs (m;;, R, 41, m;;41)
of Gy, such that m;; = n for some n € V, because V is a finite set.

Let us choose a finite section ¢/ of v as follows: Choose the first arc of v/ to
be (mi,, Rig11, Mig+1)- Let v/ be long enough to contain an arc (my, >, myy1),
where [> 45. Such an arc must exist because v is infinitely descending.
Choose the last arc of v' to be an arc (m;,_1, R;,, m;,) of G, (which is the
last size-change graph in 7).

Hence ¢/ is a thread of some power v* of the same length kq. Hence
(Mg, >,m;,) = (n,>,n) must be an arc of G,x. But G.» = G¥, and G = G*,
because G = G?. So the arc (n,>,n) must belong to G, which contradicts
the assumption that G has no such arc. Hence all the infinite paths of I
cannot be infinitely descending. [

5 Remark on criterion by Jones et al.

The termination criterion presented by [Jones 00] is equivalent of the crite-
rion presented in this paper. In [Jones 00] the graph G* denotes the union
of arcs from all distinct powers of a size-change graph G. In our terminology
their main theorem is:

All the infinite paths in I, are infinitely descending if and only if for all
G € S such that G is self-composable there is an arc (7,>,7) in G*.

22

The latter is equivalent with the assertion: for all G € S such that G is
self-composable , there is n, such that G™ has an arc (i, >,14). It follows from
the definition of G, and we have simplified this by the statement that all G
such that G = G? has an arc (i,>,4). This eliminates the need of defining
G™T and its generation in the termination detection algorithm. We give a
direct proof of equivalence between these two results:

Theorem 5.0.2 For all G € S such that G*> = G, there is an arc (i,>,1)
in G if and only if, for all G € S, such that G is self-composable, there is n,
such that G™ has an arc (i,>,1).

Proof: Assume ((VG € S such that G? = G).(1,>,1) € G).

Consider H = (V,V,E) € S. Let Q = H™ such that H™ = (H™)?,
m > 1. Such an m must exist because of Lemma 5.0.1 below. By assumption,
since Q@ = @Q?, (i,>,1) belongs to Q. So we have m such that H™ contains
the arc (i,>,1).

Assume now VG € S such that G is self-composable, there is an (7, >, 1)
in some power G*. Consider H € S, such that H> = H. We know by
assumption that there is m such that H™ has an arc (i,>,4). But H™ = H,
because H = H?. So H has an arc (i, >,1). O

Lemma 5.0.1 For any size-change graph G composable with itself, there is
a natural number n, such that (G")*> = G™.

Proof: Since there is a finite number of size-change graphs for fixed arities,
there must exist 7 < j such that G* = GY.

Then G* = G** for j —i =1 > 0. We have G* = G*™* for any k,m,
and hence G = Gk for any k,m. We can choose k,m such that
i +m+ kl = 2(i + m). Then Gi*™ = (G*m)*. O

6 Conclusions

This algorithm appears to be both simpler and more powerful than the algo-
rithm presented in [Abel 98]. One potential problem was efficiency. Although
it it PSPACE-hard in the size of the program (see [Jones 00]), the worst cases
arise when the size-change graphs contain many arcs with many swapped pa-
rameters. It seems that the algorithm is efficient enough for small programs
with simple call structure. Functions with a large number of parameter val-
ues are rarely used, so the average time and space complexity seem to be
quite good.

23

7 Future work

As termination analysis for Agda is the main motivation for our study of this
algorithm, a task to be undertaken is the implementation of this system for
Agda. First the algorithm should be generalised to fit a language with general
data types. This can be achieved by using disjunct sums to distinguish
constructors and Cartesian products for the arities of the constructors.

Furthermore higher order functions would be desirable to cover by the
algorithm. We do not yet know how this should be accomplished. One
possibility is that some higher order functions, like the “map”-function, for
instance, can be transformed to first order form and then be checked for
termination.

Another topic could be to use the method described in this paper in
the “reverse direction” looking for infinitely increasing sequences, to ensure
productivity for infinite structures. We don’t know if this is a good idea,
but it may be worth investigating. See [Giménez 95| for more reading about
these issues.

