
Department of Computing Science

1998

Fudgets –

Purely Functional Processes

with applications to

Graphical User Interfaces

Magnus

Carlsson

Thomas

Hallgren

Doctoral thesis for the degree of Doctor of Philosophy
Fudgets �Purely Functional Processeswith applications toGraphical User Interfaces

Magnus CarlssonThomas Hallgren
GOTEBORG

C
H

A
L

M
E

RSTEKNISKAHO
G

SK
O

LA

Department of Computing ScienceChalmers University of TechnologyGöteborg UniversityS-412 96 Göteborg, SwedenGöteborg 1998

ISBN 91-7197-611-6ISSN 0346-718Xhttp://www.cs.chalmers.se/�hallgren/Thesis/Department of Computing ScienceGöteborg 1998

AbstractThe main result of this thesis is a method for writing programs with graphicaluser interfaces in purely functional languages. The method is based on a newabstraction called the fudget. The method makes good use of key abstractionpowers of functional languages, such as higher order functions and parametricpolymorphism.The Fudget concept is de�ned in terms of the simpler concept of streamprocessors, which can be seen as a simple, but practically useful incarnationof the process concept. Programs based on fudgets and stream processors arenetworks of communicating processes that are built hierarchically, using combi-nators. Communication is type safe. The basic combinators provide serial com-positions, parallel compositions, and loops. A key di�erence between previouswork on stream processing functions and our approach is that we deliberatelyabstract away from the streams. We obtain a system that can be implementeddeterministically, entirely within a purely functional language, but which alsomakes it possible to take advantage of parallel evaluation and indeterminism,where such is available within the functional language. The purely functionalapproach makes processes �rst class values and makes it easy to express processcloning and process migration.The practical viability of the approach is demonstrated by the Fudget li-brary, which is an implementation of a graphical user interface toolkit in thepurely functional language Haskell, together with a number of small an largeapplications that have been implemented on top of the library.In addition to GUI programming, fudgets are suitable for other forms ofconcurrent I/O programming. We demonstrate how client/server based appli-cations can be we written, with type safe communication between client andserver. We show a web browser as an example where GUI programming andnetwork communication come together.We view fudgets as one example of a more general combinator-based ap-proach to promote the idea that a functional language together with combina-tor libraries is a good alternative to using less expressive languages proppedby application-speci�c tools. We describe a set of combinators, reminiscent ofparsing combinators, for building syntax-directed editors.

PrefaceThis monograph acts as theses for both authors. Most of the work behind hasbeen carried out in close cooperation between the authors, but some chapterspresent work of a more individual nature:Thomas Hallgren: Chapters 19, 27, and 39. He has also developed the ap-plications in Part V (some contributions are due to Magnus Carlsson inChapters 36 and 37, though).Magnus Carlsson: Chapters 24, 25, 28, and 29.AcknowledgementsWe wish to thank Thomas Johnsson, Lennart and Jessica Augustsson, JohanNordlander, Bengt Nordström, Niklas Röjemo, David Sands, Colin Runcimanand Simon Peyton Jones for proofreading and numerous suggestions for im-provements on drafts of the thesis. A special thanks to Ola Freijd, who hasmade all illustrations and the cover page.Ideas and implementation work by a number of people have increased theusefulness of the Fudget library. Jan Sparud's space-leak �x in an early ver-sion suddenly made it possible to run fudget programs until somebody pulls theplug. Jan also implemented an initial version of the name layout mechanism.Lennart Augustsson's integration of the Xlib interface with HBC's runtime sys-tem made fudget programs easier to use and more e�cient. John Hughes in-vented the default parameter simulation, which made fudget programming muchmore pleasant.The department of Computing Science has not only provided a wealth ofacademic stimulus, but also technical and administrative support that has showna �exibility of unusual quality. Especially, we want to thank Christer Carlsson,Görgen Olofsson, Marie Larsson, Per Lundgren, and Hasse Hellström.Part of our work has been supported by NUTEK.

5Historical re�ectionsOnce upon a time on a gray autumn day in 1991, three functional programmerswere chatting during a co�ee break. They were quite happy that the LMLcompiler [AJ93] allowed them to write �real� programs in a pure functionallanguage. One of these three had implemented a version of the game Tetris inLML. Another had implemented Worms; an interactive, multi-user, real-timegame [Hal90]. They had no e�ciency problems with these kinds of programs,even though the computers of that time were 20-40 times slower than the oneswe use today.But at that time, the three functional programmers were beginning to usegraphical workstations instead of simple text terminals. They were unhappyabout the fact that they did not have a way to write programs with graphicaluser interfaces in their functional language.The two younger of the three functional programmers decided to start work-ing on a solution to this problem. The older of the three was a bit skepticaland said that it would probably not be possible to obtain a solution that wase�cient enough to write �real� programs with.The two younger implemented an interface that allowed LML programs totalk to the X Windows system. They also designed an abstraction to be usedas the basic building block when constructing graphical user interfaces. Thisabstraction was later named the Fudget.The �rst X Windows interface was implemented as a separate program thatthe LML program could talk to via ordinary text I/O. The oldest programmerlater integrated the interface with the run-time system of the LML compiler,making the interface much more e�cient.Approximately one year later, the two younger functional programmers feltthey had a reasonably e�cient system and a fairly nice abstraction. They wrotea paper about it and it was accepted at a functional programming conference[CH93b]. One of the younger functional programmers wrote some more aboutit and turned it into a licentiate thesis [CH93a].The work continued. A number of improvements to make it easer to writeprograms were made, and the library was converted into Haskell. Improvementsto the layout system allowed layout and plumbing to be speci�ed separately. Alot of distracting extra function arguments could be removed after a parameterpassing mechanism with default values was introduced. The resulting version ofthe Fudget library was presented at the Spring School on Advanced FunctionalProgramming in Båstad in 1995 [HC95].

Contents
Preface 4Acknowledgements : 4Historical re�ections : 5I Introduction 81 Programming by combination : 82 Combinator libraries replace tools : : : : : : : : : : : : : : : : : : : 103 Declarative programming and input/output : : : : : : : : : : : : : : 104 I/O in functional languages? : 115 What is a Fudget? : 136 Contributions of the thesis : 167 Road-map : 16II Programming with Fudgets 188 A brief introduction to Haskell : 199 Your �rst 8 Fudget programs : 2210 Fudget library GUI elements : 3211 Specifying layout : 3812 Abstract fudgets : 4513 Fudget plumbing : 4614 Fudgets for non-GUI I/O : 5115 Parameters for customisation : 53III Stream processors � the essence of Fudgets 5516 Stream processors : 5617 Plumbing: composing stream processors : : : : : : : : : : : : : : : 6218 Pragmatic aspects of plumbing : 6619 Application programming with plain stream processors : : : : : : : 70IV Design and implementation 7620 Implementing stream processors : 7821 Fudgets as stream processors : 8722 Fudget I/O: the gory details : 9423 Automatic layout : 10724 Filter fudgets : 11025 Moving stream processors : 11626 Typed sockets for client/server applications : : : : : : : : : : : : : 12227 Displaying and manipulating graphical objects : : : : : : : : : : : : 129

CONTENTS 728 Combinators for syntax-oriented manipulation : : : : : : : : : : : : 14729 Type directed GUI generation : 16130 Parameters for customisation : 16631 Gadgets in Fudgets : 171V Applications 18232 WWWBrowser � a WWW client : : : : : : : : : : : : : : : : : : : 18333 Alfa � a proof editor for type theory : : : : : : : : : : : : : : : : : 19434 Humake � a distributed and parallel make tool for Haskell : : : : 19635 Space Invaders � real-time and simulation : : : : : : : : : : : : : : 19836 FunGraph : 20337 A mobile data communication protocol prototyping tool : : : : : : 20538 Two board games : 206VI Discussion 21139 E�ciency and program transformations : : : : : : : : : : : : : : : : 21240 Comments on Haskell and other language design issues : : : : : : : 21941 Related work : 22242 Evaluation and conclusions : 23743 Future work : 240A Online resources 243A.1 The Fudgets Home Page : 243A.2 Supported platforms, downloading and installation : : : : : : : : : 243A.3 Compiling Fudget programs : 243B Fudget library quick reference guide 245B.1 Top level, main program : 245B.2 GUI building blocks (widgets) : 245B.3 Combinators, plumbing : 245B.4 Adding application-speci�c code : : : : : : : : : : : : : : : : : : : 246B.5 Layout : 246B.6 Graphics : 246B.7 Alphabetical list : 247Production notes 252Bibliography 253

I Introduction1 Programming by combinationThis thesis is, to a large extent, oriented around programming by combination.By this, we mean the important programmingmethod where you make programsby combining subprograms. The inner details of the subprograms can then beabstracted from, which makes it possible for the human brain to create andunderstand very complex programs. This methodology has, of course, beenpractised for many decades in various programming languages. However, it is amethod that sometimes is forgotten, and often only used in parts of a program;for example, when doing tasks related to the operating system.For programming by combination to be pervasive, it is important not onlythat we have access to a good library of subprograms, but the programmingactivity must also deal with forming new subprograms suitable for combination.Otherwise, the variety of programs we can write becomes limited because theyget too complex. Therefore, programming by combination is also about formingnew levels of subprograms.One important aspect of programming is, of course, which programminglanguage one uses. Di�erent programming languages vary strongly in the sup-port they give us when we want to program by combination. This is especiallytrue when it comes to forming new subprograms. The authors have found thatprogramming languages which are based on the declarative style are suitable inthis respect. Declarative programming languages allow us to write programs ina mathematical style. For example, consider the expressionf((a + b) / 2,(a + b) / 2)In a declarative programming language, we might identify a subprogram whichwe can name average.let average = (a + b) / 2in f(average,average)It is important that the activity of forming subprograms should be as easy aspossible for the programmer. If the programmer is required to write manymore characters than are shown in the previous example, another programmingmethod might become more attractive, namely programming by copy and paste.This will soon result in programs which are complex to understand and maintain,but unfortunately, it is a too widely practised method.

9The previous example did not actually introduce a subprogram. It couldsimply be seen as declaring a local variable. However, in declarative program-ming languages, we can use the same style when we want to form subprograms.The expressionf(a,a+b) + f(a,a+c) + f(a,a+d)uses a recurring calling pattern to the function f. This pattern is easily capturedby a subprogram that we can call f2.let f2(x) = f(a,a+x)in f2(b) + f2(c) + f2(d)Forming a corresponding subprogram in the popular programming language C,for example, would be more involved. We would �rst need to declare a newtop-level function, then make sure that its name did not collide with some othertop-level function in the same source �le, and �nally, the function would needan extra parameter for the variable a. All parameters would need some typedeclaration.As a more advanced example of programming by combination in declarativestyle, we might consider parsing combinators [Bur75][Wad85] (from now on,we will often talk about combinators when we mean subprograms which aredesigned for versatile combination). A large number of text parsers can beformed by four combinators:� token(c), which accepts the character c.� p ||| q, which forms an alternative: it either accepts whatever the parserp accepts, or it accepts whatever the parser q accepts.� p >>> q, which forms a sequence: it �rst accepts whatever p accepts, andthen accepts whatever q accepts when given the rest of the text.� epsilon, which parses the empty string.From these combinators, a programmer might build more useful combinators.Here is a combinator which can be used for parsing things within parentheses:withinParentheses(p) = token('(') >>> p >>> token(')')Or we might declare the combinator many(p), which forms a parser which ac-cepts whatever p accepts, zero or more times in a sequence (this is often writtenp*): many(p) = (p >>> many(p)) ||| epsilonNote that in most of these combinators, we have used the possibility to param-eterise over subprograms, which is another important feature that declarativeprogramming languages naturally support.

10 3 Declarative programming and input/output2 Combinator libraries replace toolsWhy would we want to use parsing combinators when we could instead use aparser generator tool? A parser generator like Yacc [Joh75] comes with a specialprogramming language suitable for the task of specifying parsers. Although thisis a quite powerful tool, it comes with a price, in that we have to learn this newprogramming language. Other tools (for example for specifying graphical userinterfaces), also come with their own, domain-speci�c programming languages.Although they are often superb in many cases, they all have in common thatthe programmer must learn a quite new syntax, and often, the possibilities forthe programmer to form new abstractions are poor. In the case of Yacc, it isnot possible to express the abstraction withinParentheses, for example. It is alsohard or impossible to share abstractions between the di�erent tool languagesand the programmer's general programming language, something which adds tothe overall complexity of a software system.To return to our example, parsing combinators allow us to smoothly integrateparsers in our software without any additional tools, languages or compilers. Weonly need a library for parsing combinators. More generally, combinator librariescan be seen as de�ning an embedded language inside our general programminglanguage. This way, the number of concepts a programmer has to learn decreasesdrastically, since the general programming language's idioms apply directly.However, it should be noted that combinator libraries often miss featuresthat specialised tools have (like e�ciency). It is a challenge for creators ofcombinator libraries to catch up with this.3 Declarative programming and input/outputIn later sections, we will describe how one can use combinators for programminginput/output. But before that, we will discuss how output can be done in adeclarative programming language. Output from a program can also be seen asan e�ect that the program has on the outside world. When combining e�ects,their order is often highly important (the reader might want to try di�erentcombinations of the e�ects �Open door�, and �Walk through door�, for exam-ple). This is an important aspect which we must have in mind when consideringsubprograms for de�ning e�ects.There are two widely used styles for dealing with e�ects in declarative pro-gramming languages. We either allow all subprograms to directly have e�ectson the outer world, or we only allow subprograms to return values that represente�ects.Consider a subprogram in a programming language using direct e�ects. Ifthe subprogram is a function that returns some value, it is often said that thefunction can have a side e�ect while computing its value. The order in whichthese side e�ects happen is made precise by de�ning a computation order for ex-pressions. This is most easily done by saying that all arguments to subprogramsshould be computed left to right, and then the subprogram is called. Also, anexpression which uses a local de�nition should compute the de�nition before theexpression. Such programming languages are called strict.Side e�ects can interact with the programmer's activity of forming new sub-programs, or naming subexpressions. For example, it is no longer clear that we

11could writelet average = (a + b) / 2in f(average,average)instead off((a + b) / 2,(a + b) / 2)because a potential side e�ect of the subprogram a would be carried out oncein the �rst case, but twice in the second.Another problem with combinator programming in strict programming lan-guages is that we must be much more careful when de�ning combinators interms of themselves. If we use the de�nitionmany(p) = (p >>> many(p)) ||| epsilonfor many, we end up in an in�nite loop, if arguments are computed strictly.It is a very desirable feature of a programming language that subprogramsdo not have side e�ects. This feature is used in the non-strict, purely functionalprogramming languages that we will use in the rest of this thesis. The term�purely functional� means that it is guaranteed that a function always returnthe same value if its arguments have the same value, and that it does not haveany side e�ect. More generally, if the same expression occurs in many places (asa above, for example), it is guaranteed that all those occurrences compute tothe same value. It is only in a purely functional programming language that wecan introduce the variable average in the previous example, regardless of whata and b are.In purely functional languages, we use the second way of dealing with ef-fects, where subprograms may return values that represent e�ects, instead ofperforming them directly. A representation of an e�ect can then be combinedwith other representations of e�ects, yielding a new representation of an ef-fect. Finally, the e�ect that our whole program represents is carried out. Thismeans that issues of e�ects and computations are separated. When de�ning andcombining e�ects, we do not have to bother about which parts of our programshould be computed, how many times they might be computed, and in whichorder.Having combinators that return representations of e�ects opens up the pos-sibility to manipulate these e�ects before they are carried out. This can be usedto adapt the e�ects of existing combinators to new situations.In what follows, we will often speak about combinators having various e�ects,or doing various kind of input/output. At times, it will be convenient to thinkthat the combinators actually perform these e�ects directly, but it is importantto remember that they only de�ne a representation of an e�ect.4 I/O in functional languages?A program in a pure functional language is an expression that denotes thee�ect that the program should have on the outside world when the program is

12 4 I/O in functional languages?
Program

CharactersCharacters

Figure 1. A program and a user interacting via a text terminal.executed. The question we turn to now is: how are the basic e�ects speci�edand how are e�ects combined?Suppose the outside world is a simple text terminal (see Figure 1). Then,the interesting e�ects are: outputting characters to the terminal screen, andinputting characters from the terminal keyboard. The behaviour of a programcould be described by a sequence of the basic e�ects, so it is natural to usesequential compositions of e�ects to build programs with nontrivial behaviour.This is what is provided in the typical imperative languages. As an example,consider a program that reads some numbers separated by white space, andoutputs the sum of the numbers. In an imperative language, it would looksomething like this:program = sumNumbers 0sumNumbers acc =if end_of_inputthen putNumber accelse do n <� getNumbersumNumbers (acc+n)getNumber = ...putNumber = ...We can identify the subprograms getNumber and putNumber as reusable com-ponents. By taking a step back and re�ecting on what a program is, we canperhaps �nd ways of composing programs other than the sequential compositionof e�ects. Having more versatile ways of composing programs is likely to giveus more opportunities to construct reusable subprograms.We choose to view programs as de�ning stream processors, that is, a programdescribes some kind of process that consumes an input stream and produces an

13
Figure 2. A stream processor.output stream. This view goes back to Landin [Lan65]. We use the symbolshown in Figure 2 to denote a stream processor.A stream processor can be seen as a function on streams. A program thatinteracts with a text terminal could be seen as a function from a stream ofcharacters to a stream of characters. When the program is run, the function isapplied to the stream of characters received from the keyboard and the resultingstream of characters is output to the screen.In a lazy functional language, streams can be represented as ordinary lists. Aprogram that interacts with a text terminal can thus be built using ordinary listfunctions. The typical lazy functional solution to the number-summing problemlooks something like this:program = show . sum . map read . wordsThe input stream is chopped into words, the words are converted to numbers,the numbers are summed and converted back into characters that can be outputto the screen.Let us compare this solution with the imperative one. In both solutions,subprograms for parsing and printing numbers are reusable. In the functionalsolution the number-summing function is reusable as well. And although wehave used a standard function to sum a list of numbers, the above program canexecute in constant space, since in a lazy language, computations are performedon demand. Likewise, input from the terminal is read on demand, allowingthe computation of the sum to be interleaved with the reading and parsing ofkeyboard input. (If we tried to use the sum function in the imperative solution,we would �rst have to read all the numbers and store them in a list, and thencall the sum function. The program would thus not run in constant space.)In the functional solution, the program is no longer expressed as a compo-sition of basic e�ects. Instead, we have built the program from a number ofstream processors in a pipe line.We have now seen two ways of describing stream processors:� the basic way of using sequential composition of I/O operations,� the more high-level way of using serial composition of stream processors.5 What is a Fudget?Previously, we looked at programs that communicate with a text terminal. Wenow re�ne the view of the outside world and consider graphical user interfaces(GUIs). In contrast to the typical text terminal program, which interacts withthe user through a dialogue and thus is sequential in nature, programs with

14 5 What is a Fudget?
Counter

Display Button

Figure 3. The desired program structure of the counter example.graphical user interfaces interact with the user by showing a window which canbe seen as a control panel providing various control and indicator devices. Thevarious devices exist in parallel in the window and their respective behaviours aremostly independent of other devices. This suggest that programs with graphicaluser interfaces should be built using some kind of parallel composition ratherthan sequential composition.To illustrate what kind of program structure we are looking for, take a lookat the counter example (pun intended). The user interface should contain twoGUI elements: a button and a numeric display. Each time the button is pressed,the number in the display is incremented. We would like the program to containone stream processor per GUI element, taken from a library (often called GUItoolkit or widget set), and an application-speci�c stream processor that countsthe button presses and outputs numbers to the numeric display. The streamprocessors should be connected as in Figure 3. The key idea is that streamprocessors from the library handle the low-level details of the GUI elements,and the code that the application programmer writes, communicates with theGUI elements on a higher level of abstraction.GUI elements can be seen as a particular kind of I/O device that a programcan communicate with. The idea naturally extends to communication withother types of I/O devices, such as other computers on the Internet.Our solution to building programs with this structure in a purely functionallanguage, is based on a special kind of stream processor, the Fudget (see Fig-ure 4. �Fudget� is an abbreviation of functional widget, where widget is anabbreviation of window gadget). A fudget has both low-level streams and high-level streams. The low-level streams are always connected to the I/O system,allowing the fudget to control a GUI element by receiving events and sendingcommands to the window system. The high-level streams can carry arbitrary(usually more abstract) values, and they connect the fudgets that make up aprogram in an application-speci�c way.We will write the type of a fudget asF hi howhere hi and ho are the types of the messages in the high-level input and outputstreams, respectively.