24

A A small implementation

This section gives an example showing that the algorithm we present can
be easily implemented in a straight-forward manner. In this work focus is
not put on this implementation, but on the proof and understanding of the
algorithm.

A.1 Main module

module Checker where
import Asyntax
import Parser

import Prettylatex
import Scgraph
import Callgraph
import Termcheck
import Examples

-- derive the set S:
finite_compos p = let gs = callgraph$parse p
in s gs

—-- derive the set of size-change graphs:
graphs = callgraph.parse

-- derive all the self-composable graphs from S:
selfG p = let gs = graphs p

in [g | go(G £ £2 _) <- s gs, f == £’]

—— finds loops that may cause non-termination:
check p = let gs = graphs p
non_sat = map showPath (find_nonterm gs)
in if null non_sat then putStr "Ok\n"
else putStr(
"Possible termination problems:\n" ++
show non_sat)

A.2 Termination detection module

module Termcheck where

25

import List
import Scgraph

-- Some auxiliary functions

-— make a graph comparable

-— if its arcs are sorted and unique,

-- a size-change graph can be compared for equality
normaliseG :: Scgraph -> Scgraph

normaliseG (G f g arcs path) = G £ g (nub(sort arcs)) path

-- make all the graphs in a list comparable
normalise :: [Scgraph] -> [Scgraph]
normalise = map normaliseG

-- all possible compositions between graphs in gsl and gs2

allcomps :: [Scgraph] -> [Scgraph] -> [Scgraph]
allcomps gsl gs2 =
[composG gl g2 | gle(G _ g _ _)<-gsl, g2@(G g’ _ _ _)<-gs2, g == g’]

-— fixedpoint iteration:
-- add elements to a set emerging from sO with f on the last change.
—-- s0 U £(s0) U £(£(s0)) U ... U (£°n)(s0)
-- such that (£"(n-1)) (s0) equals (f°n)(s0).
-- To use ++ below is like ‘union‘ because new and acc has no common elements
fixedpoint :: Eq a => ([a] -> [a]) -> [a] -> [a]
fixedpoint f s0 = let af acc last = case nub(f last) \\ acc of

[1 -> acc

new -> af (new++acc) new

in af sO0 sO

- Compute S
- i.e. all the distinct finite compositions
- of size-change graphs in the program.
s :: [Scgraph] -> [Scgraph]
s gs = let gs’ = (nub.normalise) gs
in fixedpoint (normalise.allcomps gs’) gs’

- Detect size-change termination

-- If all G=(V,V,E) in S where G"2 = G has an arc (un,>,n), then p terminates.

26

-- result is True if size-change termination is detected, False otherwise
check_idempot :: [Scgraph] -> Bool
check_idempot gs = let desc_param (n,rel,n’) = rel == Gt && n==n’
has_desc_param = any desc_param
in
all has_desc_param
[as | g@(G £ £’ as _)<-s gs,
f==f’, g == normaliseG (composG g g)]

-- finds the compositions that may cause non-termination
find_nonterm :: [Scgraph] -> [Scgraph]

find_nonterm gs = let desc_param (n,rel,n’) = rel == Gt && n==n’
has_desc_param = any desc_param
in
filter (\ (G _ _ as _) -> (not(has_desc_param as)))

[g | go(G £ £’ as _)<-s gs,
f==f’, g == normaliseG (composG g g)]

-- Alternative termination criterion of [Jones 00], using G+
-= Compute G+ (Neil Jones way, see [Jones 00] in thesis)

-- create G+ by adding arcs from powers of g until no new arcs are added
-- we don’t take the path of calls into account here

gplus :: Scgraph -> Scgraph

gplus (G f f’> as path) = G f £’ (fixedpoint (composAs as) as) path

-- result is True if size-change termination is detected, False otherwise
-- If for all G=(V,V,E) in S

- there exists m such that G"m has an arc (n,>,n)

-- then the program terminates on all input.

checkGplus :: [Scgraph] -> Bool

checkGplus gs = let arcs (G _ _ as _) = as
desc_param (n,rel,n’) = rel == Gt && n==n’
has_desc_param = any desc_param
in

all has_desc_param
[arcs (gplus g) | g@(G f £’ as _)<-s gs, f==f’]

A.3 Abstract syntax

module Asyntax where

27

data Program = Prog FDs
deriving (Show,Eq)

type FDs = [FD]

type Varname = (String,Int)

type Funname = String

data FD = FD Funname [Varname] Exp
deriving (Show,Eq)

data Exp = Var Varname

| Z

| S Exp

| App Funname [Exp]

| Case Exp Exp Exp

deriving (Show,Eq)

showVar (x,k) = x ++ replicate k ’\?’

instance Ord Exp where
>=) compare’ (==
>) compare’ (>)

compare’ rel (Var(xs,ks)) t =
maybe False (\(1,(xt,kt)) -> xs == xt && (kt - ks) ‘rel‘ 1) (getInfo t)

compare’ _ _ _ = False
getInfo (S t) = maybe Nothing (\(1,xk) -> Just(1+l,xk)) (getInfo t)

getInfo (Var xk) = Just(0,xk)

getInfo _ = Nothing

A.4 Size-change graph data type

module Scgraph where

type Param = Int

data R = Gt
I

Gte
deriving (Eq, 0Ord)

28

instance Show R where {
show r = case r of
Gt _> ll>l|
Gte -> ">="}

type Arc = (Param, R, Param)
type Funid = String
type Arcs = [Arc]

-- calls are given numbers
-- as they appear in the program, left-right, top-down.

type Callid = Int

-- A sequence of such numbers will identify
-— loops that may cause non-termination

type Path = [Callid] -- to trace the way a graph is composed
data Scgraph = G Funid Funid Arcs Path

-- Two graphs are equal iff

—— they have the same sets of vertices and the same arcs.

-- We assume the lists of arcs to be sorted, thereby comparable with (==).
—— Their paths are not compared.

instance Eq Scgraph where {

(==) (Gf f>as _) (Ggg’as’) =f==g && f> == g’ && as == as’ }
instance Show Scgraph where { -- we don’t show their paths by default
show (G £ £2 as _) = 7 ?:f++’-’:f’++’:’:show as }

showPath g@(G _ _ _ path) = show g ++ "*" ++ show path ++ "x*"

- Composition of graphs

composG :: Scgraph -> Scgraph -> Scgraph
composG (G f g as cs) (G g’ has’ cs’) | g==g’ =
G f h (composAs as as’) (cs ++ cs’)
composG (G f g _ _) (Gg>h _ _) =
error ("incompatible size-chance graphs:\n " ++

4+ " > "+ g o+
" can’t be composed with " ++
g’ ++ n -> n ++ h +4+ Il\nll)

29

-— composes the arcs from two sets of arcs
-— duplicate arcs may be created if some of the arc sets are taken from
-— non-size-change graphs - eg if it is a union of arcs between graphs
-- as in G+.
composAs :: Arcs -> Arcs -> Arcs
composAs xs ys =

[(s, r ‘composR‘ r’, t’) | (s,r,t)<-xs, (s’,r’,t’)<-ys, t==s’]

composR :: R -> R -> R
composR Gte Gte = Gte
composR Gte Gt = Gt
composR Gt Gte = Gt
composR Gt Gt = Gt

A.5 Extraction of size-change graphs and building call-
graph

{--
Make the callgraph by adding a size-change graph
for each call.
For a call f_j(t_1,...,t_m) for f_i(x_1,...,x_n)
x >t if x=x_i and t=8"1(x_i"(k)), where k > 1.
or rather x > t if =x=x_i"(k1) and t=S"1(x_i"~(k2)), where k2 - k1 > 1.
-}
module Callgraph where

import Scgraph
import Asyntax
import Parser

-- Calls are given numbers when collected

-- as they appear in the program, left-right, top-down.
-— A sequence of such numbers will identify

-— loops that may cause non-termination.