15
I/O system

ho hi

High level messages

Low level requests & responses

Figure 4. The Fudget.

Figure 5. Serial composition, parallel composition, and loop.The high-level streams between fudgets are connected by the programmerusing combinators. Three basic ways to combine fudgets (and stream processorsin general) are serial composition, parallel composition and loops, see Figure 5.The types of these combinators are:>==< :: F a b �> F c a �> F c b -- serial composition>*< :: F a b �> F a b �> F a b -- parallel compositionloopF :: F a a �> F a a -- loopThese simple ideas allow programs with graphical user interfaces to be built ina hierarchical way using a declarative style. For example, the counter examplecan be expressed asdisplayF >==< counterF >==< buttonF "Increment"that is, a serial composition of three fudgets, where displayF and buttonF handlethe widgets that the user interacts with, and counterF just counts the buttonpresses.Serial composition is closely related to ordinary function composition. Withthis in mind, one can see that the program has much the same structure as theLandin stream I/O number-summing example shown in Chapter 4. Exampleslike this one will be explained further in Chapter 9.

16 7 Road-map6 Contributions of the thesisThe work presented in this thesis started with the desire to write programswith graphical user interfaces in a purely functional language. We also wantedto implement the GUI toolkit itself in the functional language. The questionswe asked ourselves were:� Would the features of functional languages be appropriate for this task?Functional languages were known to be weak when it came to I/O. Im-plementations of GUI toolkits had traditionally been done in an object-oriented style. Lacking features such as subtypes, inheritance and paral-lelism, would a functional language still su�ce?� Would implementations of functional languages be e�cient enough to copewith the potentially large volume of I/O and high requirements on re-sponse times?We believe that the thesis shows that the answer is yes to both of these questions.The main result of the work behind this thesis is the Fudget library, which isan implementation of the ideas outlined in the previous section. Among otherthings, it provides� types and combinators for fudgets and stream processors,� a GUI toolkit, providing the usual widgets, and� support for network communication.The Fudget library shows how a concurrent programming paradigm can beimplemented and applied in a purely functional programming language.We demonstrate the practical usefulness of the Fudget library by presentinga number of application programs, some of which are quite large. A numberof programming styles and methods are presented which can be used whenprogramming with Fudgets.7 Road-map� Part II deals mainly with what a programmer can do with Fudgets. Itbegins with a brief introduction to Haskell (Chapter 8). The next chapteris a tutorial (Chapter 9), where a number of fudget programs are presented,ranging from the tiniest �Hello world� fudget to a simple calculator, andcontinues with an overview of the most important stu� that a programmercan use in the Fudget library. This includes an overview of some basicGUI building blocks (Chapter 10), how to specify layout (Chapter 11), adescription of how to attach application-speci�c code to the Fudget librarycomponents (Chapter 12), how to combine fudgets (Chapter 13), and howto customise fudgets (Chapter 15).� Part III distills the fudget concept to get stream processors, which canbe regarded as a simpli�cation of fudgets, that do not necessarily needI/O. The last chapter in this part (Chapter 19) gives some programmingexamples using plain stream processors.

17� The reader interested in how the Fudget library works can continue withPart IV, which is devoted to the design and implementation. It also de-scribes extensions and programming methods, as outlined further in itsintroduction. The last chapter (Chapter 31) describes how an existingfunctional GUI toolkit was implemented on top of Fudgets.� Part VI starts with a discussion of the e�ciency of Fudget programsin Chapter 39, and suggests some possible program transformations forspeed-up. In Chapter 40, we comment on the programming languageHaskell itself, describe some problems, and discuss extensions. Chap-ter 41 discusses related work and presents a number of other functionalGUI toolkits that have emerged. Chapter 42 contains a brief evaluationand conclusions. Some suggestions for future research, including a moreformal study of stream processors, is given in Chapter 43.

II Programming withFudgetsThe fudget concept and the Fudget library was �rst conceived and designed asan aid in constructing graphical user interfaces in a lazy functional language.Although the Fudget library now supports other kinds of I/O, the main part ofthe library still relates to GUI programming.In the Fudget library, each GUI element is represented as a fudget. Thelibrary provides fudgets for many common basic building blocks, like buttons,pop-up menus, text boxes, etc. The library also provides combinators that allowbuilding blocks to be combined into complete user interfaces.This section introduces the Fudget library by presenting a number of GUIprogramming examples. They illustrate the basic principles of how to createcomplete programs from GUI elements and application-speci�c code. After theexamples follows an overview of the library. We show� some common GUI fudgets from the library,� how to specify the layout of GUIs,� di�erent ways of writing abstract fudgets, and introduce stream proces-sors,� combinators for building networks of fudgets, and� a scheme for parameter passing with default values.

198 A brief introduction to HaskellThe purely functional programming language that we will use in the rest ofthe thesis is Haskell [Pet97]. An introduction can be found at [HPF97], andthere are also two reports that de�ne the language and its standard libraries[PH97b][PH97a].We believe that the program examples will be readable without detailedknowledge of Haskell�familiarity with some functional language is hopefullysu�cient. However, some recurring patterns are perhaps worth explaining:� Haskell uses layout (indentation) rather than delimiting character to sep-arate declarations, branches in case expressions, etc.� Anonymous functions are written using \ and �>: for example, \ x �> xis the identity function.� The operator . is function composition.� The operator $ is just function application, that is f $ x = f x. It isright associative and has low precedence, so it can be used to avoid nestedparentheses. We often write expressions likef $ g $ h $ \ x �> x + 1instead off (g (h (\x �> x + 1)))� An ordinary alfanumeric identi�er can be used as an in�x operator byenclosing it in back quotes. We sometimes write, for example,f x `ap` yinstead ofap (f x) y� In�x operators are turned into functions that can be passed as argumentsby enclosing parentheses. For example, (*) is equal to \x y �> x * y.Operators can be partially applied using sections, again using parentheses.For example, (2/) is the function \x �> 2 / x, and (/2) is the function \x�> x / 2.� The Haskell syntax for tuples, lists and functions is chosen so that a typeand the values of the type look similar. For example, the type of the tuple(3,False,"fudget") is (Int,Bool,String), the type of the list [1,2,3] is [Int] andthe type of the function \ x �> x is a �> a.� In type expressions, names starting with lower case letters are type vari-ables and names starting with upper case letters are type constructors.� We often use the Haskell standard type Either for disjoint unions, de�nedas

20 8 A brief introduction to Haskelldata Either a b = Left a | Right band the type Maybe for optional values, de�ned asdata Maybe a = Nothing | Just a� The result of a Haskell program is the value bound to the identi�er main.This value should be a representation of the e�ect (as discussed in Chap-ter 3) the execution of the program should have on the outside world. Aprogram can be as simple asmain = print "Hello, world!"A unique feature of Haskell is the type class system [WB89], which is a system-atic treatment of overloading. A type class declaration introduces a number offunctions that will be overloaded. An instance declaration gives de�nition of theoverloaded functions for a particular type. For example, a standard type classin Haskell is the class for types that support equality:class Eq a where(==) :: a �> a �> BoolTo allows boolean values to be tested for equality with the == operator, aninstance declaration like the following can be used:instance Eq Bool whereTrue == True = TrueFalse == False = True_ == _ = FalseFor some standard type classes, instance declarations can be generated auto-matically by adding a deriving clause to the type de�nition:data Bool = False | True deriving EqWhen an overloaded function is used in a new function de�nition, the overload-ing may be inherited by the new function. For example, consider the functionelem that checks if a value occurs in a list, de�ned asx `elem` [] = Falsex `elem` (y:ys) = x==y || x `elem` ysThe type of elem is writtenelem :: Eq a => a �> [a] �> Boolwhere the part Eq a => is called a context. It means that the type variable a isrestricted to range over types that are instance of the Eq class.In Haskell 1.3, the class system was generalised to allow classes of typeconstructors [Jon93] instead of just classes of base types. Type variables wereextended to range over type constructors. This means a that type scheme likea Int is allowed. The type variable a can be instantiated to, for example, Maybeand the list type constructor, giving the types Maybe Int and [Int], respectively.The well known function map,

21map :: (a�>b) �> [a] �> [b]which is de�ned for lists in many functional languages, can now be generalisedby introducing the class Functor,class Functor f wheremap :: (a�>b) �> f a �> f bInstances for the lists and the Maybe type can be de�ned asinstance Functor [] wheremap f [] = []map f (x:xs) = f x : map f xsinstance Functor Maybe wheremap f Nothing = Nothingmap f (Just x) = Just (f x)However, the introduction of constructor classes was motivated by the changeto monadic I/O (see Section 41.1.3) and a convenient syntax for monadic pro-gramming. The class Monad is de�ned asclass Monad m wherereturn :: a �> m a(>>=) :: m a �> (a �> m b) �> m band the special do syntax for monadic expressions,do x1 <� m1x2 <� m2...mnis de�ned to mean the same asm1 >>= (\ x1 �>m2 >>= (\ x2 �>...mn))

22 9 Your �rst 8 Fudget programs9 Your �rst 8 Fudget programsIn the following, we present 8 simple GUI programming examples. For eachexample, we show a window snapshot, the program text and explain the majorpoints of the example. To keep the size of the presentation reasonable, manyunimportant details are deliberately left unexplained. The reader is referred tothe Fudget Library Reference Manual [CH97] for full information. In addition,the WWW version of this thesis contains hyper links into the Reference Manualfor many combinators and types. The WWW version is located athttp://www.cs.chalmers.se/�hallgren/Thesis/The window snapshots were made on a Unix workstation running the X Win-dows system and a window manager providing Windows-95-like window frames.For practical details, such as where to get the Fudget library, which platformsare supported, and how to compile programs, see Appendix A.9.1 "Hello, world!"We begin with a simple program that only displays a mes-sage in a window. This example illustrates what the mainprogram should look like, as well as some other practicaldetails. As the window dump shows, the window manageradds a title bar to the message.Here is the source code:import Fudgetsmain = fudlogue (shellF "Hello" (labelF "Hello, world!"))Note:� To use the Fudget library, the module Fudgets should be imported.� A fudget program consists of a number of fudgets combined in a hierar-chical structure that makes up one main fudget. The function fudlogue,fudlogue :: F a b �> IO ()connects the main fudget to Haskell's I/O system, thus starting a dialoguebetween them. It sets up the communication with the window system,gathers commands sent from all fudgets in the program and sends themto the window system, and distributes events coming from the windowsystem to the appropriate fudgets.� A fudget program with a graphical user interface needs one or more shellwindows (top-level windows). These can be created with the functionshellF,shellF :: String �> F a b �> F a bwhich given a window title and a fudget, creates a shell window containingthe graphical user interface de�ned by the argument fudget. The fudgetsfor GUI elements, like labelF, can not be used directly on the top level ina program, but must appear inside a shell window.

9.2 The factorial function 23� In this simple program, the contents of the shell window are merely asimple string label, that is created with the function labelF,labelF :: (Graphic a) => a �> F b cThe argument is the label to be displayed. The label can be a value of anytype that is an instance of the Graphic class. The Fudget library providesinstances for many prede�ned types, including strings. The Graphic classis discussed in Section 27.1.Both the input and output types of labelF are type variables that do notoccur anywhere else. This indicates that none of the high-level streamsare used by labelF.labelF has only one parameter: the label to be displayed. Most GUI fud-gets come in two versions: a standard version, like labelF, and a customis-able version, for example labelF', which allows you to change parameterslike fonts and colors, for which the standard version provides default val-ues. See Chapter 15 for more details.� The size and placement of the GUI elements need not be speci�ed. Thefudget system automatically picks a suitable size for the label and the sizeof the shell is adapted to that.Useful programs of course contain more than one GUI element. The next ex-ample will contain two GUI elements!9.2 The factorial functionThis program illustrates how data is communicated betweendi�erent parts of a Fudget program. It illustrates a simpleway to combine application-speci�c code (in this case the fac-torial function) with GUI elements from the Fudget library.The program shows a numeric entry �eld at the bottomand a number display at the top. Whenever the user entersa number in the entry �eld and presses the Return key, thefactorial of that number is computed and displayed in thenumber display.Here is the source code:import Fudgetsmain = fudlogue (shellF "Factorial" facF)facF = intDispF >==< mapF fac >==< intInputFfac 0 = 1fac n = n * fac (n�1)Note:� The program facF is structured as a serial composition of three parts, usingthe operator >==<. Notice that, as with ordinary function composition,data �ows from right to left. The parts are:

24 9 Your �rst 8 Fudget programs� the numeric entry �eld intInputF,� mapF fac, an abstract fudget (a fudget without a corresponding GUIelement) that applies fac, the factorial function, to integers receivedfrom the entry �eld, and� the number display intDispF, which displays the computed factorials.� We have used fudlogue and shellF on the top level as in the previous ex-amples (Section 9.1).The types of the new library components used in this example are:>==< :: F a b �> F c a �> F c bintInputF :: F Int IntmapF :: (a �> b) �> F a bintDispF :: F Int aAlthough this program does something useful (at least compared to the twoprevious examples), it could be made more user friendly, e.g., by adding someexplanatory text to the user interface. The next example shows how to do this.9.3 The factorial function, with improved layoutThis program shows how to use layout combinators toimprove the visual appearance of a Fudget program.We have made the factorial function example fromSection 9.2 more self documenting by adding labels tothe entry �eld and the output display. We have alsochanged the order of the two parts: the entry �eld isnow above the display.Here is the source code:import Fudgetsmain = fudlogue (shellF "Factorial" facF)facF = placerF (revP verticalP) (("x! =" `labLeftOfF` intDispF) >==<mapF fac >==<("x =" `labLeftOfF` intInputF))fac 0 = 1fac n = n * fac (n�1)Note:� We have used the function labLeftOfF to put labels to the left of the entry�eld and the display. (In Haskell, back quotes can be used to turn anyfunction into an in�x operator, as we have done with labLeftOfF here).

9.4 An up counter 25� The function placerF can be applied to a composition of fudgets to specifythe relative placement of the parts. (The layout system automaticallypicks some placement if layout is left unspeci�ed.) The �rst argument toplacerF is a placer, in our case revP verticalP, where verticalP causes theparts to be stacked vertically, with the leftmost fudget in the compositionat the top, and revP reverses the order of the parts.� Everything else is as in the previous examples.The types of the new library components used in this example are:labLeftOfF :: (Graphic a) => a �> F b c �> F b cplacerF :: Placer �> F a b �> F a brevP :: Placer �> PlacerverticalP :: Placer9.4 An up counterThis program illustrates a more general way to com-bine application-speci�c code with GUI elements fromthe Fudget library. It illustrates that state informationcan be encapsulated. State information is often consid-ered as di�cult to handle in pure functional languages;hopefully, this counter example shows how easy it is!This program has a button and a numeric display.Pressing the button increments the number in the display.The application-speci�c code in this example sits between the button andthe display. It maintains an internal counter which is incremented and outputto the display whenever a click is received from the button.Here is the source code:import Fudgetsmain = fudlogue (shellF "Up Counter" counterF)counterF = intDispF >==< mapstateF count 0 >==< buttonF "Up"count n Click = (n+1,[n+1])Note:� As with the factorial example (Section 9.2), the central part of the program(counterF) is a serial composition of three parts. At the output end we seethe familiar intDispF. At the input end of the pipe line is a button createdwith buttonF. It outputs a Click when pressed. The middle componentmaintains an internal counter. The counter is incremented and output tothe display when a Click is received from the button.� mapstateF, like mapF, allows messages sent between fudgets to be pro-cessed in an application-speci�c way. With mapstateF, an arbitrary num-ber of messages can be output as response to an input message. In ad-dition, the output can depend not only on the current input, but also on

26 9 Your �rst 8 Fudget programs

Figure 6. The up/down counter.an internal state. mapstateF has two arguments: a state transition func-tion and an initial state. When applied to the current state and an inputmessage, the state transition function should produce a new internal stateand a list of output messages.The function count is the state transition function in this program.� There is a small pitfall in this program: intDispF automatically displays 0when the program starts. The initial value of the counter happens to be0 as well. If the 0 is changed in the de�nition of counterF, the display willstill show 0 when the program starts. One way to �x this is to use thecustomisable version of intDispF to specify the initial value to display.The types of the new library components used in this example are:buttonF :: (Graphic a) => a �> F Click Clickdata Click = ClickmapstateF :: (a �> b �> (a, [c])) �> a �> F b cThis and the previous examples show how serial composition creates a commu-nication channel from one fudget to another. But what if a fudget needs inputfrom more than one source? The next example shows one possible solution.9.5 An up/down counterThis example illustrates how to handle input from more than one source (Fig-ure 6). The two buttons a�ect the same counter.Here is the source code:import Fudgetsmain = fudlogue (shellF "Up/Down Counter" counterF)counterF = intDispF >==< mapstateF count 0 >==<(buttonF �lledTriangleUp >+<buttonF �lledTriangleDown)count n (Left Click) = (n+1,[n+1])count n (Right Click) = (n�1,[n�1])

9.6 An up/down/reset counter 27Note:� The up/down counter is a small extension of the Up Counter (Section 9.4).We have added a button by replacingbuttonF ...with (buttonF ... >+< buttonF ...)using the operator >+< for parallel composition.� The output from a parallel composition is the merged output from the twocomponents. Output from the left component is tagged Left and outputfrom the right component is tagged Right. The constructors Left and Rightare constructors in the datatype Either.� The count function will now receive Left Click or Right Click, depending onwhich button was pressed. It has been adjusted accordingly. (Note thatLeft Click and Right Click have nothing to do with the left and right mousebuttons!)� Just to illustrate that buttons can display arbitrary graphics and not justtext, we have used two suitable shapes that happen to be provided by thelibrary.� Everything else is as in the previous example (Section 9.4).The types of the new library components used in this example are:>+< :: F a b �> F c d �> F (Either a c) (Either b d)�lledTriangleUp :: FlexibleDrawing�lledTriangleDown :: FlexibleDrawing9.6 An up/down/reset counterThis example shows how to cre-ate parallel compositions of manyfudgets of the same type.This program extends thecounter example with yet anotherbutton. The counter can nowbe incremented, decremented andreset.Here is the source code:

28 9 Your �rst 8 Fudget programs

Figure 7. The loadable up/down counter.import Fudgetsmain = fudlogue (shellF "Up/Down/Reset Counter" counterF)counterF = intDispF >==< mapstateF count 0 >==< buttonsFdata Buttons = Up | Down | Reset deriving EqbuttonsF = listF [(Up, buttonF "Up"),(Down, buttonF "Down"),(Reset, buttonF "Reset")]count n (Up, Click) = (n+1, [n+1])count n (Down, Click) = (n�1, [n�1])count n (Reset, Click) = (0, [0])Note:� When putting more than two fudgets of the same type in parallel, it ismore convenient to use listF than >+<. The argument to listF is a list ofpairs of addresses and fudgets. The addresses are used when messages aresent and received from the components in the composition.� In this program there is a user de�ned enumeration type Buttons, theelements of which are used as the addresses of the buttons. The messagesreceived by the count function are pairs of Buttons values and Clicks.� Everything else is as in the previous example (Section 9.5).The type of the new library component used in this example is:listF :: (Eq a) => [(a, F b c)] �> F (a, b) (a, c)9.7 A loadable up/down counterThis example illustrates the use of loops to handle user-interface elements thatare used for both input and output (Figure 7). The program extends the

9.8 A simple calculator 29up/down counter in Section 9.5 by allowing the user to set the counter to anyvalue by entering it in the display �eld.Here is the source code:import Fudgetsmain = fudlogue (shellF "Loadable Up/Down Counter" counterF)counterF = loopThroughRightF (mapstateF count 0) intInputF >==<(buttonF �lledTriangleUp >+< buttonF �lledTriangleDown)count n (Left n') = (n', [])count n (Right (Left Click)) = (n+1, [Left (n+1)])count n (Right (Right Click)) = (n�1, [Left (n�1)])Note:� Instead of intDispF we have used intInputF, which not only displays num-bers, but also allows the user to enter numbers.� We have used the combinator loopThroughRightF to allow the count func-tion to both receive input from and send output to intDispF. In the compo-sition loopThroughRightF fud1 fud2, fud1 handles the communication withthe outside world (the buttons in this example), while fud2 can commu-nicate only with fud1, and is in this sense encapsulated by fud1. In fud1,messages to/from fud2 are tagged Left and messages to/from the outsideworld are tagged Right.The type of the new library component used in this example is:loopThroughRightF :: F (Either a b) (Either c d) �> F c a �> F b d9.8 A simple calculatorAs a �nal example, we show how a slightly larger program, a simple calculcator,can be built using the ideas illustrated by the previous examples (Figure 8). Forsimplicity, post�x notation is used, i.e., to compute 3+4 you enter 3 Ent 4 +.The source code can be found in Figure 9.Note:� The program structure is much the same as in the up/down/reset counter(Section 9.6).� To specify the placement of the buttons we have used placerF (as in Sec-tion 9.3) and the placer matrixP which has the number of columns as anargument.� The state maintained by the application-speci�c code (the function calc)is a stack (represented as a list) of numbers. The function calc pushesand pops numbers from the stacks as appropriate. The last clause in thede�nition means that nothing happens if there are too few values on thestack for an operation.

30 9 Your �rst 8 Fudget programs

Figure 8. The calculator.� As it stands, the calculator can be controlled with the mouse only. Thecustomisable version of buttonF allows you to specify a keyboard shortcutfor the button. It would thus be relatively easy to make the calculatorcontrollable from the keyboard.The type of the new library component used in this example is:matrixP :: Int �> Placer

9.8 A simple calculator 31
import Fudgetsmain = fudlogue (shellF "Calculator" calcF)calcF = intDispF >==< mapstateF calc [0] >==< buttonsFdata Buttons = Plus | Minus | Times | Div | Enter | Digit Int deriving EqbuttonsF = placerF (matrixP 4) (listF [d 7, d 8, d 9, op Div,d 4, d 5, d 6, op Times,d 1, d 2, d 3, op Minus,hole, d 0, ent, op Plus])whered n = (Digit n,buttonF (show n))ent = op Enterhole = (Enter,holeF)op o = (o,buttonF (opLabel o))where opLabel Plus = "+"opLabel Minus = "�"opLabel Times = "*"opLabel Div = "/"opLabel Enter = "Ent"calc (n:s) (Digit d,_) = new (n*10+d) scalc s (Enter,_) = (0:s,[])calc (y:x:s) (Plus,_) = new (x+y) scalc (y:x:s) (Minus,_) = new (x�y) scalc (y:x:s) (Times,_) = new (x*y) scalc (y:x:s) (Div,_) = new (x `div` y) scalc s _ = (s,[])new n s = (n:s,[n]) Figure 9. Source code for the calculator.

32 10 Fudget library GUI elements10 Fudget library GUI elementsIn this chapter, we present some common GUI elements provided by the Fudgetlibrary. For more information, consult the reference manual, which is availablevia WWW [HC97].Before we introduce the GUI elements, we discuss brie�y how fudget pro-grams are formed using the function fudlogue.10.1 Functions used on the top level of programsAs we have seen in the examples in Chapter 9, a fudget program consists ofa number of fudgets, combined in a hierarchical structure that makes up onemain fudget of type F a b, for some types a and b. The main program in Haskellshould have type IO (), so we need a glue function to be able to plug in themain fudget. The function fudlogue is provided for this purpose:fudlogue :: F a b �> IO ()The main program of a fudget program usually consists just of a call to fudloguewith an argument fudget. likemain :: IO ()main = fudlogue the_main_fudgetHowever, it is possible to combine fudlogue with other monadic I/O operations.For example, to create a program that starts by reading some con�guration �le,you could writemain = do con�g <� readFile con�g_�lenamefudlogue (main_fudget con�g)Programs with graphical user interfaces need at least one shell (top-level) win-dow. These are created with the function shellF:shellF :: String �> F a b �> F a bThe typical GUI program has only one shell window, and the main programthus looks something likemain = fudlogue (shellF window_title main_gui_fudget)A program with more than one shell window could for example look somethinglike main = fudlogue (shellF title1 fud1 >==< shellF title2 fud2)The fudget shellF is not restricted to the top level. You could write the aboveexample asmain = fudlogue (shellF title1 (fud1 >==< shellF title2 fud2))and achieve the same result.

10.2 Displaying values 33toggleButtonF "Run"radioGroupF [(1,"P1"),(2,"P2"),(3,"P3"),(0,"O�")] 0
Figure 10. Toggle buttons and radio groups.10.2 Displaying valuesWe have already seen labelF, which displays static labels, and intDispF, whichdisplays numbers that can change dynamically. There is also displayF,displayF :: (Graphic a) => F a ba more general display for dynamically changing values. It can display values ofany type in the Graphic class. It could in fact also display numbers, but intDispFhas the advantage that the numbers are displayed right adjusted.10.3 ButtonsWe have already seen buttonF,buttonF :: (Graphic a) => a �> F Click Clickin the examples above. It provides command buttons, i.e., buttons trigger someaction when pressed. The Fudget library also provides toggle buttons and radiogroups (Figure 10). Pressing these buttons causes a change that has a lastingvisual e�ect (and probably also some other lasting e�ect). A toggle buttonchanges between two states (on and o�) each time you press it. A radio groupallows you to activate one of several mutually exclusive alternatives. The typesof these fudgets aretoggleButtonF :: (Graphic a) => a �> F Bool BoolradioGroupF :: (Graphic b, Eq a) => [(a, b)] �> a �> F a aThe input messages can be used to change the setting under program control.10.4 Menus and scrollable listsMenus serve much the same purpose as buttons, but they save screen space byappearing only when activated. The fudget menuF name alts, wheremenuF :: (Graphic a, Graphic c) => a �> [(b, c)] �> F b b

34 10 Fudget library GUI elements
import Fudgetsmain = fudlogue (shellF "Compact Up/Down/Reset Counter" counterF)counterF =serCompLeftToRightF(popupMenuF menu (intDispF >==< mapstateF count 0))data Buttons = Up | Down | Reset deriving Eqmenu = [(Up, "Up"), (Down, "Down"), (Reset, "Reset")]count n Up = (n+1, [n+1])count n Down = (n�1, [n�1])count n Reset = (0, [0])Figure 11. A compact version of the up/down/reset counter presented in Sec-tion 9.6.provides pull-down menus. name is the constantly visible name you press toactivate the menu and alts is the list of menu alternatives.The fudgetpopupMenuF :: (Graphic b, Eq b) =>[(a, b)] �> (F c d) �> F (Either [(a, b)] c) (Either a d)provides pop-up menus, i.e., menus that are activated when a certain mousebutton (the third by default) is pressed over some screen area. The fudgetpopupMenuF initial_menu fud creates a fudget which behaves like the fudget fudwith the addition that the menu initial_menu pops up when the user presses thethird menu button. You communicate with the fudget as with a tagged parallelcomposition of the menu and the fudget fud. Messages to/from the menu aretagged Left and messages to/from fud are tagged Right. You can replace theinitial_menu by sending Left new_menu to the fudget.As an example, suppose we wanted a compact version of the counter inSection 9.6. We could then replace the three buttons with a pop-up menuattached to the display. The source code for this and the resulting user interfaceis shown Figure 11. We have used the combinator serCompLeftToRightF, whichturns a parallel composition into a serial composition (see Section 13.1). Whenthe number of alternatives is large, or when they change dynamically, you canuse a scrollable list instead of a menu. The function

10.4 Menus and scrollable lists 35

Figure 12. pickListF
Figure 13. stringInputFpickListF :: (a �> String) �> F (PickListRequest a)(InputMsg (Int, a))(shown in Figure 12) takes a show function and returns a fudget that displayslists of alternatives received on the high-level input. When an alternative isselected, by clicking on it, it will appear in the output stream. Actually, theoutput from pickListF is of type InputMsg, which is explained in Section 10.5.1below.The values in the input stream are of type PickListRequest to allow the listof alternatives to be modi�ed in various ways. To replace the entire list, youcan usereplaceAll :: [a] �> PickListRequest abut there are other functions that let you insert new alternatives at some positionin the list,insertText :: Int �> [a] �> PickListRequest aor, more generally, replace part of the list with new alternatives,replaceText :: Int �> Int �> [a] �> PickListRequest aand so on. The screen will be updated in an e�cient way when you do modi�-cations of this kind.

36 10 Fudget library GUI elements10.5 Entering valuesChoosing an alternative from a list is usually easier than typing something, e.g.,the name of a colour, on the keyboard. But when there is no prede�ned set ofalternatives, you can use fudgets that allow the user to enter values from thekeyboard. The library providesstringInputF :: F String StringintInputF :: F Int Intfor entering strings and integers (see Figure 13). For entering other types ofvalues, you can use stringInputF and attach the appropriate printer and parserfunctions.10.5.1 More detailed information on user inputThe fudgets stringInputF and intInputF do not produce any output until the userpresses the Enter (or Return) key to indicate that the input is complete. Thisis often a reasonable behaviour, but there are versions of these fudgets thatprovide more detailed information:stringF :: F String (InputMsg String)intF :: F Int (InputMsg Int)These fudgets output messages of type InputMsg, which contain the currentcontents of the entry �eld and an indication of whether the value is intermediateor complete.There are some stream processors that are useful when post processing mes-sages from entry �elds:stripInputSP :: SP (InputMsg a) ainputLeaveDoneSP :: SP (InputMsg a) ainputDoneSP :: SP (InputMsg a) aThe �rst one passes through all messages, so that you will know about allchanges to the contents of the entry �eld. The second one outputs a messagewhen the user indicates that the input is complete and when the input focusleaves the entry �eld. The last one outputs a message only when the input isindicated as complete.The fudget stringInputF is de�ned asstringInputF = absF inputDoneSP >==< stringFAs we saw above, the fudget pickListF also produces output of type InputMsg.In this case, input is considered to be complete when the user double clicks onan alternative. Hence you use stripInputSP if a single click should be enough tomake a choice, and inputDoneSP if a double click should be required.10.6 Displaying and editing textThe library provides the fudgets

10.7 Scroll bars 37

Figure 14. The text editor fudget editorF.moreF :: F [String] (InputMsg (Int, String))moreFileF :: F String (InputMsg (Int, String))moreFileShellF :: F String (InputMsg (Int, String))which can display longer text.1 The input to moreF is a list of lines of text tobe displayed. The other two fudgets display the contents of �le names receivedon the input. In addition, moreFileShellF appears in its own shell window witha title re�ecting the name of the �le being displayed.There also is a text editor fudget (Figure 14), which supports cut/pasteediting with the mouse, as well as a small subset of the keystrokes used in GNUemacs. It also has an undo/redo mechanism.10.7 Scroll barsGUI elements that can potentially become very large, like pickListF, moreF andeditorF, have scroll bars attached by default. There are also combinators toexplicitly add scroll bars:scrollF, vScrollF, hScrollF :: F a b �> F a bThe v and h versions give only vertical and horizontal scroll bars, respectively.The argument fudget can be any combination of GUI elements.

1The names come from the fact that they serve the same purpose as the UNIX programmore.

38 11 Specifying layout
Figure 15. When no layout is speci�ed in the program, the automatic layoutsystem chooses one.11 Specifying layoutWhen combining fudgets for GUI elements, there are two considerations:� The data �ow aspect: how should they communicate, i.e., should one usea serial, parallel, or some other combinator?� The visual aspect: how should the GUI elements be placed on the screen?When developing fudget programs, it is not necessary to be concerned with theactual layout of the GUI fudgets. For example, the fudgetshellF "Buttons"(buttonF "A Button" >+< buttonF "Another Button")will get some default layout which might look like Figure 15. But sooner orlater, we will want to have control over the layout. The GUI library lets us dothis two di�erent ways:� Combinator-based layout. This method is based on the combinator placerFthat has appeared in some of the previous examples. It allows you to at-tach layout information to an arbitrary fudget. Usually, you �rst combinesome fudgets using combinators like >+<, >==<, and listF, and thenapply placerF to the combination to specify a layout. This is a fairly easymethod for adding layout information to a program. However, the layoutpossibilities are somewhat limited by the structure of the program.� Name layout. Here, the layout is speci�ed separately from the fudgetstructure. GUI fudgets are assigned names, which are later referred to inlayout speci�cations placed inside each shellF.Before describing these, we will present the layout combinators that both ofthem use.11.1 Boxes, placers and spacersLayout is done hierarchically. Each GUI fudget will reside in a box, which willhave a certain size and position when the layout is complete. A list of boxes canbe put inside a single box by a placer. A placer de�nes how the boxes should beplaced in relation to each other inside the larger box. This enclosing box can besubject to further placement, but the enclosed boxes are hidden by the placer in

11.1 Boxes, placers and spacers 39
horizontalP

revP horizontalP

matrixP 3

verticalP

x

y

Figure 16. Di�erent placers.the sense that they cannot be manipulated individually any more. The e�ectsof some placers are illustrated in Figure 16. The parameter to matrixP speci�esthe number of columns the matrix should have. The types of the placers arehorizontalP :: PlacerverticalP :: PlacermatrixP :: Int �> PlacerrevP :: Placer �> PlacerThe placer revP reverses the list of boxes it is applied to. Another higher orderplacer is �ipP, which transforms a placer into a mirror symmetric placer, withrespect to the line x = y (that is, it �ips the x and y coordinates):�ipP :: Placer �> PlacerHence, we can de�ne verticalP asverticalP = �ipP horizontalPPlacers can be applied to fudgets by means of placerF:placerF :: Placer �> F a b �> F a bIt applies the placer to all boxes in the argument fudget. The order of the boxesis left to right, with respect to the combinators listF, >==< and >+<, etc.As an example, suppose we want to specify that the two buttons in Figure 15should have vertical layout. We could then writeshellF "Buttons" (placerF verticalP (buttonF "A Button" >+<buttonF "Another Button"))The result can be seen in Figure 17. In a similar way, the �rst button couldbe placed below, to the right of, or to the left of the second button, by using

40 11 Specifying layout

Figure 17. The same GUI elements as in Figure 15, but the program explicitlyspeci�es vertical layout.verticalCounterF = placerF verticalP counterFcounterF = intDispF >==< mapstateF count 0 >==<(buttonF "Up" >+< buttonF "Down")
Figure 18. An up/down counter with vertical layout. Abstract fudgets do nothave a corresponding box in the layout.the placers revP verticalP, horizontalP or revP horizontalP, respectively. Abstractfudgets do not have a corresponding box in the layout. This means that thepresence of mapstateF in the de�nition of counterF in Figure 18, does not leavea hole in the layout of verticalCounterF. What if we want the display to appearbetween the two buttons? With the placers we have seen, the two buttonswill appear together in the layout, since they appear together in the programstructure. One solution is to use a placer operator that allows the order of theboxes to be permuted:permuteP :: [Int] �> Placer �> PlacerWe can then replace verticalP withpermuteP [2,1,3] verticalPto get the display in the middle. This kind of solution works, but it will soonbecome quite complicated to write and understand. A more general solution isto use name layout (Section 11.2).

11.1 Boxes, placers and spacers 41
leftS

hCenterS

rightS

(none)

Figure 19. Spacers for alignment.Placers are used to specify the layout of a group of boxes. In contrast,spacers are used to wrap a box around a single box. Spacers can be used todetermine how a box should be aligned if it is given too much space, or to addextra space around a box. Examples of spacers that deal with alignment canbe seen in Figure 19. The topmost box (placed with horizontalP) must �ll upall the available space. The lower three boxes have been placed inside a boxwhich consumes the extra space. The spacers used are derived from the spacerhAlignS, whose argument states the ratio between the space to the left of thebox and the total available extra space:hAlignS :: Alignment �> SpacerleftS = hAlignS 0hCenterS = hAlignS 0.5rightS = hAlignS 1There is a corresponding spacer to �ipP, namely �ipS. It too �ips the x and ycoordinates, and lets us de�ne some useful vertical spacers:�ipS :: Spacer �> SpacervAlignS a = �ipS (hAlignS a)topS = �ipS leftSvCenterS = �ipS hCenterSbottomS = �ipS rightSWith compS, we can compose spacers, and de�ne a spacer that centers bothhorizontally and vertically:compS :: Spacer �> Spacer �> SpacercenterS = vCenterS `compS` hCenterSTo add extra space to the left and right of a box, we use hMarginS left right,wherehMarginS :: Distance �> Distance �> Spacertype Distance = IntDistances are given in number of pixels.2 From hMarginS, we can derivemarginS,which adds an equal amount of space on all sides of a box:2This is easy to implement, but makes programs somewhat device dependent.