-- collect the size-change graphs of the calls and enumerate them
callgraph p = zipWith enumerate (graphsP p) [1..]
where enumerate (G f f’ as _) n =G f £’ as [n]

-- The graphs in a program
graphsP (Prog fds) = concat(map graphsFD fds)

-- The graphs in a function definition

30

graphsFD (FD fi xs e_fi) =
[get_size_changes fi xs f£j ts | App fj ts <- calls e_fi]

-- collecting calls occurring in expressiomns:

-- calls: given e it gives a list of calls in e
calls :: Exp -> [Exp]

calls (S t) = calls t

calls (Case _ el e2) = calls el ++ calls e2

calls c@(App _ ts) = c:concat(map calls ts)

calls _ = []
-- we create the graph without giving its path
get_size_changes fi xs fj ts = G fi fj arcs []
where enum_form_params = zip (map Var xs) [1..]
enum_act_params = zip ts [1..]
arcs =
([(i,Gte,j) |
(x,1) <- enum_form_params,
(t,j) <- enum_act_params, x >=t] ++
[(,68,7)
(x,1) <- enum_form_params,
(t,j) <~ enum_act_params, x >t])

-- Syntactical size-change x > t defined in Asyntax.hs.
-- See end of section 2.1 in the thesis.

A.6 Example programs

module Examples where

import Scgraph

- Examples
ack = "ack(x1,x2) = case x1 of
0 —> S(x2)

S(x1’) -> case x2 of
0 -> ack(x1’,S(0))
S(x2’) -> ack(xl’,ack(x1,x2’))

P

31

P

add = "add(x1,x2) = case x1 of

fgh

P i A A

{__

\ 0 -> x2
\ S(x1’) -> S(add(x2,x1’))

example from Andreas Abel 3.12:
f(x1,x2) = case x1 of
0->0
S(x1’) -> case x2 of
0->0
S(x2?) -> h(g(x1’,x2),f(S(S(x1)),x2?))
g(x1,x2) = case x1 of
0->0
S(x1’) -> case x2 of
0->0
S(x2’) -> h(f(x1,x2),g(x17,5(x2)))

h(x1,x2) case x1 of
0 ->(case x2 of
0 ->0
S(x2’) -> h(x1,x2’))
S(x1’) -> h(x1’,x2)

Example runs:

The
Che

f-g

g-f:
h-h:

|_]
=
o

B 03 B 03 H0Q 0] Hh

Fin
Che
Pos

[ll

size-change graphs of the program consisting of f, g and h:
cker> map showPath$graphs fgh [" f-h:[I*[1]*","
:0(2,>=,2),(1,>, 1)1« [2]*"," £-£:[(2,>,2)]*[3]*"," g-h: [1x[4]*","
[(1,>=,1),(2,>=,2)1*%[6]*"," g-g: [(1,>,1)]*[6]*","
[(1,>=,1),(2,>,2)1*[7]1*"," h-h:[(2,>=,2),(1,>,1)]*[8]*"]

set S: Checker> map showPath$finite_compos fgh ["
:[1x[2,6,5,3]*"," g-g:[1*[5,3,2,6]*"," £-f:[(1,>,1)]1*[2,6,5]*","
:[0*[3,2,6]*"," g-f:[(1,>,1),(2,>=,2)1%[5,2,6]*","

: [(2,>,2)1%[5,3,2]*"," g—f;[]*[6,5’3]*n,n
[(1,>,1),(2,>=,2)1%[2,51%"," f-g:[(1,>,1)1%[2,6]%","
:[(2,>,2)]1=[3,2] %"," g—g;[(1,>,1),(2,>=,2)]*[5,2]*n,u
:[(2,>,2)]1*[5,3]*"," g-f:[(1,>,1)1*[6,5]*","
:[(1,>,1),(2,>,2)1%[7,8]*"," £-h:[I*[1]*","
:[(1,>,1),(2,>=,2)Ix[2]*"," £-f:[(2,>,2)]*[3]*"," g-h:[1*[4]x","
[(1,>=,1),(2,>=,2)]%[5]*"," g_g:[(1,>,1)]*[6]*","
F0(1,>=,1),(2,>,2) 1% [71%"," h-h:[(1,>,1),(2,>=,2) 1% [8]#"]

ding possible non-termination:

cker> check fgh

sible termination problems:
f-f:[1*[2,6,5,3]1*"," g-g:[1*[5,3,2,6]*"]

32

~ -

P A L L A A

-}

{-- Neil Jones et al. example of hard time and space complexity:

This example was used in [Jones00] to show PSPACE-hardness of the algorithm.
The hard part is to generate all the finite compositions of
size-change graphs - the more swappings the harder.