42 11 Specifying layoutvMarginS above below = �ipS (hMarginS above below)marginS s = vMarginS s s `compS` hMarginS s sSpacers can be applied to fudgets by means of spacerF:spacerF :: Spacer �> F a b �> F a bThe fudget spacerF s f will apply the spacer s to all boxes in f which are notenclosed in other boxes. We can also modify a placer by wrapping a spaceraround the box that the placer assembles:spacerP :: Spacer �> Placer �> PlacerFor example, spacerP leftS horizontalP gives a horizontal placer which will leftadjust its boxes.11.2 Name layoutTo separate layout from fudget structure, we put unique names on each box(usually corresponding to a simple GUI fudget) whose layout we want to control,by using nameF:type LName = StringnameF :: LName �> F a b �> F a bThe layout of the boxes that have been named in this way, is speci�ed usingthe type NameLayout. Here are the basic functions for constructing NameLayoutvalues:leafNL :: LName �> NameLayoutplaceNL :: Placer �> [NameLayout] �> NameLayoutspaceNL :: Spacer �> NameLayout �> NameLayoutTo apply the layout to named boxes, we use nameLayoutF:nameLayoutF :: NameLayout �> F a b �> F a bAs an application of name layout, we show how the vertical counter in Figure 18can be changed, so that the display appears between the up and down buttons(Figure 20):nlCounterF = nameLayoutF layout counterFcounterF = nameF dispN intDispF>==< mapstateF count 0>==< (nameF upN (buttonF �lledTriangleUp) >+<nameF downN (buttonF �lledTriangleDown))-- only layout belowlayout = placeNL verticalP (map leafNL [upN, dispN, downN])upN = "up"downN = "down"dispN = "disp"

11.3 Pros and cons of the di�erent layout methods. 43
Figure 20. With name layout, the order of the GUI elements in the windowdoes not have to correspond to their order in the program text.Now, we can control the layout of the two buttons and the display, withoutchanging the rest of the program.The actual strings used for names are unimportant, as long as they areunique within the part of the fudget structure where they are in scope. Soinstead we can write(upN:downN:dispN:_) = map show [1..]11.3 Pros and cons of the di�erent layout methods.When it comes to specifying the layout of user interfaces, the Fudget libraryprovides at least three solutions that di�er in expressiveness and safety:1. The don't care solution: ignore the problem. The programmer can com-pose a number of GUI fudgets using plumbing combinators, without spec-ifying the layout. The system will automatically pick some layout. This isperfectly safe, but it obviously does not give the programmer any controlover layout.2. The combinator-based approach: the programmer inserts placerF appliedto some placer at some selected points in the fudget hierarchy. This givesthe programmer more control over layout and is still perfectly safe, butthere is a coupling between how the fudgets have been composed and howthey appear on the screen. This is not necessarily bad, but it limits thefreedom in the choice of layout.3. Name layout: the boxes of the GUI elements are labelled with uniquenames. On the top level of the program, the programmer inserts nameFapplied to a layout speci�cation which, by referring to the names, canachieve a layout of the GUI elements completely unrelated to how theywere composed.In this solution it is possible to make mistakes, however. For the layoutspeci�cation to work properly, the name of every named box should occurexactly once in the layout speci�cation. If you forget to mention a box,or if you mention it twice, or if you name a box that does not exist, thelayout will not work properly. These mistakes are not detected at compiletime, but give rise run-time errors or a weird layout.

44 11 Specifying layoutThe Fudget library thus o�ers safe solutions with limited freedom, and unsafesolutions with full freedom. With respect to safety and expressiveness, thesolutions used in some other functional GUI toolkits, for example Haggis [FP96]and Gadgets [Nob95], are equivalent to name layout.The problem with the name layout solution is that it requires a certain consis-tency between two di�erent parts of the program. Maintaining this consistencyduring program development is of course an extra burden on the programmer.Can a type system be used to make name layout safe? It would perhaps bepossible to include layout information in some form in the types of GUI fudgetsand catch some mistakes with the ordinary Haskell type system. However,the requirement that each name occurs exactly once in the layout speci�cationsuggests that you would need a type system with linear types [Hol88] to catchall mistakes.

45
o i

spFigure 21. Turning a stream processor into an abstract fudget.12 Abstract fudgetsWhen using the Fudget library in a program, fudgets from the library are usuallycombined with some application-speci�c code, that is typically attached to theprogram in serial compositions. In the examples, we have seen the use of mapFand mapstateF for this:facF = intDispF >==< mapF fac >==< intInputFcounterF = intDispF >==< mapstateF count 0 >==< buttonF "Up"The functions mapF and mapstateF create abstract fudgets, that is, fudgets thatdo not perform any I/O. They communicate only via their high-level streams.A more general way to construct abstract fudgets is provided by the functionabsF, absF :: SP a b �> F a bwhere SP is the type constructor for plain stream processors. These have a singleinput stream and a single output stream. The function absF creates a fudgetby connecting the streams of a stream processor to the high-level streams of thefudgets, while leaving the low-level streams disconnected, as shown in Figure 21.The functions mapF and mapstateF are in fact de�ned in terms of absF:mapF = absF mapSPmapstateF = absF mapstateSPwhere mapSP and mapstateSP,mapSP :: (a �> b) �> SP a bmapstateSP :: (a �> b �> (a, [c])) �> a �> SP b care discussed in Section 16.2 and Section 16.3, respectively.Although high-level combinators like mapF and mapstateF are adequate formost fudget application programming, some programmers may prefer the �exi-bility of the more basic ways of creating stream processors. Two examples whereabstract fudgets are de�ned in terms of absF can be found in Section 32.4. Anextensive discussion of stream processors can be found in Part III.

46 13 Fudget plumbing
f

 1 f
 2

f
 1

f
 2

Figure 22. Serial and parallel composition of fudgets.13 Fudget plumbingWe have already seen examples of how to use the fudget plumbing combina-tors. There are three basic forms of compositions: serial composition, parallelcomposition and loops.-- Serial composition:>==< :: F b c �> F a b �> F a c-- Parallel composition:>+< :: F i1 o1 �> F i2 o2 �> F (Either i1 i2) (Either o1 o2)>*< :: F i o �> F i o �> F i olistF :: (Eq t) => [(t, F i o)] �> F (t, i) (t, o)-- Loops:loopF :: F a a �> F a aloopLeftF :: F (Either loop input) (Either loop output) �> F input outputloopThroughRightF :: F (Either oldo newi) (Either oldi newo) �>F oldi oldo �>F newi newoThe di�erent fudget combinators treat the high-level streams in di�erent ways,while the low-level streams are treated in the same way in all combinators. Fig-ure 22 illustrates serial and parallel composition of fudgets. Apart from theplumbing combinators listed above, the Fudget library contains further combi-nators that capture common patterns. Some of these combinators are describedin the following sections.The fudget combinators have corresponding combinators for plain streamprocessors, which are discussed in more detail in Chapter 17. Their names areobtained by replacing the F su�x with an SP, or substituting �...� for >...<in the operators.

13.1 Serial compositions 4713.1 Serial compositionsSerial composition connects the output of one fudget to the input of anotherfudget. As with function composition, data �ow from right to left, so that inthe composition fud2 >==< fud1, the output of fud1 is connected to the inputof fud2.Many of the examples in Chapter 9 contain serial compositions of the formmapF f >==< fudfud >==< mapF fThe library provides the following combinators to capture these cases:>=^< :: F a b �> (c �> a) �> F c bfud >=^< f = fud >==< mapF f>^=< :: (a �> b) �> F c a �> F c bf >^=< fud = mapF f >==< fud(The library versions of >^=< and >=^< have more involved de�nitions to bemore e�cient.)Compositions of the formabsF sp >==< fudfud >==< absF spare also common. The library provides two operators for these special cases:>^^=< :: SP b c �> F a b �> F a csp >^^=< fud = absF sp >==< fud>=^^< :: F b c �> SP a b �> F a cfud >=^^< sp = fud >==< absF spSome combinators, like popupMenuF (see Section 10.4), create parallel compo-sitions of fudgets, but sometimes a serial composition is instead required. Thiscould be accomplished by using a loop and an abstract fudget to do the necessaryrouting, but the library contains two combinators that do this:serCompLeftToRightF :: F (Either a b) (Either b c) �> F a cserCompRightToLeftF :: F (Either a b) (Either c a) �> F b cThe following equations hold:serCompRightToLeftF (l >+< r) = l >==< rserCompLeftToRightF (l >+< r) = r >==< l

48 13 Fudget plumbing13.2 Parallel compositionsWhen combining more than two or three fudgets, the tagging obtained by using>+< can become a bit clumsy. It may then be more convenient to use listF,listF :: (Eq a) => [(a, F b c)] �> F (a, b) (a, c)which allows any type in the Eq class to be used as addresses of the fudgets tobe combined. The restriction is that the fudgets combined must have the sametype. (See Section 40.4 for a discussion of how a language with dependent typescould eliminate this kind of restriction.)There is also a combinator for untagged parallel composition:>*< :: F i o �> F i o �> F i oInput to an untagged parallel composition is sent to both argument fudgets.There is a list version of untagged parallel composition as well,untaggedListF :: [F a b] �> F a bwhich can easily be de�ned using >*<:untaggedListF = foldr (>*<) nullFwhere nullF,nullF :: F a bis the fudget that ignores all input and never produces any output.The untagged parallel compositions are not as widely used as the taggedones. The reason is probably that you usually do not want input to be broadcastto all fudgets in a composition.There are some further combinators that tend to be useful every once in awhile. These are various parallel compositions with the identity fudget:idRightF :: F a b �> F (Either a c) (Either b c)idLeftF :: F a b �> F (Either c a) (Either c b)bypassF :: F a a �> F a athroughF :: F a b �> F a (Either b a)idRightF fud = fud >+< idFidLeftF fud = idF >+< fudbypassF fud = idF >*< fudthroughF fud = idRightF fud >==< toBothFtoBothF :: F a (Either a a)toBothF = concatMapF (\ x �> [Left x,Right x])idF :: F a aidF = mapF id

13.3 Loops 4913.3 LoopsThe simplest loop combinator is loopF,loopF :: F a a �> F a aIn the composition loopF fud, the output from fud is not only output from thecomposition, but also sent back to the input of fud.The most useful loop combinator is probably loopThroughRightF. An exam-ple use was shown in Section 9.7 and it is discussed further in Section 18.2.Some loop combinators that have been useful are:loopCompThroughRightF :: F (Either (Either a b) c)(Either (Either c d) a) �> F b dloopCompThroughLeftF :: F (Either a (Either b c))(Either b (Either a d)) �> F c dThese turn parallel compositions into loops. The following equations hold:loopCompThroughRightF (l >+< r) = loopThroughRightF l rloopCompThroughLeftF (l >+< r) = loopThroughRightF r l13.4 Dynamic fudget creationThe combinators described in the previous sections can be used to build staticnetworks of fudgets. The Fudget library also provides combinators that can beused to add or remove fudgets dynamically (for example, to create new windowsdynamically).To create dynamically changing parallel compositions of fudgets, the libraryprovidesdynListF :: F (Int, DynFMsg a b) (Int, b)wheredata DynFMsg i o = DynCreate (F i o) | DynDestroy | DynMsg iAbove we saw listF that creates tagged parallel compositions that are static.The combinator dynListF can be seen as a variant of listF with a more elaborateinput message type. When the program starts, dynListF is an empty parallelcomposition. A new fudget fud with address i can be added to the parallelcomposition by passing the message(i,DynCreate fud)to dynListF. The fudget with address i can be removed from the parallel com-position by passing the message(i,DynDestroy)Finally, one can send a message x to an existing fudget with address i by passingthe message

50 13 Fudget plumbing(i,DynMsg x)to dynListF.(The addresses used by dynListF have been restricted to the type Int for e�-ciency reasons, but in principle, more general address types could be supported,as for listF.)A simpler combinator that allows fudgets to change dynamically is dynF:dynF :: F a b �> F (Either (F a b) a) bThe fudget dynF fud starts out behaving like fud, except that messages to fudshould be tagged with Right. The fudget fud can be replaced by another fudgetfud' by passing in the message Left fud'.

5114 Fudgets for non-GUI I/O14.1 Standard I/O fudgetsTo read the standard input (usually the keyboard) and write to the standardoutput or standard error stream (the screen), you can use the fudgets:stdinF :: F a StringstdoutF :: F String astderrF :: F String aThe output from stdinF is the characters received from the program's standardinput channel. For e�ciency reasons, you do not get one character at a time,but larger chunks of characters. If you want the input as a stream of lines, youcan useinputLinesSP :: SP String Stringwhich puts together the chunks and splits them at the newlines.A simple example is a fudget that copies text from the keyboard to thescreen with all letters converted to upper case:stdoutF >==< (map toUpper >^=< stdinF)It applies toUpper to all characters in the strings output by stdinF and thenfeeds the result to stdoutF.Here is a fudget that reverses lines:(stdoutF>=^<((++"\n").reverse))>==<(inputLinesSP>^^=<stdinF)The precedences and associativities of the combinators are such that these fud-gets can be written as:stdoutF >==< map toUpper >^=< stdinFstdoutF >=^< (++"\n").reverse >==< inputLinesSP >^^=< stdinF14.2 Accessing the �le systemThe following fudgets allow you to read �les, write �les and get directory con-tents:readFileF :: F FilePath (FilePath,Either IOError String)writeFileF :: F (FilePath,String) (FilePath,Either IOError ())readDirF :: F FilePath (FilePath,Either IOError [FilePath])These can be seen as servers, with a one-to-one correspondence between requestsand responses. For convenience, the responses are paired with the �le pathfrom the request. The responses contain either an error message or the resultof the request. The result is the contents of a �le (readFile), a directory listing(readDirF), or () (writeFileF).

52 14 Fudgets for non-GUI I/O14.3 The timer fudgetThe timer fudget generates output after a certain delay and/or at regular timeintervals. Its type isdata Tick = TicktimerF :: F (Maybe (Int, Int)) TickThe timer is initially idle. When it receives Just (i,d) on its input, it beginsticking. The �rst tick will be output after d milliseconds. Then, ticks willappear regularly at i millisecond intervals, unless i is 0, in which case only onetick will be output. Sending Nothing to the timer resets it to the idle state.As a simple example, here is a fudget that outputs,once a second, the numberof seconds that have elapsed since it was activated:countSP >^^=< timerF >=^^< putSP (Just (1000,1000)) nullSPwhere countSP = mapAccumlSP inc 0inc n Tick = (n+1,n+1)

5315 Parameters for customisationWhen constructing software libraries, there may be a tension between simplicityand generality. Generality can be achieved by providing many parameters foradapting library components to di�erent needs. But it ruins simplicity if theprogrammer has to specify a large number of parameters each time a librarycomponent is used. To solve this, some programming languages allow some ofthe arguments in a function call to be omitted, provided that default values arespeci�ed for them in the function de�nition. Haskell does not allow this, but byusing one of the powers of functional languages, higher order functions, and theHaskell class system, something very similar can be achieved. The solution usedin the Fudget library is presented below. Design and implementation issues arediscussed in more detail in Chapter 30.15.1 CustomisersIn order to make fudgets easy to use in the common case and still �exible,they often come in two versions: a standard version, for example buttonF, anda customisable version, for example buttonF'. The name of the customisableversion is obtained by appending a ' to the name of the standard version.Customisable fudgets have a number of parameters that allow things likefonts, colors, border width, etc., to be speci�ed. All these parameters havedefault values which are used in the standard version of the fudget.Rather than having one extra argument for each such parameter, customis-able versions of fudgets (or other functions) have one extra argument which isa customiser. The customiser is always the �rst argument. A customiser is afunction that modi�es a data structure containing the values of all parameters.type Customiser a = a �> aThe type of the data structure is abstract. Its name is usually the name of thefudget, with the �rst letter change to upper case�for example, ButtonF in thecase of buttonF'.buttonF' :: (Graphic a) =>(Customiser (ButtonF a)) �> a �> F Click ClickSo, customisers are obtained by composing a number of modifying functionsusing ordinary function composition. The function standard,standard :: Customiser aacts as the identity customiser and does not change any parameters. The stan-dard versions of the fudgets are simply the customisable versions applied tostandard, for example:buttonF = buttonF' standard15.2 Sample customisersThere are customisable versions of most fudgets presented earlier in this chapter.The customisers that are common to many fudgets are overloaded. Somecustomiser classes are shown in Figure 23. The table in Figure 24 shows what

54 15 Parameters for customisationclass HasBgColorSpec a where setBgColorSpec :: ColorSpec �> Customiser aclass HasFgColorSpec a where setFgColorSpec :: ColorSpec �> Customiser aclass HasFont a where setFont :: FontName �> Customiser aclass HasMargin a where setMargin :: Int �> Customiser aclass HasAlign a where setAlign :: Alignment �> Customiser aclass HasKeys a where setKeys :: [(ModState, KeySym)]�> Customiser a... Figure 23. Some customiser classes.BgColorSpec FgColorSpec Font Margin Align KeysTextF y y y y y nDisplayF y y y y y nStringF y y y n n nButtonF y y y n n yToggleButtonF n n y n n yRadioGroupF n n y n n nShellF n n n y n nFigure 24. Some customiser instances.customisers are supported by the di�erent customisable fudgets in the currentversion of the Fudget library.Some fudgets also have non-overloaded customisers, for example:setInitDisp :: a �> Customiser (DisplayF a)-- changes what is displayed initiallysetAllowedChar :: (Char �> Bool) �> Customiser StringF-- changes what characters are allowedsetPlacer :: Placer �> Customiser RadioGroupF-- changes the placements of the buttonsAs an example of the use of customisation, Figure 25 shows a variation of theradio group shown in Figure 10.
radioGroupF' (setFont "�xed" .setPlacer (matrixP 2))[(1,"P1"),(2,"P2"),(3,"P3"),(0,"O�")] 0Figure 25. Custom version of the radio group in Figure 10.

III Stream processors �the essence of FudgetsThe starting point of the work described in this thesis was the idea of thefudget as a process that communicates with other fudgets through the high-levelstreams and with the I/O system through the low-level streams. A fudget thushas two input streams and it is not known in advance in which order the elementsin the two streams will become available. Fudgets should be able to listen toeither the high-level input or the low-level input, but also choose to react to the�rst input to become available, irrespective of what stream it becomes availableon. We expected that the former case would be the exception and the latter casewould be the rule, so rather than providing some operator for indeterministicchoice that the programmer could use in the de�nition of fudgets, we choose tomerge the high- and low-level streams before feeding them to the fudget, thusmoving the indeterministic choice outside the fudget.So, we started out thinking of fudgets as the primitive concept, but soon sawthem as being derived from a simpler concept, the stream processor, which is aprocess that communicates with its surroundings through a single input streamand a single output stream.This part of the thesis is devoted to stream processors.

56 16 Stream processors16 Stream processorsWe have not used stream processors extensively in the examples presented sofar, but plain stream processors are interesting for at least these reasons:� As suggested in Chapter 12, the application programmer can write theapplication-speci�c code in the form of stream processors.� As an application programmer, you usually abstract away from the low-level streams, and in fact handle fudgets as if they were plain stream pro-cessors with a single input and a single output stream. Hence, a lot of thediscussion of stream processors applies to fudget application programmingas well.� They are simpler than fudgets, but fudgets can be represented as streamprocessors. (We show how in Section 21.2.)� Stream processors can be used to structure an ordinary sequential Haskellprogram as a set of concurrent processes. Examples of this are shown inChapter 19.Viewed in a more general context, the stream processor can be seen as a sim-ple but practical incarnation of the process concept, and has connections withprocess algebras such as CCS [Mil80]. An advantage with stream processors isthat they admit a simple implementation within a purely functional language.We can de�ne a set of combinators for building networks of stream processors,and the stream processors are �rst class values, which can be passed around asmessages.We use the following informal de�nitions:� A stream is a potentially in�nite sequence of values occurring at di�erentpoints in time. A stream can be seen as a communication channel, trans-ferring information from one place (a producer) to another (a consumer).� A stream processor is a process which consumes some input streams andproduces some output streams. A stream processor may have an internalstate, i.e., output produced at a certain point in time can depend on allinput consumed before that point in time.These de�nitions allow stream processors to have many input and outputstreams, but in the following we will only consider stream processors with asingle input stream and a single output stream (see Figure 26). The restric-tion may seem severe, but the chosen set of combinators allows streams to bemerged and split, so a stream processor with many input/output streams can berepresented as one with a single input stream and a single output stream. Theadvantage is that we can take a combinator-based approach to building networksof communicating stream processors. The combinators are discussed further inChapter 17. Below we discuss how to write atomic stream processors, that is,stream processors that do not consist of several concurrently running streamprocessors. Their behaviour is de�ned by a linear sequence of I/O actions.

16.1 The stream-processor type 57
Figure 26. A general stream processor and a stream processor with a singleinput stream and a single output stream.

o iFigure 27. A stream processor of type SP i o.16.1 The stream-processor typeThe Fudget library provides an abstract type for stream processors,data SP input outputwhere input and output are the types of the elements in the input and outputstreams, respectively (Figure 27). (The implementation of stream processorsin a lazy functional language are discussed in Chapter 20.) The library alsoprovides the functionrunSP :: SP i o �> [i] �> [o]which can be used on the top level of a program built with stream processors(see Chapter 19). The function absF discussed in Chapter 12 can be used tocombine stream processors with fudgets.16.2 Atomic stream processors in continuation styleThe behaviour of an atomic stream processor is described by a sequential pro-gram. There are three basic actions a stream processor can take:� it can put a value in its output stream,� it can get a value from its input stream,� it can terminate.The Fudget library provides the following continuation style operations for theseactions:putSP :: output �> SP input output �> SP input outputgetSP :: (input �> SP input output) �> SP input outputnullSP :: SP input output

58 16 Stream processorsAs an example of how to use these in recursive de�nitions of stream processors,consider the identity stream processor-- The identity stream processoridSP :: SP a aidSP = getSP $ \ x �> putSP x idSPthe busy stream processor-- A stream processor that is forever busy computing.busySP :: SP a bbusySP = busySPand the following stream-processor equivalents of the well known list functions:mapSP :: (a �> b) �> SP a bmapSP f = getSP $ \ x �> putSP (f x) $ mapSP f�lterSP :: (a �> Bool) �> SP a a�lterSP p = getSP $ \ x �> if p xthen putSP x $ �lterSP pelse �lterSP pThe stream processor nullSP need actually not be considered as a primitive. Itcan be de�ned asnullSP = getSP $ \ x �> nullSPi.e., it is a stream processor that ignores all input and never produces anyoutput. A practical advantage with an explicitly represented nullSP is that itallows stream processors that terminate to be �garbage collected�.Example: Implement concatMapSP :: (i�>[o]) �> SP i o.Solution: First we de�ne putListSP that outputs the elements of a list, oneat a time:putListSP :: [o] �> SP i o �> SP i oputListSP [] = idputListSP (x:xs) = putSP x . putListSP xsAnd concatMapSP itself:concatMapSP f =getSP $ \ x �>putListSP (f x) $concatMapSP fExample: Implement mapFilterSP :: (i�>Maybe o) �> SP i o.Solution: mapFilterSP f =getSP $ \ x �>case f x ofNothing �> mapFilterSP fJust y �> putSP y $mapFilterSP f

16.3 Stream processors with encapsulated state 5916.3 Stream processors with encapsulated stateA stream processor can maintain an internal state. In practice, this can beaccomplished by using an accumulating argument in a recursively de�ned streamprocessor. As a concrete example, consider sumSP, a stream processor thatcomputes the accumulated sum of its input stream:sumSP :: Int �> SP Int IntsumSP acc = getSP $ \ n �> putSP (acc+n) $ sumSP (acc+n)In this case, the internal state is a value of the type Int, which also happens tobe the type of the input and output streams. In general, the type of the inputand output streams can be di�erent from the type of the internal state, whichcan then be completely hidden.The Fudget library provides two general functions for construction of streamprocessors with internal state:mapAccumlSP :: (s �> i �> (s, o)) �> s �> SP i oconcatMapAccumlSP :: (s �> i �> (s, [o])) �> s �> SP i o(concatMapAccumlSP is also known as mapstateSP.) The �rst argument to thesefunctions is a state transition function which given the current state and aninput message should produce a new state and an output message (zero or moreoutputs in the case of concatMapAccumlSP). Using mapAccumlSP we can de�nesumSP without using explicit recursion:sumSP :: Int �> SP Int IntsumSP = mapAccumlSP (\ acc n �> (acc+n,acc+n))Representing state information as one or more accumulating arguments is usefulwhen the behaviour of the stream processor is uniform with respect to the state.If a stream processor reacts di�erently to input depending on its current state,it can be more convenient to use a set of mutually recursive stream processorswhere each stream processor corresponds to a state in a �nite state automaton.As a simple example, consider a stream processor that outputs every otherelement in its input stream:passOnSP = getSP $ \ x �> putSP x $ skipSPskipSP = getSP $ \ x �> passOnSPIt has two states: the �pass on� state, where the next input is passed on to theoutput; and the �skip� state, where the next input is skipped.The two ways of representing state illustrated above, can of course be com-bined.Example: Implement mapAccumlSP and concatMapAccumlSP using putSP andgetSP.

60 16 Stream processorsSolution: concatMapAccumlSP :: (s �> i �> (s, [o])) �> s �> SP i oconcatMapAccumlSP f s0 =getSP $ \x �>let (s, ys) = f s0 xin putListSP ys $concatMapAccumlSP f smapAccumlSP :: (s �> i �> (s, o)) �> s �> SP i omapAccumlSP f s0 =getSP $ \x �>let (s, y) = f s0 xin putSP y $mapAccumlSP f s16.4 Sequential composition of stream processorsUnlike CCS style process algebras [Mil80]�where nontrivial sequential be-haviours can be constructed only by pre�xing an existing behaviour with anI/O operation�the stream processors can be combined sequentially:seqSP :: SP a b �> SP a b �> SP a bThe stream processor sp1 `seqSP` sp2 behaves like sp1 until sp1 becomes nullSP,and then behaves like sp2. However, the same can also be achieved by makingall procedures end with a call to a continuation stream processor instead ofnullSP; so seqSP does not add any new power.We should also note that if this is to work properly, the operation nullSPmust be explicitly represented, and not just de�ned as a stream processor thatignores all input and never produces any output; contrary to what was suggestedin Section 16.2.16.5 Stream-processor monadsThe presentation thus far suggests that atomic stream processors should beprogrammed in continuation style. This is often natural, but for complex streamprocessors it can be bene�cial to use a monadic style instead [Wad92, Wad95].The two styles are compatible. The operations of the stream processor monadare shown in Figure 28. Thanks to runSPm you can use the combinators for�plain� stream processors to construct networks of stream-processor monads.For writing complex stream processors, it is of course possible to combine thestream-processor monad with other monads, e.g., a state monad. The Fudgetlibrary de�nes the type SPms for stream processor-monads with state. A closerpresentation and an example of its use can be found as part of Chapter 31.

16.5 Stream-processor monads 61

-- The type:type SPm input output answer-- Standard monad operations:unitSPm :: a �> SPm i o abindSPm :: SPm i o a �> (a �> SPm i o b) �> SPm i o b-- Monadic versions of nullSP, putSP and getSP:nullSPm :: SPm i o ()putSPm :: o �> SPm i o ()getSPm :: SPm i o i-- A glue function:runSPm :: SPm i o () �> SP i oFigure 28. The stream-processor monad.

62 17 Plumbing: composing stream processors
sp 2sp 1Figure 29. Serial composition of stream processors.

sp 1

sp 2Figure 30. Parallel composition of stream processors.17 Plumbing: composing stream processorsThis section describes the combinators used to combine atomic stream pro-cessors into networks of communicating stream processors. We �rst describecombinators for the three basic compositions: serial composition, parallel com-position and loops.17.1 Serial compositionThe simplest combinator is the one for serial composition,(�==�) :: SP b c �> SP a b �> SP a cIt connects the output stream of one stream processor to the input stream ofanother, as illustrated in Figure 29. Streams �ow from right to left, just likevalues in function compositions, f . g. Serial composition of stream processorsis very close to function composition. For example, it obeys the following law:mapSP f �==� mapSP g = mapSP (f . g)17.2 Parallel compositionsThe combinator for parallel composition in Figure 30 is indeed the key combi-nator for stream processors. It allows us to write reactive programs composedby more or less independent, parallel processes. The output streams should bemerged in chronological order. We will not be able to achieve exactly this ina functional language, but for stream processors whose behaviour is dominatedby I/O operations rather than internal computations, we will get close enoughfor practical purposes. There is however, more than one possible de�nition ofparallel composition. How should values in the input stream be distributed tothe two stream processors? How should the output streams be merged? Wede�ne two versions:

17.2 Parallel compositions 63� Let sp1 �*� sp2 denote parallel composition where input values are prop-agated to both sp1 and sp2, and output is merged in chronological order.We will call this version untagged, or broadcasting parallel composition.� Let sp1 �+� sp2 denote parallel composition where the values of the inputand output streams are elements of a disjoint union. Values in the inputstream tagged Left or Right are untagged and sent to either sp1 or sp2,respectively. Likewise, the tag of a value in the output stream indicateswhich component it came from. We will call this version tagged parallelcomposition.The types of the two combinators are:(�*�) :: SP i o �> SP i o �> SP i o(�+�) :: SP i1 o1 �> SP i2 o2 �> SP (Either i1 i2) (Either o1 o2)Note that only one of these needs to be considered as primitive. The other canbe de�ned in terms of the primitive one, with the help of serial composition andsome simple stream processors like mapSP and �lterSP.Example: De�ne �*� in terms of �+�, and vice versa.Solution: (�*�) :: SP i o �> SP i o �> SP i osp1 �*� sp2 =mapSP stripEither �==�(sp1 �+� sp2) �==�toBothSPstripEither :: Either a a �> astripEither (Left a) = astripEither (Right a) = atoBothSP :: SP a (Either a a)toBothSP = concatMapSP (\x �> [Left x, Right x])(�+�) :: SP i1 o1 �> SP i2 o2 �> SP (Either i1 i2) (Either o1 o2)sp1 �+� sp2 = sp1' �*� sp2'wheresp1' = mapSP Left �==� sp1 �==� �lterLeftSPsp2' = mapSP Right �==� sp2 �==� �lterRightSP�lterLeftSP = mapFilterSP stripLeft�lterRightSP = mapFilterSP stripRightstripLeft :: Either a b �> Maybe astripLeft (Left x) = Just xstripLeft (Right _) = NothingstripRight :: Either a b �> Maybe bstripRight (Left _) = NothingstripRight (Right y) = Just y

64 17 Plumbing: composing stream processors
spFigure 31. A simple loop constructor.

sp 1 sp 2Figure 32. Using a loop to obtain bidirectional communication.17.3 Circular connectionsSerial composition creates a unidirectional communication channel between twostream processors. Parallel composition splits and merges streams but does notallow the composed stream processors to exchange information. So, with thesetwo operators we cannot obtain bidirectional communication between streamprocessors. Therefore, we introduce combinators that construct loops.The simplest possible loop combinator connects the output of a stream pro-cessor to its input, as illustrated in Figure 31. As with parallel composition, wede�ne two versions of the loop combinator:loopSP sp, output from sp is both looped to the input of sp and propagated tothe output, outside the loop.loopLeftSP sp, output from sp is required to be in a disjoint union. Valuestagged Left are looped and values tagged Right are output. At the input,values from the loop are tagged Left and values from the outside are taggedRight.The types of these combinators are:loopSP :: SP a a �> SP a aloopLeftSP :: SP (Either l i) (Either l o) �> SP i oEach of the two loop combinators can be de�ned in terms of the other, so onlyone of them needs to be considered primitive.Using one of the loop combinators, one can now obtain bidirectional com-munication between two stream processors as shown in Figure 32.Another example shows that we can use loops and parallel composition tocreate fully connected networks of stream processors. With an expression likeloopSP (sp1 �*� sp2 �*� ... �*� spn)

17.3 Circular connections 65we get a broadcasting network. By replacing �*� with �+� and some tag-ging/untagging, we get a network with point-to-point communication.Example: De�ne loopSP in terms of loopLeftSP and vice versa.Solution: De�ning loopSP in terms of loopLeftSP is relatively easy:loopSP :: SP a a �> SP a aloopSP sp =loopLeftSP(toBothSP �==� sp �==� mapSP stripEither)Vice versa is a bit trickier:loopLeftSP :: SP (Either l i) (Either l o) �> SP i oloopLeftSP sp =mapFilterSP post �==�loopSP sp' �==�mapSP Rightwherepost (Left (Right x)) = Just xpost _ = Nothingsp' = mapSP Left �==� sp �==� mapFilterSP prewherepre (Right x) = Just (Right x)pre (Left (Left x)) = Just (Left x)pre _ = Nothing

66 18 Pragmatic aspects of plumbing
sp 2

sp 3

sp 1

Figure 33. Handling multiple input streams.18 Pragmatic aspects of plumbingHaving seen a basic set of stream-processor combinators�which we can consideras a complete set of primitives on top of which further combinators can bebuilt�we now take a look at how the combinators can be used to achieve somecommon connection patterns and introduces some further combinators we havefound useful.Fudgets are composed in the same way as plain stream processors. There-fore, the description of the stream-processor combinators also holds true for thecorresponding fudget combinators. The fudget combinators are presented byname, together with some further combinators, in Chapter 13.18.1 Handling multiple input and output streamsAlthough stream processors have only one input stream, it is easy to constructprograms where one stream processor receives input from two or more otherstream processors. (The case with several outputs is analogous.) For example,the expressionsp1 �==� (sp2 �+� sp3)allows sp1 to receive input from both sp2 and sp3. For most practical purposes,sp1 can be regarded as having two input streams, as illustrated in Figure 33.When you use getSP in sp1 to read from the input streams, messages fromsp2 and sp3 will appear tagged with Left and Right, respectively. You can notdirectly read selectively from one of the two input streams, but the Fudgetlibrary provides the combinatorwaitForSP :: (i �> Maybe i') �> (i' �> SP i o) �> SP i owhich you can use to wait for a selected input. Other input is queued and canbe consumed after the selected input has been received. Using waitForSP youcan de�ne combinators to read from one of two input streams:getLeftSP :: (i1 �> SP (Either i1 i2) o) �> SP (Either i1 i2) ogetLeftSP = waitForSP stripLeftgetRightSP :: (i2 �> SP (Either i1 i2) o) �> SP (Either i1 i2) ogetRightSP = waitForSP stripRightExample: Implement startupSP :: [i] �> SP i o �> SP i o that prepends someelements to the input stream of a stream processor.

18.2 Stream processors and software reuse 67
sp new

sp old

Figure 34. Encapsulation.Solution: startupSP xs sp = sp �==� putListSP xs idSPNote: this implementation leaves a serial composition with idSP behindafter the messages xs have been fed to sp. An e�cient implementationthat does not leave any overhead behind can be obtained by making useof the actual representation of stream processors.Example: Implement waitForSP described above.Solution: waitForSP :: (i �> Maybe i') �> (i' �> SP i o) �> SP i owaitForSP expected isp =let contSP pending =getSP $ \ msg �>case expected msg ofJust answer �> startupSP (reverse pending) (isp answer)Nothing �> contSP (msg : pending)in contSP []18.2 Stream processors and software reuseFor serious applications programming, it is useful to have libraries of reusablesoftware components. But in many cases when a useful component is found ina library, it still needs modi�cation before it can be used.A variation of the loop combinators that has turned out to be very use-ful when reusing stream processors is loopThroughRightSP, illustrated in Fig-ure 34. The key di�erence from loopSP and loopLeftSP is that the loop doesnot go directly back from the output to the input of a single stream processor.Instead it goes through another stream processor. A typical situation whereloopThroughRightSP is useful is when you have a stream processor, spold, thatdoes almost what you want it to do, but you need it to handle some new kindof messages. A new stream processor, spnew , can then be de�ned. This newstream processor can pass on old messages directly to spold and handle the newmessages in the appropriate way; on its own, or by translating them to messagesthat spold understands. (See also Section 3.1.1 in [NR94].)In the composition loopThroughRightSP spnew spold, all communication withthe outside world is handled by spnew. spold is connected only to spnew , and isin this sense encapsulated inside spnew .The type of loopThroughRightSP is:

68 18 Pragmatic aspects of plumbingloopThroughRightSP :: SP (Either oldo newi) (Either oldi newo) �>SP oldi oldo �>SP newi newoProgramming with loopThroughRightSP corresponds to inheritance in object-oriented programming. The encapsulated stream processor corresponds to theinherited class. Overridden methods correspond to message constructors thatthe encapsulating stream processor handles itself.Example: Implement loopThroughRightSP using loopLeftSP together with par-allel and serial compositions as appropriate.Solution: loopThroughRightSP ::SP (Either oldo i) (Either oldi o) �> SP oldi oldo �>SP i oloopThroughRightSP spnew spold =loopLeftSP(mapSP post �==� (spold �+� spnew)�==� mapSP pre)wherepre (Right input) = Right (Right input)pre (Left (Left newToOld)) = Left newToOldpre (Left (Right oldToNew)) = Right (Left oldToNew)post (Right (Right output)) = Right outputpost (Right (Left newToOld)) = Left (Left newToOld)post (Left oldToNew) = Left (Right oldToNew)Example: Implement serial composition using a tagged parallel compositionand a loop.Solution: (�==�) :: SP b c �> SP a b �> SP a csp1 �==� sp2 =loopThroughRightSP (mapSP route) (sp1 �+� sp2)whereroute (Right a) = Left (Right a)route (Left (Left c)) = Right croute (Left (Right b)) = Left (Left b)The combinator loopThroughBothSP,loopThroughBothSP :: SP (Either l12 i1) (Either l21 o1)�> SP (Either l21 i2) (Either l12 o2)�> SP (Either i1 i2) (Either o1 o2)is a symmetric version of loopThroughRightSP. A composition loopThrough-BothSP sp1 sp2 allows both sp1 and sp2 to communicate with the outside worldand with each other (see Figure 35).An interesting property of loopThroughBothSP is that the circuit diagramsof the more basic combinators, �==�, �+� and loopSP, can be obtainedfrom the circuit diagram of loopThroughBothSP by just removing wires. Othercombinators are thus easy to de�ne in terms of loopThroughBothSP.

18.3 Dynamic process creation 69
sp 2

sp 1

Figure 35. Circuit diagram for loopThroughBothSP.18.3 Dynamic process creationWe implicitly made a distinction between the operators that de�ne the dynamicbehaviour of an atomic stream processors (nullSP, putSP and getSP) and theoperators that are used to build static networks of stream processors (�==�,�*�, loopSP, etc.). But there is in fact no reason why networks must be static.By using combinators like �==� and �*� in a dynamic way, the numberof stream processors can be made to increase dynamically. The number ofstream processors can also decrease, for example if a component of a parallelcomposition dies (since nullSP �*� sp is equivalent to sp).A practical application of these ideas is discussed in Section 35.4.