1: X :=not X
2: if Y goto 5 else 3
3: Y :=not Y
4: if X goto 2 else 3
5: X := not X
6: Y :=not Y

Each line is a function that calls another function(line). The
parameters are all the variables in the program, and their boolean
inverses, plus one extra argument z. We always have a call from the
last line to the first. From each line there is one call to the next
line in the program, except for if-statements, where there are two
calls, one for each branch to corresponding line number.

So now we get nine graphs.
Below we construct a program that give the same set of size-change

graphs as given in [Jones 00] and the same call graph as the example
above would give:

--}

boolprog =
" £0(x1,x2,x3,x4,xb)=case x1 of \
\ 0->0 \
\ S(x1’)->case x4 of \
\ 0->0 \
\ S(x4’)->f1(x2’,x2,x4’,x4,5(S(x5))) \
\ \
\ f1(x1,x2,x3,x4,x5)=case x5 of \
\ 0->0 \
\ S(x5’)->f2(x2,x1,x3,x4,x57) \
\ \
\ f2(x1,x2,x3,x4,x5)= \
\ case x3 of \
\ 0->0 \
\ S(x3’)->case x4 of \
\ 0 -> (case x5 of \

33

0->0
S(x5’)-> £3(x1,x2,x3’,x4,x5°))
S(x4’)-> case x5 of
0->0
S(x5’) -> f5(x1,x2,x3,x4’,x5’)

£3(x1,x2,x3,x4,x5)=case x5 of
0->0
S(x5’)->f4(x1,x2,x4,x3,x5’)

f4(x1,x2,x3,x4,x5)=
case x1 of
0->0
S(x1’)->case x2 of
0 -> (case x5 of
0->0
S(x5’)-> £3(x1’,x2,x3,x4,x57))
S(x2’)-> case x5 of
0->0
S(x5’) -> f2(x1,x2’,x3,x4,x5%)

£5(x1,x2,x3,x4,x5)=case x5 of
0->0
S(x5’)->f6(x2,x1,x3,x4,x57)

£6(x1,x2,x3,x4,x5)=case x5 of
0->0
S(x5’)->f0(x1,x2,x4,x3,x5’)

P A L G A G A A P A G A A G A L e

{-- Sample run:

Main> lengthsgraphs boolprog
565

18.6 seconds

Main> map showPath$find_nonterm$graphs boolprog ["
£0-£0:[(2,>,1),(2,>=,2),(4,>,3),(4,>=,4)1%[1,2,3,5,7,4,8
£1-£1:[(2,>,1),(2,>=,2),(4,>,3),(4,>=,4)1x[2,3,5,7,4,8,9,1]*","
£2-£2:[(1,>,2),(1,>=,1),(4,>,3),(4,>=,4)1%[3,5,7,4,8,9,1,2]*","
£f2-f2:[(1,>,2),(1,>=,1),(3,>,4),(3,>=,3)1*[4,8,9,1,2,3,5,7]*","
£3-£3:[(1,>,2),(1,>=,1),(4,>,3),(4,>=,4)]1%[5,7,4,8,9,1,2,3]*","
4,8,9,1,2,3
9,1,2,3,5,7

"non
H b b b 9] * 3

H b b b
H

f4_f4:[(1,>,2),(1,>=;1);(3,>,4):(3’>=’3)]*[7, 205,95 1,4, ,5]*"’"

£5-15: [(1,>,2),(1,>=,1),(3,>,4),(3,>=,3)1x[8,9,1,2,3,5,7,41%", "