70 19 Application programming with plain stream processors19 Application programming with plain streamprocessorsAlthough plain stream processors are mostly used in conjunction with fudgets,they can be used independently. In this chapter, we take a look at some examplesof interactive Haskell programs written using stream processors.19.1 An adding machineIn Section 16.3 we de�nedsumSP :: Int �> SP Int Intthat computes the accumulating sum of a stream of integers. Let us writea complete Haskell program that uses sumSP to implement a simple addingmachine.Haskell provides the function interact, which allows functions of type [Char]�> [Char] to be used as programs (as in Landin's stream I/O model outlinedin Chapter 4). By combining this with the function runSP,runSP :: SP i o �> [i] �> [o](from Section 16.1) we can run stream processors of type SP Char Char:main = interact (runSP mainSP)mainSP :: SP Char CharmainSP = ...To be able to use sumSP we need only add some glue functions that convert theinput stream of characters to a stream of numbers and conversely for the outputstream. This is done in two stages. First, the stream-processor equivalents ofthe standard list functions lines and unlines are used to process input and outputline by line, instead of character by character:mainSP = unlinesSP �==� adderSP �==� linesSPadderSP :: SP String StringadderSP = ...Now the standard functions show and read are used to convert between stringsand numbers,adderSP = mapSP show �==� sumSP 0 �==� mapSP readand the program is complete.Example: Implement unlinesSP :: SP String Char.Solution: unlinesSP = concatMapSP (\s �> s++"\n")Example: Implement linesSP :: SP Char String

19.2 A stream processor for input line editing 71
Program System KeyboardScreen

One line at a time One character at a time

Figure 36. Line bu�ered input.
Program KeyboardScreen

One character at a time

Figure 37. Unbu�ered input.Solution: linesSP = lnSP []wherelnSP acc =getSP $ \msg �>case msg of'\n' �> putSP (reverse acc) (lnSP [])c �> lnSP (c : acc)19.2 A stream processor for input line editingIn the example above, it was assumed that input is line bu�ered (cooked termi-nal mode in Unix), i.e., the system allows the user to enter a line of text and editit by using the backspace key, (and possibly other cursor motion keys) and sendit to the program by pressing the Return key. The system is thus responsible forechoing characters typed on the keyboard, to the screen (Figure 36). Assuminga simpler system, where keyboard input is fed directly to the program, and theonly characters shown on the screen are those output by the program (raw ter-minal mode in Unix) (Figure 37), the stream-processor combinator lineBu�erSPis now de�ned to do the job:lineBu�erSP :: SP String Char �> SP Char CharIt takes a stream processor that expects the input to be line bu�ered, and returnsa stream processor that does the necessary processing of the input: bu�ering,echoing, etc., so that it can work in an unbu�ered environment.We implement lineBu�erSP using loopThroughRightSP:

72 19 Application programming with plain stream processors
bufSP

KeyboardScreen progspFigure 38. Circuit diagram for lineBu�erSP.lineBu�erSP progsp = loopThroughRightSP bufSP progspwherebufSP :: SP (Either Char Char) (Either String Char)bufSP = ...We get the connectivity shown in Figure 38, i.e., bufSP will receive programoutput and keyboard input on its input stream and should produce input linesand screen output on its output stream. The implementation of bufSP is shownin Figure 39.Using lineBu�erSP, the adding machine in the previous section can beadapted to run in raw terminal mode by change mainSP to:mainSP = lineBu�erSP (unlinesSP �==� adderSP)19.3 Running two programs in parallel on a split screenThis last example is a combinator that splits the terminal screen into two win-dows and runs two programs in parallel, one in each window:splitViewSP :: SP Char Char �> SP Char Char �> SP Char CharA simple implementation of splitViewSP can be structured as follows:splitViewSP sp1 sp2 =mergeSP �==� (sp1 �+� sp2) �==� distrSPwhere distrSP :: SP Char (Either Char Char)distrSP = ...mergeSP :: SP (Either Char Char) CharmergeSP = ...distrSP takes the keyboard input and sends it to one of the two windows. Theuser can switch windows by pressing a designated key.mergeSP takes the two output streams from the windows and produces amerged stream, which contains the appropriate cursor control sequences to makethe text appear in the right places on the screen. This can be done in di�erentways depending on the terminal characteristics. A simple solution, if scrollingis not required, is to split the processing into two steps: the �rst being to

19.3 Running two programs in parallel on a split screen 73

bufSP = inputSP ""inputSP line = getSP $ either fromProgsp fromKeyboardwherefromProgsp c = putSP (toScreen c) (inputSP line)fromKeyboard c =case c of-- The Enter key:'\n' �> putSP (toScreen '\n') $putSP (toProgsp (reverse line)) $bufSP-- The backspace key:'\b' �> if null linethen inputSP lineelse putsSP (map toScreen "\b \b") $inputSP (tail line)-- Printable characters:_ �> putSP (toScreen c) $inputSP (c:line)toScreen = RighttoProgsp = LeftFigure 39. bufSP - the core of lineBu�erSP.

74 19 Application programming with plain stream processors
encode

Char
track

track

((Int,Int),Char)

mergeSP

sp 1

sp 2

Char Char

distr

Char

Figure 40. Circuit diagram for splitViewSP sp1 sp2.interpret the output streams from the two windows individually to keep trackof the current cursor position using a stream processor liketrackCursorSP :: SP Char ((Int,Int),Char)It takes a character stream containing a mixture of printable characters and cur-sor control characters, and produces a stream with pairs of cursor positions andprintable characters. The next step is to merge the two streams and feed theminto a stream processor that generates the appropriate cursor motion commandsfor the terminal:encodeCursorMotionSP :: SP ((Int,Int),Char) CharThus we havemergeSP =encodeCursorMotionSP �==�mapSP stripEither �==�(trackCursorSP �+� trackCursorSP)Using the above outlined implementation of mergeSP, we get the circuit diagramshown in Figure 40 for splitViewSP sp1 sp2:Filling in some details we ignored in the above description, we get the im-plementation shown in Figure 41.

19.3 Running two programs in parallel on a split screen 75
splitViewSP :: (Int,Int) �> SP Char Char �> SP Char Char �> SP Char CharsplitViewSP (w,h) sp1 sp2 =mergeSP �==� (sp1 �+� sp2) �==� distrSP Left RightwheremergeSP = encodeCursorMotionSP �==�mapSP stripEither �==�(trackCursorSP (w,h1) �+�(mapSP movey �==� trackCursorSP (w,h2)))h1 = (h�1) `div` 2h2 = h�1�h1movey ((x,y),c) = ((x,y+h1+1),c)distrSP dst1 dst2 =getSP $ \ c �>case c of'\t' �> distrSP dst2 dst1_ �> putSP (dst1 c) $ distrSP dst1 dst2ackCursorSP :: (Int,Int) �> SP Char ((Int,Int),Char)ackCursorSP size = mapstateSP winpos (0,0)where winpos p c = (nextpos p c,[(p,c)])codeCursorMotionSP :: SP ((Int,Int),Char) CharcodeCursorMotionSP = mapstateSP term (�1,�1)whereterm cur@(curx,cury) (p@(x,y),c) =(nextpos p c,move++[c])wheremove = if p==curthen ""else moveTo pxtpos :: (Int,Int) �> Char �> (Int,Int)xtpos p c = ... -- cursor position after c has been printedveTo :: (Int,Int) �> StringveTo (x,y) = ... -- generate the appropriate cursor control sequenceFigure 41. An implementation of splitViewSP.

IV Design andimplementationIn this part, we will describe the design and implementation of the Fudgetlibrary itself, as well as some extensions we have done. The organisation ofthe �rst chapters can be summarised in the words the library, extensions andprogramming methods:The library. These chapters describe the fundamental principles behind theFudget library. Chapter 20 discusses di�erent implementations of streamprocessors. The implementation of the fudget combinators is based onstream processors, and allows them to communicate with di�erent kindof I/O systems (Chapter 21). Chapter 22 describes the mechanism be-hind the GUI fudgets, asynchronous I/O and the low-level interfaces toX Windows.The automatic layout system in Chapter 23 can be seen as a sub-libraryof combinators, which is used not only for placing the GUI fudgets, butalso to compose graphics.Two examples of �lter fudgets (combinators that modify the e�ect of fud-gets) are presented in Chapter 24. The cache �lter makes fudget programsrun faster using less memory, and the focus �lter modi�es the input modelof GUI fudgets that use the keyboard.Extensions. The next chapters describe extensions that we do not considerabsolutely essential for the library, although some of them reside in thelibrary itself, and others have at least prompted modi�cation of the libraryin order to work.A distinguishing feature of stream processors and fudgets is that theycan be detached from their original position in the program, passed asmessages, and attached at another position. Chapter 25 describes how thiscan be used to program drag-and-drop applications, where GUI fudgetsactually move inside the program when dragged.Chapter 26 shows how the fudget concept can be used for programmingclient/server applications. Server programs do usually not have any graph-ical interface, but it is can be advantageous to program servers in a con-current style so that they can serve many clients simultaneously.The library contains a class of types that has a graphical appearance, whichcan be manipulated by the user. Chapter 27 presents the Graphic classand its implementation.

77Programming methods. These chapters describe our experiments in pro-gramming methods using Fudgets. Chapter 28 describes combinators forcreating syntax-oriented editors in a style similar to parsing combinators,and Chapter 29 shows how Haskell's class system can be used to auto-matically generate simple GUIs. As we have already seen in the previouspart, the class system has also been used to program functions that usenamed parameters with default values. The implementation is describedin Chapter 30.Finally, Chapter 31 describes an implementation of the functional toolkitGadgets on top of the Fudget library. This includes a functional implemen-tation of the process concept in Gadgets, and allows Gadget programs to beincorporated in Fudgets. As a bonus, a pro�ling utility was added which pro-vides a graphical monitor of the message queues.

78 20 Implementing stream processors20 Implementing stream processorsIn this chapter we present di�erent implementations of stream processors, in-cluding a indeterministic solution that requires a language extension for parallelevaluation, and two purely functional ones: the �rst is based on streams aslazy lists, and the other uses a datatype with constructors corresponding to theoperations of atomic stream processors We also discuss how suitable di�erentrepresentations are for parallel and sequential implementations. We start bydiscussing some design goals that we had in mind.20.1 Design goals for stream processorsThe design of the stream processors was already from the start in�uenced bythe intended application as building blocks in a GUI library. In this context,we found the following properties important:Hierarchical structure. The result of a composition of stream processorsshould also be a stream processor, thus allowing complex process networksto be built in an hierarchical structure. There should be no di�erence inprinciple between an atomic stream processor and one composed fromseveral smaller stream processors.Encapsulated state. We should permit each stream processor to have an in-ternal state which is invisible from the outside, and which does not inter-fere with the state of other stream processors.I/O connectedness. It should be possible to connect stream processors to theI/O system in an abstract way, so that the I/O e�ects can be hidden byan abstract type with associated combinators for their combination.Reactive behaviour. The intended use of stream processors is in the imple-mentation of interactive (reactive) programs. This means that programsare dominated by communication rather than computation: a programwaits idly for some input to arrive, computes and outputs a response tothe input, and then goes back to the idle state.Demand-driven evaluation. The intention is to use stream processors in alazy functional language, where expressions are evaluated on demand.Stream processors should also behave lazily�they should not do any workuntil a value is demanded from their output stream, and they should notdemand anything from their input stream unless the input can be used toproduce a demanded output.Typed, and higher order. There should be no restriction on the elementtype of streams. It should be possible to transfer anything, from num-bers and booleans to functions and stream processors. Communicationshould be type safe.Parallel and sequential implementations. Stream processors should beimplementable in a sequential language, but we still want to keep thede�nitions general enough to be able to take advantage of constructionsfor indeterministic choices and parallel evaluation.

20.2 Intuitive ideas�what is the problem? 79Especially in the light of the last property, it seems desirable to have anabstract, formal semantics which can be used to reason about di�erent imple-mentations of stream processors, and programs using them. So far, we have notelaborated such a semantics, but instead we have concentrated on more practi-cal work by developing the Fudget library and application programs. Moreover,the implementation of the basic stream-processor combinators is quite simple,and can therefore be viewed as being a semantics on its own�although not themost concise and abstract one could imagine. Nevertheless, we have outlined asimple stream-processor calculus with an accompanying operational semanticsin the future work chapter (see Section 43.1).20.2 Intuitive ideas�what is the problem?In a lazy functional language, a natural choice is to represent streams as lists.Thanks to laziness, the elements of the list can be computed on demand, oneelement at a time. The elements can thus form a sequence in time rather thana sequence in space, which would be the case in a strict language.So a stream with elements of type a can be represented as a list with elementsof type a. A stream processor can be represented as function from the inputstream to the output stream:type Stream a = [a]type SP i o = Stream i �> Stream oWe call this the list-based representation. An obvious advantage with this ap-proach is that the list type is a standard type and all operations provided forlists can be reused when de�ning stream processors.Another advantage with this representation is that it clearly shows the closerelationship between functions and stream processors. For example, serial com-position is simply function composition:(�==�) :: SP m o �> SP i m �> SP i osp1 �==� sp2 = sp1 . sp2The basic stream processor actions also have very simple de�nitions:nullSP = \ xs �> []x `putSP` sp = \ xs �> x : sp xsgetSP isp = \ xs �> case xs of[] �> []x:xs' �> isp x xs'A problem with this representation however, is that parallel composition isimpossible to implement. A reasonable de�nition would have to look somethinglike this:sp1 �*� sp2 = \ xs �> merge (sp1 xs) (sp2 xs)where merge ys zs = ???But what should ??? be replaced with, so that the �rst output from the compo-sition is the �rst output to become available from one of the components? Forexample, suppose that

80 20 Implementing stream processorssp1 ? = ?sp2 ? = 1:?that is, sp1 needs some input before it can produce some output, but sp2 canoutput 1 immediately. Then, the composition should immediately output 1,(sp1 �*� sp2) ? = 1:?But (sp2 �*� sp1) ? should also be 1:? , so ??? must be an expression thatchooses the one of ys and zs which happens to be non-bottom. This can clearlynot be done in an ordinary purely functional language.As a more concrete example, consider what should happen if we apply thestream processormap (*100) �*� �lter evento [1, 2, 3, 4, ...]. If the input elements appear at a slower rate than they can beprocessed by either map or �lter, the desired output stream would be somethinglike [100, 200, 2, 300, 4, 400, ...], i.e., in this particular case there should be twoelements from the left stream processor for every element from the right streamprocessor.The elements in the two output streams should be merged in the order theybecome computable as more elements of the input stream become available.However, there is no way of telling in a sequential language which of the twostream processors will be the �rst one to be able to produce an output. Is seemsthat the two streams need to be evaluated in parallel, and then elements mustbe chosen in the order they become available.The most natural and general solution to this problem is to use parallel eval-uation, and we will take a look at this next. But by changing the representationof stream processors it is possible to obtain solutions that work in an ordinarysequential language. We will look at these solutions in Section 20.4.20.3 Parallel implementationsAs illustrated in the previous section, when representing stream processors aslist functions, parallel evaluation is needed, not to gain speed, but because nosequential evaluation order can give the desired result. We need an operatorthat starts the evaluation of two subexpressions in parallel, and then tells whichevaluation �nished �rst. The result is thus not determined by the values of theexpressions, but rather from their operational behaviour. Therefore, such anoperator cannot be added to a purely functional language without problems.The operator suggested above is a variant of amb, McCarthy's ambivalentoperator [McC67]. But a programming language with such an operator is notpurely functional, and thus makes ordinary equational reasoning unsound. Al-though such a language may still be useful [Mor94], there are solutions thatallow you to make indeterministic choices in a purely functional way.In the following section, we will introduce a variant of amb which is purelyfunctional.

20.4 Sequential implementations 8120.3.1 OraclesTo be purely functional, the result of an operator must depend entirely on thevalues of the arguments, and the same arguments should always give the sameresult. One way to make an operator for indeterministic choice purely functionalis to introduce an extra argument and pretend that the result is determinedsolely by this argument, although operationally, something else happens. Suchan extra argument is called an oracle [Bur88].We call our operator for indeterministic choice choose:choose :: Oracle �> a �> b �> BoolOperationally, the expression choose o a b is evaluated by starting the evaluationof a and b in parallel and then returning True if a reaches head normal form�rst, and False if b does. Denotationally, choose o a b returns True or Falsedepending only on the value of the oracle o (which magically happen to havethe �right� value). An oracle should only be used once, since it must alwaysgive the same answer. We therefore distribute an in�nite tree of oracles to allstream processors, as an additional argument:data OracleTree = OracleNode OracleTree Oracle OracleTreetype SP i o = OracleTree �> Stream i �> Stream oUsing the oracle tree, we can now easily implement parallel composition ofstream processors (see also Figure 42):sp1 �*� sp2 =\(OracleNode (OracleNode ot _ ot1) _ ot2) xs �>merge ot (sp1 ot1 xs) (sp2 ot2 xs)where merge (OracleNode ot o _) ys zs =if choose o ys zsthen merge' ot ys zselse merge' ot zs ysmerge' ot (y:ys) zs = y:merge ot ys zsmerge' ot [] zs = zsIn this implementation, the oracle tree is split into three: two subtrees are fedto the composed stream processors, and one is given to the function merge,together with the output streams from the composed stream processors. Thefunction merge extracts fresh oracles from the tree and uses choose to see whichstream is �rst to reach head normal form, It then calls merge', with the secondargument being the stream which has been evaluated.20.4 Sequential implementationsAs we have seen above, the most natural representation of streams, i.e., aslists, requires parallel evaluation and indeterministic choices. But there aresolutions that allow you to stay within a purely functional language, like Haskell.Although they do not provide the same degree of parallelism, they have provedto be adequate for practical use. The solutions below have been used in theimplementation of the Fudget system.

82 20 Implementing stream processors
oracle stream

sp 1

sp 2Figure 42. Parallel composition of stream processors using oracles.20.4.1 Synthetic oraclesAs seen in Section 20.2, the problem with the most natural representation ofstream processors�representing streams as lazy lists and stream processors asfunctions on lazy lists�is the implementation of parallel composition. It isimpossible to know in which order the output streams should be merged.If we impose the restriction that sp1 and sp2 must produce output at thesame rate, then sp1 �*� sp2 can be de�ned as:(sp1 �*� sp2) xs = merge (sp1 xs) (sp2 xs)where merge (y:ys) (z:zs) = y:z:merge ys zsHowever, it is awkward to impose such a constraint between the output streamsof two di�erent stream processors. Also, this solution does not work well fortagged parallel composition. A more useful constraint relates the input andoutput stream of a single stream processor.� We impose the constraint that there must be a one-to-one correspondencebetween elements in the output and the input stream, i.e., a stream proces-sor must put one element in the output stream for every element consumedfrom the input stream.The function map is an example that satis�es this constraint, whereas �lter is afunction that does not.With this restriction, tagged parallel composition can easily be implemented:the next element in the output stream should be taken from the stream processorthat last received an element from the input stream. The following implementa-tion of tagged parallel composition uses this fact by merging the output streamsusing a stream of synthetic oracles computed from the input stream (see alsoFigure 43):

20.4 Sequential implementations 83
sp 1

sp 2

synthetic
oracles

Figure 43. Parallel composition of stream processors using synthetic oracles.(�+�) :: SP a1 b1 �> SP a2 b2 �> SP (Either a1 a2) (Either b1 b2)(sp1 �+� sp2) xs = merge os (sp1 xs1) (sp2 xs2)wherexs1 = [x | Left x <� xs]xs2 = [y | Right y <� xs]-- os : a synthetic oracle streamos = map isLeft xsmerge (True:os) (y:ys) zs =Left y:merge os ys zsmerge (False:os) ys (z:zs) =Right z:merge os ys zsisLeft (Left _) = TrueisLeft (Right _) = FalseThis solution has some practical problems, however. As it stands above, thereis a potentially serious space-leak problem. Consider the evaluation of an ex-pression like(sp1 �+� sp2) [Left n | n<�[1..]]Here, sp2 will never receive any input. This means that merge will never need toevaluate the argument (sp2 xs2), which holds a reference to the beginning of theinput stream via xs2. This would cause all input consumed by the compositionto be retained in the heap. However, provided that pattern bindings are imple-mented properly [Spa93], this problem can be solved by computing xs1 and xs2with a single recursive de�nition that returns a pair of lists:split :: [Either a b] �> ([a],[b])split [] = ([],[])split (x:xs) =case x ofLeft x1 �> (x1:xs1,xs2)Right x2 �> (xs1,x2:xs2)where(xs1,xs2) = split xsAnother problem is that the 1-1 restriction is rather severe. What should astream processor do if it does not want to put a value in the output streamafter consuming an input (like �lter)? What if it wants to output more than

84 20 Implementing stream processorsone value? Obviously, if an implementation with this restriction is given to aprogrammer, he will invent various ways to get around it. It is better to providea solution from the beginning.One way to relieve the restriction is to change the representation of streamprocessors totype SP a b = [a] �> [[b]]thus allowing a stream processor to output a list of values to put in the out-put stream for every element in the input stream. Unfortunately, with thisrepresentation the standard list functions, like map and �lter, can no longer beused in such a direct way. For example, instead of map f one must use map(\x�>[f x]). Serial composition is no longer just function composition, ratherit is something more complicated and less e�cient. Also, it is still possible towrite stream processors that do not obey the 1-1 restriction, leading to errorsthat can not be detected by a compiler. Consequently, it is not a good idea toreveal this representation to the application programmer, but rather provide thestream-processor type as an abstract type. And while we are using an abstracttype, we might as well use a better representation.20.4.2 Continuation-based representationInstead of using lists, the Fudget library uses a data type with constructorscorresponding to the actions a stream processor can take (as described in Section3.2): data SP i o= NullSP| PutSP o (SP i o)| GetSP (i �> SP i o)We call this the continuation-based representation of stream processors. Thetype has one constructor for each operation a stream processor can perform.The constructors have arguments that are part of the operations (the valueto output in PutSP), and arguments that determine how the stream processorcontinues after the operation has been performed.The continuation-based representation avoids the problem with parallel com-position that we ran into when using the list-based representation, since it makesthe consumption of the input stream observable. With list functions, a streamprocessor is applied to the entire input stream once and for all. The rate atwhich elements are consumed in this list is not observable from the outside.With the continuation-based representation, a stream processor must evaluateto GetSP sp each time it wants to read a value from the input stream. This iswhat we need to be able to merge the output stream in the right order in thede�nition of parallel composition.An implementation of broadcasting parallel composition is shown in Fig-ure 44. The implementation of tagged parallel composition is analogous. Notethat we arbitrarily choose to inspect the left argument sp1 �rst. This meansthat even if sp2 could compute and output a value much faster than sp1, it willnot get the chance to do so. With the continuation-based representation, serialcomposition can be implemented as shown in Figure 45.A de�nition of the loop combinator loopSP is shown in Figure 46.

20.4 Sequential implementations 85
NullSP �*� sp2 = sp2sp1 �*� NullSP = sp1PutSP o sp1' �*� sp2 = PutSP o (sp1' �*� sp2)sp1 �*� PutSP o sp2' = PutSP o (sp1 �*� sp2')GetSP xsp1 �*� GetSP xsp2 = GetSP (\i �> xsp1 i �*� xsp2 i)Figure 44. Implementation of parallel composition with the continuation-basedrepresentation.
NullSP �==� sp2 = NullSPPutSP o sp1' �==� sp2 = PutSP o (sp1' �==� sp2)GetSP xsp1 �==� NullSP = NullSPGetSP xsp1 �==� PutSP m sp2' = xsp1 m �==� sp2'GetSP xsp1 �==� GetSP xsp2 = GetSP (\i �> GetSP xsp1 �==� xsp2 i)Figure 45. Implementation of serial composition with the continuation-basedrepresentation.
loopSP sp = loopSP' empty spwhereloopSP' q NullSP �> NullSPloopSP' q (PutSP o sp') �> PutSP o (loopSP' (enter q o) sp')loopSP' q (GetSP xsp) �>case qremove q ofJust (i,q') �> loopSP' q' (xsp i)Nothing �> GetSP (loopSP . xsp)-- Fifo queuesdata Queueempty :: Queue aenter :: Queue a �> a �> Queue aqremove :: Queue a �> Maybe (a,Queue a)Figure 46. Implementation of loopSP with the continuation-based representa-tion.

86 20 Implementing stream processorsExample: Implement runSP :: SP a b �> [a] �> [b].Solution: runSP sp xs =case sp ofPutSP y sp' �> y : runSP sp' xsGetSP xsp �> case xs ofx : xs' �> runSP (xsp x) xs'[] �> []NullSP �> []20.5 Continuations vs list functionsWe have seen two representations of stream processors: one based on list func-tions and one based on continuations. Which one is better?Using list functions works well for parallel implementations. Demand is prop-agated from the output to the input stream by the normal evaluation mechanismof the functional language. Since streams are represented as lists, the standardlist functions can be used directly as stream processors.For sequential implementations, we saw that representing stream processorsas functions from streams to streams prevented us from implementing paral-lel composition. Here, the continuation-based representation seems more at-tractive, and is the one that we currently employ in the Fudget library. Thecontinuation-based representation also allows stream processors to be detached,moved, and plugged in somewhere else in the program�something that is usedin Chapter 25.Since our implementation is based on a sequential programming language,we do not get true concurrency. As long as all stream processors quickly reactto input to avoid blocking other stream processors in the program, this is ac-ceptable in practice. The reactiveness property is not enforced by the compiler,however.It would be nice to have a representation that works well for both parallel andsequential implementations. Is perhaps the continuation-based representationuseful also for parallel implementations? Consider the composition(sp1 �*� idSP) �==� sp2The �rst output from the composition should be either the �rst output fromsp1 or the �rst output from sp2, whichever happens to be ready �rst. But theparallel composition must evaluate to either PutSP ..., or GetSP In the �rstcase we have prematurely committed ourselves to taking the output from sp1�rst. In the second case we will not be able to deliver the �rst output until aftersp2 has delivered its �rst output. It is not clear to us how the desired behaviourshould be achieved.

8721 Fudgets as stream processorsHaving an implementation of stream processors, we are ready to build fudgetcombinators and some simple fudgets, based on the stream processor combi-nators and operations. With Figure 4 in mind, we can view fudgets in twoways:1. As plain stream processors which can have I/O e�ects. This is the abstractview that is presented to the application programmer. With this view,the fudget combinators simply do the same things as the correspondingstream-processor combinators.2. As stream processors with explicit high-level and low-level streams. Inthis chapter, we will take this view in order to implement fudgets.It should be noted that there are other ways of implementing fudgets. We givetwo examples suitable for a monadic I/O system in Section 21.5 (references toother work in implementing fudgets are given in Chapter 42).The fudget implementation used in the library is highly in�uenced by thesynchronised stream I/O system used in version 1.2 of Haskell [HPJWe92].21.1 Synchronised stream I/OSynchronised stream I/O can be seen as a variant of the Landin stream I/Oin Figure 1, where characters in the output and input streams are replacedby request and response constructors. The program and the I/O system aresynchronised, in that for each request that the program produces, one responseis produced by the I/O system. Thus, the program and the I/O system canbe seen as two parts in a special type of dialogue. The type of a synchronisedstream program main istype Dialogue = [Request] �> [Response]main :: DialogueEach request constructor represents a speci�c e�ect, and is de�ned in thedatatype Request in Haskell 1.2:data Request = ReadFile String| WriteFile String String| ReachChan Chan| AppendChan Chan String...The constructor ReadFile f is a request for the I/O system to read the contentsof the �le with name f. WriteFile f s is a request for writing s to a �le withname f. Standard input and output are instances of so called channels: readingthe character stream from standard input is requested by ReadChan stdin, andAppendChan stdout s is a request to write s on standard output.The type of the response that is generated, when a request is carried out,depends on the request constructor. All response types are put in the uniontype Response:

88 21 Fudgets as stream processorsdata Response = Success| Failure IOError| Str String| IntResp Int...If the I/O requests are successful, requests for output merely generate a Successresponse, whereas input requests generate a value tagged with Str, IntResp, orsome other constructor depending on its type. If a request fails, an error valuetagged Failure is generated.A program that uses the synchronised stream I/O model can be viewed asan atomic, sequential stream processor, that explicitly uses lists for representingthe streams.21.2 The tagged low-level streamsWhen adapting the synchronised stream model to Fudgets, we do two modi�-cations. Firstly, we discard the explicit representation of streams as lazy lists,and secondly, we tag the requests and responses, to allow more than one streamprocessor to do I/O in our program.We de�ne a fudget of type F hi ho to be a stream processor that can inputmessages of type hi or tagged responses, and outputs ho messages or taggedrequests:type F hi ho = SP (Message TResponse hi) (Message TRequest ho)data Message low high = Low low | High highWe could have used the standard type Either, but we prefer using the equivalenttype Message for clarity.The low-level streams carry I/O requests and responses. Fudget combina-tors like >+< and >==< merge the requests streams from the two argumentfudgets. But when a fudget outputs a request we must be able to send the cor-responding response back to the same fudget. For this reason, messages in thelow-level streams are tagged with pointers indicating which fudget they comefrom or should be sent to. Since a fudget program can be seen as a tree of fud-gets, where the nodes are fudget combinators and the leaves are atomic fudgets,we have chosen to use paths that point to nodes in the tree structure:type TResponse = (Path,Response)type TRequest = (Path,Request)type Path = [Turn]data Turn = L | R -- left or rightThe messages output from atomic fudgets contain an empty path, []. The binaryfudget combinators prepend an L or an R onto the path in output messagesto indicate whether the message came from the left or the right subfudget.Combinators that combine more than two fudgets (such as listF) uses a binaryencoding of subfudget positions. On the input side, the path is inspected to �ndout to which subfudget the message should be propagated.As an example, consider the fudget

21.2 The tagged low-level streams 89>+< :: F i1 o1 �> F i2 o2 �> F (Either i1 i2) (Either o1 o2)f1 >+< f2 = mapSP post �==� (f1 �+� f2) �==� mapSP prewherepost msg =case msg ofLeft (High ho1) �> High (Left ho1)Right (High ho2) �> High (Right ho2)Left (Low (path,req)) �> Low (L:path,req)Right (Low (path,req)) �> Low (R:path,req)pre msg =case msg ofHigh (Left hi1) �> Left (High hi1)High (Right hi2) �> Right (High hi2)Low (L:path,resp) �> Left (Low (path,resp))Low (R:path,resp) �> Right (Low (path,resp))Figure 47. Tagged parallel composition of fudgets.f = f1 >==< (f2 >+< f3)When f2 wants to perform an I/O request r, it puts ([],r) in its low-level outputstream. The >+< combinator will prepend an L to the path, since f2 is theleft subfudget. so ([L],r) will appear in the low-level output of f2 >+< f3.Analogously, the >==< combinator will prepend an R, so the low-level outputfrom f will contain ([R,L],r). When a response later appears in the input streamof f, it will be tagged with the same path, [R,L], which will cause the combinatorsto propagate it to f2.As should be apparent, the length of the paths is determined directly bythe nesting depth of fudget combinators in the program. For programs that arestructured roughly as balanced trees of fudgets, the length of the paths thusgrow logarithmically with the number of atomic fudgets in the program. Hence,the overhead of constructing and analysing the paths also grows logarithmicallywith the number of fudgets. In practice, the maximal path length we haveobserved varies from 4 for trivial programs (the "Hello, world!" program inSection 9.1), 16 for small programs (the calculator in Section 9.8) and 30 forlarge programs (the proof assistant Alfa in Chapter 33).Constructing and analysing the paths of messages is not the only sourceof overhead in the low-level message passing. Some fudget combinators, mostnotably the �lters (see Chapter 24) treat some commands or events specially.They thus need to inspect all messages that pass through them. When a largenumber of messages have to be sent, the overhead may become too high. InSection 27.5.3 we present a situation in which we encountered this problem, andgive a solution.An implementation of tagged parallel composition of fudgets is shown inFigure 47. We have reused tagged parallel composition of stream processors byadding the appropriate tag adjusting pre and post processors. The other fudgetcombinators can be implemented using similar techniques.When a request reaches the top level of a fudget program, the path should

90 21 Fudgets as stream processorsfudlogue :: F a b �> Dialoguefudlogue mainF = runSP (loopThroughRightSP routeSP (lowSP mainF))routeSP =getLeftSP $ \ (path,request) �>putSP (Right request) $getRightSP $ \ response �>putSP (Left (path,response)) $routeSPlowSP :: SP (Message li hi) (Message lo ho) �> SP li lolowSP fud = �lterLowSP �==� fud �==� mapSP Low�lterLowSP = mapFilterSP stripLowstripLow (Low low) = Just lowstripLow (High _) = NothingFigure 48. A simple version of fudlogue for synchronised stream I/O. It doesnot handle asynchronous input.be detached before the request is output to the I/O system and then attachedto the response before it is sent back into the fudget hierarchy. This is takencare of in fudlogue. A simple version of fudlogue is shown in Figure 48. Thisversion will su�ce for programs where individual fudgets do not block in theirI/O requests. If we want to react on input from many sources which comes inan unknown order (e.g. sockets, standard input, the window system, timeoutevents), this implementation will not be enough, so what should we do? We willdiscuss this more in Section 22.2. The short answer is that we can detect whenthe main fudget has become idle (that is, it has evaluated to getSP, and doesnot wait for a synchronous response). At this point, we perform a system call(namely select) to wait for input to happen on any of our sources of events.21.3 Writing synchronous atomic fudgetsWith the fudget representation in Section 21.2, an atomic fudget which repeat-edly accepts a Haskell I/O request, performs it and outputs the response, canbe implemented as follows. The combinators getHighSP and getLowSP waitsfor high- and low-level messages, respectively. They are de�ned in terms ofwaitForSP (Section 18.1).requestF :: F Request ResponserequestF = getHighSP $ \ req �>putSP (Low ([],req)) $getLowSP $ \(_,response) �>putSP (High response) $requestF

21.4 Fudget kernels 91Some requests should be avoided, since when we evaluate their responses, theprogram might block. For example, we should not use ReadChan stdin, becauseits response is a lazy list representing the character streams from the standardinput.Files are usually OK to read, a fudget like readFileF (Section 14.2) can beimplemented as follows:readFileF :: F String (Either IOError String)readFileF = post >^=< requestF >=^< ReadFilewhere post (Str s) = Right spost (Failure f) = Left fOn its input, it waits for �le names to open. The output is either an error valueor the content of the �le.21.4 Fudget kernelsThe fudget requestF in the previous section provides an interface to the Haskellstream I/O system. To program a fudget with a particular sequential I/Obehaviour, a combinator like-- Preliminary versionstreamIoF :: SP (Either Response i) (Either Request o) �> F i ostreamIoF sp = loopThroughRightF (absF sp) requestFcould be used. The argument stream processor sp can talk to requestF using mes-sages tagged Left and to other fudgets through messages tagged Right. However,it seems more appropriate to tag messages with the type Message introducedabove, and let the type of streamIoF be-- Final versionstreamIoF :: K i o �> F i owheretype K i o = SP (Message Response i) (Message Request o)We call stream processors of type K i o fudget kernels. Fudget kernels are thusused when de�ning new atomic fudgets with particular I/O behaviours. Wede�ne some combinators for describing I/O behaviours in continuation style:putHighK :: o �> K i o �> K i ogetHighK :: (i �> K i o) �> K i onullK :: K i odoStreamIOK :: Request �> (Response �> K i o) �> K i oThe �rst three operations correspond directly to the stream-processor combi-nators putSP, getSP and nullSP, so fudget kernels can be seen as plain streamprocessors with access to the I/O system.The implementations of the combinators introduced in this section are shownin Figure 49.

92 21 Fudgets as stream processors
type K i o = SP (Message Response i) (Message Request o)streamIoF :: K i o �> F i ostreamIoF kernel = mapSP post �==� kernel �==� mapSP prewherepre (High i) = High ipre (Low (_,resp)) = Low resppost (High o) = High opost (Low req) = Low ([],req)putHighK :: o �> K i o �> K i oputHighK = putSP . HighgetHighK :: (i �> K i o) �> K i ogetHighK = waitForSP highwherehigh (High i) = Just ihigh _ = NothingnullK :: K i onullK = nullSPdoStreamIOK :: Request �> (Response �> K i o) �> K i odoStreamIOK request contK =putSP (Low request) $waitForSP low contKwherelow (Low resp) = Just resplow _ = NothingFigure 49. Fudget kernel combinators.