34

P A P L G P P A L L A P A A L A e

f6-£f6:[0(2,>,1),(2,>=,2),(3,>,4),(38,>=,3)1%[9,1,2,3,5,7,4,8]*"]
18.8 seconds

Main> checkGplus$graphs boolprog
False

18.2 seconds
Main> check_idempot$graphs boolprog
False

18.3 seconds

-}

—-- Some more examples

Ex 6 from [Jones 00]:
Program with late-starting sequence of decreasing parameter values:

f(a,b) = if b
glc,d) = if ¢

[1 then g(a,[]) else f(hd b:a, tl b)
[1 then d else g(tl c, hd c:d)

--}

—-— in this language:

ex6 = " f(x1,x2) = case x2 of \
\ 0 > g(x1,0) \
\ S(x2’) -> £(S(x1),x2?) \
\ g(x1,x2) = case x1 of \
\ 0 —> x2 \
\ S(x1?) -> g(x1?,8(x2)) "

{- Sample run:

Checker> check ex6
Ok

A1l finite compositions:
Checker> map showPath$finite_compos ex6

[" f-g:[(1,>,1)]*[1,3]*"," f-g:[1*x[2,1]*",
"of-g [(1,>=,1)Ix[1]*", " £-F: [(2,>,2)1x[2]*"," g-g:[(1,>,1)]1*[3]%"]

35

-}

-— simple example of swapped parameters
permut = "f(x1,x2)=case x1 of 0->0 \
\ S(x1) -> f(x2,x1’) "

{- Sample run: the program terminates - this can be seen on the graphs:
Checker> graphs permut

[£-f:[(2,>=,1),(1,>,2)]]

Checker> finite_compos permut

[£-£:[(1,>,2),(2,>,1)]1, £-f:[(1,>,1),(2,>,2)]1, £-f:[(1,>,2),(2,>=,1)]1]
Checker> map showPath$finite_compos permut

[" £-f:0(1,>,2),(2,>,1)I*[1,1,1]*"," £-f:[(1,>,1),(2,>,2)1*[1,1]*","
f-f:[(1,>,2),(2,>=,1)1*[1]*"]
-}

-— equality test
eq = "eq(x1,x2) = case x1 of
0 -> case x2 of
0 -> S(0)
S(x2’) -> 0
S(x1’) -> case x2 of
0->0
S(x2?) -> eq(x1’,x27)

P
P

-- odd / even function
odd_even = " even(xl) = case x1 of

0 -> s(0)

S(x1’) -> odd(x1?)
odd(x1) = case x1 of

0->0

S(x1’) -> even(xl?)

P
P

-- example of nested case on one variable:

div2 = " div2(x1) = case x1 of \
\ 0->0 \
\ S(x1’) -> case x1’ of \
\ 0->0 \
\ S(x1’?) -> S(div2(x1’’)) "

{-

Checker> finite_compos div2

[div2-div2:[(1,>,1)]]
-}

36

References

[Jones 00]

[Graham 80]

[Abel 98]

[Sagiv 91]

[Agda]

[Giménez 95]

Neil D. Jones, Amir Ben-Amram, Chin Soon Lee. Termi-
nation Analysis by Size Change Graphs. Draft applet from
DIKU Copenhagen, January 2000

R.R.Graham, B.L.Rotchild, J.H.Spencer. Ramsey Theory.
John Wiley, New York 1980 ISBN 0-471-05997-8

Andreas Abel. “foetus - Termination Checker for Sim-
ple Functional Programs”, Theoretical Computer Science,
Ludwigs-Maximilians-University Munich, July 1998.

Yehoshua Sagiv. A termination test for logic programs. In
Vijay Saraswat and Kazunori Ueda, editors, Logic program-
ming, Proceedings of the 1991 International Symposium, San
Diego, California, USA, Oct 28-Nov 1, 1991, pages 518-532.
MIT Press, 1991.

Catarina Coquand. The Agda Home page.

URL: http://www.cs.chalmers.se/"catarina/agda, De-
partment of Computer Science, Chalmers University of Tech-
nology and Goteborgs Universitet, 2000.

Giménez, E. Codifying guarded definitions with recursive
schemes. In Dybjer, P., Nordstrom, B., & Smith, J. (edi-
tors) Types for proofs and programs (types ’94). Lecture Notes
wn Computer Science, vol 996. Springer-Verlag. International
Workshop, TYPES 94 held in June 1994.

37