21.5 Alternative implementations using monadic I/O 9321.5 Alternative implementations using monadic I/OToday, Haskell uses the monadic I/O model, which is brie�y explained in Sec-tion 41.1.3. A monadic version of fudlogue can be de�ned as follows:fudIO1 :: F a b �> IO ()fudIO1 f = case f ofNullSP �> return ()GetSP _ �> return ()PutSP (High _) f' �> fudIO1 f'PutSP (Low (path,req)) f' �>do resp <� doRequest reqfudIO1 (startupSP [Low (path,resp)] f')This version still uses the stream I/O constructors internally to represent e�ects.It relies on an auxiliary functiondoRequest :: Request �> IO Responsethat converts requests to corresponding monadic e�ects.We can also go one step further by throwing out the request and responsedatatypes, and use the IO monad directly to represent e�ects. This can be im-plemented by adding a constructor to the continuation-based stream-processortype: data F' i o = PutF o (F' i o)| GetF (i �> F' i o)| NullF| DoIoF (IO (F' i o))The constructor DoIoF is used to express I/O e�ects. This constructor doesnot have any explicit argument for the continuation fudget, which instead isreturned from the I/O computation. To connect fudgets to the I/O system, weuse fudIO2:fudIO2 :: F' i o �> IO ()fudIO2 f = case f ofNullF �> return ()GetF _ �> return ()PutF _ f' �> fudIO2 f'DoIoF io �> io >>= fudIO2We can provide an operation doIoF for plugging in monadic I/O operations ina fudget:doIoF :: IO a �> (a �> F' i o) �> F' i odoIoF io c = DoIoF (map c io)The fudget combinators are de�ned just as the corresponding for stream pro-cessors, with extra cases for the DoIoF constructor. For example, in the case ofparallel composition, these are:DoIoF io >*< g = DoIoF (map (>*< g) io)f >*< DoIoF io = DoIoF (map (f >*<) io)

94 22 Fudget I/O: the gory details22 Fudget I/O: the gory detailsIn this chapter, we will dive into some of the gory details in the Fudget libraryimplementation. We will see how the GUI fudgets are designed to �t withX Windows in Section 22.1, using the hierarchical windows that X provides.Asynchronous I/O is necessary to handle events from many sources such asthe X server, standard input, and sockets. The implementation of asynchronousI/O is described in Section 22.2.The communication between a fudget program and the X server uses thelibrary Xlib [Nye90], which is written in C. Xlib de�nes a number of data typesand calls for creating and maintaining windows, drawing in windows and receiv-ing input events.There is no standardised foreign-language interface for Haskell, so Haskellprograms cannot directly call Xlib. To solve this problem, we have implementeda number of interfaces to Xlib: one of which is compiler independent, and threewhich are speci�c for HBC, NHC, and GHC. These interfaces are described inSection 22.3.22.1 GUI FudgetsThe implementation of GUI fudgets uses the possibility to create hierarchicalwindows in X Windows, a feature that works as follows.In X Windows, an application program creates one or more shell windows.We have already seen in Chapter 9 how the fudget shellF is used to create a shellwindow. These windows appear on the user's desktop and are decorated witha title bar by the window manager. The window manager allows the user tomanipulate shell windows in various ways, for example, they might be resizedand moved around on the desktop. A shell window thus corresponds to theuser's concept of a window.From the point of view of the application programmer, a shell window pro-vides an area which can be �lled with graphics, and which can �react� to eventssuch as mouse clicks, which the X server can report to the application as events.The window has its own coordinate system which has its origin in the upper leftcorner, regardless of the window's position on the desktop. The window systemalso ensures that when the application draws in a shell window, only areas thatare visible are updated. This implies a simpli�cation for the application pro-grammer, since he does not have to consider other applications that the userhas started.So far, this story holds for most window systems. X Windows goes onestep further, and allows the programmer to create more windows within theshell window. These can in turn contain even more windows. Each window hasits own coordinate system, and can be moved and resized (but not directly bythe user of the application, as was the case with shell windows). If a windowis moved, all windows inside it will follow, keeping their position in the localcoordinate system. In addition, each window is associated with an event mask,which allows the programmer to control how �sensitive� the application shouldbe to user input when the pointer is in the window.The simpli�cation that the concept of shell windows brought us as appli-cation programmers can be carried over to hierarchical windows. If each GUIelement is put in its own subwindow, the application program does not need to

22.1 GUI Fudgets 95know the element's position in the shell window when drawing in it, for exam-ple. It is also possible to have a large subwindow inside a smaller window. Bymoving the large window, we get the e�ect of scrolling an area.Since each GUI fudget has its own window (possibly containing subwindows),we have also used the possibility to associate each GUI fudget with its ownevent mask, something that we use to limit the network tra�c of events fromthe server to the application. This was initially an important aspect in Fudgets(see Section 22.3.1), and is still an advantage when running programs over low-bandwidth links.Using one window per GUI fudget also simpli�es the routing of events insidethe application, which receives one single stream of events from the X server.The handling of events is not centralised, instead the GUI fudgets handle eventsby themselves. When the X server reports a mouse click, the event contains in-formation about what subwindow was clicked, and the position uses the localcoordinate system of the subwindow. The window information is used in fud-logue, which maintains a mapping from window identi�ers to GUI fudget paths.22.1.1 Data types for the X Windows interfaceThe GUI fudgets uses four datatypes for their communication with the X servervia Xlib. First, we have the datatypes XRequest and XResponse (which can beseen as extensions to Request and Response), which allow us to communicatewith the X server.data XRequest= OpenDisplay DisplayName| CreateSimpleWindow Path Rect| CreateRootWindow Rect| CreateGC Drawable GCId GCAttributeList| LoadFont FontName| CreateFontCursor Int...data XResponse= DisplayOpened Display| WindowCreated Window| GCCreated GCId| FontLoaded FontId| CursorCreated CursorId...The remaining two datatypes are XCommand, which can be seen as a set ofrequests without responses, and XEvent, which encode events that the X serverasynchronously reports to the application.

96 22 Fudget I/O: the gory detailsdata XCommand= CloseDisplay Display| DestroyWindow| MapRaised| LowerWindow| UnmapWindow| Draw Drawable GCId DrawCommand| ClearArea Rect Bool| ClearWindow| CreateMyWindow Rect...data XEvent= KeyEvent { time::Time,pos,rootPos::Point,state::ModState,type'::Pressed,keycode::KeyCode,keySym::KeySym,keyLookup::KeyLookup }| ButtonEvent { time::Time,pos,rootPos::Point,state::ModState,type'::Pressed,button::Button}| MotionNotify { time::Time,pos,rootPos::Point,state::ModState }| EnterNotify { time::Time,pos,rootPos::Point,detail::Detail,mode::Mode }| LeaveNotify { time::Time,pos,rootPos::Point,detail::Detail,mode::Mode }| Expose { rect::Rect,count::Int }...The datatypes correspond more or less closely to Xlib calls and X events, withone important di�erence: The Xlib calls and events deal with additional display(a display is a connection to an X server) and window arguments, which areadded by fudlogue (see Section 22.2.2).A number of auxiliary data types that also correspond more or less directlyto de�nitions found in the Xlib library are shown in Figure 50.

22.1 GUI Fudgets 97
-- Resource identi�ersnewtype Display = Display Int-- and similarly for Window, PixmapId, FontId, GCId, CursorId,-- ColormapId, ...-- Type synonyms for readability:type FontName = Stringtype ColorName = Stringtype Time = Inttype Depth = Int-- GC and Window attributes:data WindowAttributes= CWEventMask [EventMask]| CWBackingStore BackingStore| CWSaveUnder Bool...type GCAttributeList = [GCAttributes Pixel FontId]data GCAttributes a b = ... -- See Section 27.4.3-- Various enumeration types:data EventMask= KeyPressMask | KeyReleaseMask | ButtonPressMask | ButtonReleaseMask| EnterWindowMask | LeaveWindowMask | PointerMotionMask| ExposureMask...data BackingStore = NotUseful | WhenMapped | Always-- Geometrydata Point = Point{xcoord::Int, ycoord::Int}data Rect = Rect{rectpos::Point, rectsize::Size} -- upper left corner and sizetype Size = Pointdata Line = Line Point Point -- coordinates of the two end pointsFigure 50. Some of the auxiliary types used by the interface to Xlib.

98 22 Fudget I/O: the gory details22.1.2 groupF: the primitive window creation fudgetGUI fudgets are created with the group fudget:groupF :: K a b �> F c d �> F (Either a c) (Either b d)The type of groupF resembles >+<, and indicates that it puts two streamprocessors in parallel. It will also create a window which will be controlled bythe �rst stream processor, which is a kernel (see Section 21.4). All X commandsthat the kernel outputs will go to the group fudget's window, and the X eventsfrom the window will go to the kernel.As the name indicates, groupF also groups the GUI fudgets in its secondargument, in the following sense. Assume we have the group g:g = groupF k fAll the windows that are created by groups inside f will be created inside thewindow created by g, and thus grouped. A consequence is that if the kernel kdecides to move its window, all groups inside f will follow.The atomic GUI fudgets are constructed along the pattern groupF k nullF,that is, they do not have any internal fudgets, just a kernel controlling a window.As an example, consider a group fudget of the formgroupF k1 (groupF k2 (groupF k3 nullF) >+< groupF k4 nullF)It will have a window with two subwindows, one of which will have yet anothersubwindow, as is illustrated in Figure 51.A group fudget starts by outputting the command CreateMyWindow r, wherer is a rectangle determining the size and position of the window in its parentwindow. This is a command that does not correspond to any Xlib call. Instead,it will be intercepted by the closest containing group fudget, which will seeit as a tagged command of the form (p,CreateMyWindow r). The containinggroup fudget will convert this to the request CreateSimpleWindow p r. Whenthis request reaches fudlogue, it will be of the form (q,CreateSimpleWindow p r).From this information, fudlogue will be able to deduce in which window the newwindow should be created, and new window's path is found by concatenating qand p (see also the end of section Section 22.2.2).The observant reader now asks �What if there is no containing group fud-get?� The answer is that shellF also counts as a kind of group fudget, andwe know that a shellF is always wrapped around GUI fudgets. The main dif-ference between groupF and shellF is that the latter starts by outputting Cre-ateRootWindow instead of CreateMyWindow. The request CreateRootWindow isused to create shell windows.The group fudget concept can be used for structuring complex fudgets. Oneexample is buttonGroupF:buttonGroupF :: F (Either BMevents a) b �> F a bdata BMevents = BMNormal | BMInverted | BMClickIt is used in the Fudget library to program push buttons. The enclosed fudgetwill get messages which indicate what visual feedback is appropriate to give,and when the user actually has clicked in the window. This is an example of agroup fudget which is invisible to the user�it only deals with input.

22.2 Synchronous versus asynchronous I/O 99
k 1

k 2 k 4

k 3

Figure 51. Four group fudgets. Each group has a kernel stream processorcontrolling an X window.As an example of a group fudget which only deals with output, we can havea look at buttonBorderF,buttonBorderF :: F a b �> F (Either Bool a) bwhich is used to draw the three-dimensional border around push buttons, whichcan look either pressed or released. The familiar button fudget buttonF is acombination of these two group fudgets and a labelF.One would think that the buttonBorderF always is used im-mediately inside a buttonGroupF, but this is not necessary. Agood counter example is toggleButtonF, in which a buttonGroupFis wrapped around two fudgets: a buttonBorderF which has a littleonO�DispF in it indicating its state, and a labelF. The user cancontrol the toggle button by clicking anywhere in the buttonGroupF, includingthe label. Note that the group structure in the toggle button coincides withFigure 51.22.2 Synchronous versus asynchronous I/OThe implementation of stream processors in the Fudget library gives us cooper-ative multitasking, which implies that stream processors should be programmedin a reactive style. This means that the normal state for a stream processor is tobe idle, waiting for input. When such input comes, the stream processor reactsby more or less immediately outputting zero or more messages, and then goesback to the waiting state.

100 22 Fudget I/O: the gory detailsMoreover, fudgets must be cooperative when performing I/O tasks. As wehave seen in Chapter 21, the I/O requests from all fudgets in a program areperformed in fudlogue. We must make sure that these requests are of a transientnature and can be carried out more or less immediately.For these reasons, the Fudget library makes a distinction between syn-chronous and asynchronous I/O. Synchronous I/O, where the whole fudget pro-gram must wait for the I/O operation to complete, is only used for transientoperations. Its implementation is straightforward, as we saw in Section 21.3.Since synchronous I/O is simple to implement, the Fudget library currently usesit when reading and writing to �les, and when writing to sockets, standard out-put and the X server. (In most cases, but not all, these operations are transient,and a future improvement of Fudgets would be to use asynchronous I/O even forthese.) When it comes to reading from standard input or sockets, or waiting forevents from the X server, asynchronous I/O is used, since these are operationsthat are likely to block for arbitrary long periods of time.22.2.1 Fudgets for asynchronous I/OThe fudgets timerF (Section 14.3) and socketTransceiverF (Section 26.1) are ex-amples of fudgets that must use asynchronous I/O to avoid blocking the wholeprogram. Both of them create descriptors as a �rst step.data Descriptor = SocketDe Socket| TimerDe Timer| DisplayDe Display...A socket descriptor (of type Socket) is returned as a response to the requestOpenSocket h p which opens a socket connection to the port p on host h. Sim-ilarly, a request CreateTimer i d results in a timer descriptor associated withinterval i and delay d.Simply creating a descriptor does not result in any asynchronous I/O. Afudget can use the special requestSelect :: [Descriptor] �> Requestto signal to fudlogue that it is interested in asynchronous input from a speci�edset of descriptors.22.2.2 The asynchronous fudlogueTo handle asynchronous I/O, fudlogue maintains a mapping between descriptorsand paths to fudgets. We have just seen that fudlogue can receive messages ofthe form (p, Select ds), which announce that there is a fudget with path p whichwaits for the asynchronous input associated with the descriptors in ds. Thefunction fudlogue collects all descriptors received in this way from all fudgets inthe program. When the main fudget evaluates to getSP without an outstandingrequest, fudlogue knows that it is time to wait for some asynchronous event tohappen. It emits a Select request, with all collected descriptors as an argument.The e�ects of this request are1. a call to the UNIX function select, which will wait for input to arrive onany of the descriptors, or a timeout, and

22.3 The interfaces to Xlib 1012. a read operation on the corresponding descriptor (unless it was a timeout).The response generated is of type AsyncInput:type AsyncInput = (Descriptor, AEvent)data AEvent = SocketAccepted Socket Peer| SocketRead String| TimerAlarm| XEvent (WindowId, XEvent)As the type AEvent indicates, the response of Select is the descriptor whichbecame ready, paired with the data read.Using the descriptor table, fudlogue is able to route the received asyn-chronous input to the waiting fudget.In addition, fudlogue performs the following translations to handle events tothe GUI fudgets:� For each group fudget, fudlogue has an association from its path to theidenti�er of its window, and a display descriptor (the socket connectionto the X server). The group fudgets are unaware of which window ordisplay they are associated with, so fudlogue adds this information to theX related commands and requests from GUI fudgets.� There is also the reversed mapping from window identi�ers to paths, whichfudlogue uses to route events from the X server to the group fudget asso-ciated with the window.22.3 The interfaces to XlibWe have already seen in Section 22.1 that we have extended the Request andResponse datatypes with constructors divided in XRequest, XResponse, XCom-mand, and XEvent, that correspond to Xlib calls and X events. (These datatypes do not provide a complete interface to Xlib. We have implemented thosecalls that we found useful and extended the interface by need. Also, some pa-rameters have been omitted from some constructors.) Somewhere, the actualI/O that these requests and commands represent must be carried out, and thisis done in what we call the interface to Xlib. We have implemented a numberof di�erent such interfaces, and they are described in what follows.22.3.1 A compiler independent interfaceThe �rst implementation of Fudgets was done in LML in 1991, and used Landin'sstream I/O model (see Chapter 4). A program in LML is a function of typeString�>String. The �rst interface to Xlib was done by outputting the callsand receiving the return values and events in text form via the standard outputand input channels. The program was connected by a bidirectional pipe toan external C program that performed the actual Xlib calls. The type of thefunction fudlogue was F i o �> String�>String.The advantage with this method is that it is portable. No changes need to bemade to the compiler or its associated run-time system. The same C programcan be used with another compiler or even another programming language.

102 22 Fudget I/O: the gory detailstype Dialogue = [Response] �> [Request]data Request = ReadFile String| WriteFile String String| ...-- Extensions| XCommand (XDisplay,XWId,XCommand)| XRequest (XDisplay,XWId,XRequest)| SocketRequest SocketRequest| Select [Descriptor]| ...data Response = Success| Str String| Failure IOError| ...-- Extensions| GotSelect AsyncInput| SocketResponse SocketResponse| XResponse XResponse| ...Figure 52. Extending the Haskell 1.2 dialogue I/O types with requests for theinterface to XlibThe disadvantage with this method is that it is ine�cient because of theparsing and printing of commands, return values and events. By printing themin a simple format, the overhead can be kept down, though. Also, for mostuser-interface tasks, the throughput need not be very high.22.3.2 The interface for HBCTo avoid the overhead of the text communication with a separate process,Lennart Augustsson integrated the interface to Xlib with the run-time systemof LML. LML uses the synchronised stream I/O (see Section 21.1), so the inte-gration was done by adding new constructors to the request and response types.The extensions are shown in Figure 52. They handle commands and requestscorresponding to Xlib calls, requests for socket I/O, and the asynchronous I/Odescribed in Section 22.2.2. The type of the function fudlogue was changed toF i o �> Dialogue.The part of HBC's run-time system that handles dialogue I/O is imple-mented in C. The procedure that implements the Requests was modi�ed tohandle the XRequest and XCommand requests by calling a new procedure dox-call outlined in Figure 53. As can be seen in Figure 54, a few lines of C codeper supported Xlib call are needed.

22.3 The interfaces to Xlib 103
PTR doxcall(t, p)int t; /* tag of the Request */PTR p; /* pointer to the argument of the Request */{ PTR response;p = evaluate(p);switch(t) {case XCommand: /* (Display, Window, XCommand) */p = evalArgs(p,3);xdocommand((Display *)INTOF(GET1OF3(p)),INTOF(GET2OF3(p)),GET3OF3(p));response=mkconstr0(RSuccess);break;case XRequest: /* (Display, Window, XRequest) */{ PTR xresp;p = evalArgs(p,3);xresp=doxrequest((Display *)INTOF(GET1OF3(p)),INTOF(GET2OF3(p)),GET3OF3(p));response=mkconstr1(XResponse,xresp);}break;default:fprintf(stderr, "Unknown X I/O request ...", ...);exit(1);break;}return response;}void xdocommand(display, wi, p)...Figure 53. The C function doxcall was added to HBC's run-time system tohandle the extra requests XCommand and XRequest.

104 22 Fudget I/O: the gory details
PTRdoxrequest(display,wi,p)Display *display;Window wi;PTR p;{ PTR rp;Window parent;switch(getcno(p)) {case XRqOpenDisplay: /* DisplayName */{ char displayname[BUFSIZE];Display *display;evalstring(EARG1(p), displayname, sizeof displayname);display=XOpenDisplay(displayname[0] ? NULL : displayname);return MkPtrXResp(XRDisplayOpened,display);}break;case XRqCreateRootWindow: /* Rect */......}}Figure 54. The C function doxrequest analyses the XRequest constructor andcarries out the corresponding call to Xlib.

22.3 The interfaces to Xlib 10522.3.3 The interface for NHCIn the summer 1996, the Fudget library was ported to NHC [Röj95b] for Haskell1.3 [PH96], to allow fudget programs to take advantage of the new heap pro�lingfeatures available in NHC [RR96a][RR96b].The Fudget library could be ported to NHC by a relatively small e�ort:� A module containing the de�nitions of the Haskell 1.2 types Request andResponse types was added, since none of these are de�ned in Haskell 1.3.� The fudlogue function was modi�ed to look like fudIO1 in Section 21.5.� The run-time system of NHC was extended to implement the Xlib calls andthe other extensions. Fortunately HBC and NHC have very similar run-time systems, so all of the C code written for HBC could be reused withonly minor changes, in spite of the di�erences between the I/O systems.The extensions were made available as a new monadic I/O operation,similar to doRequest in Section 21.5:doXCall :: Request �> IO ResponseThe e�ect of this function is a call to the procedure doxcall in Figure 53.22.3.3.1 Support for two-pass heap pro�ling Heap pro�ling can help youimprove the memory behaviour of your programs. For example, you may �ndout using a biographical heap pro�le that a large portion of the data in the heapis drag, that is, a lot of nodes that are kept in the heap after their last use. Youmay then use a combination of a biographical pro�le and a retainer pro�le to�nd out which set of functions in the program that are responsible for retainingthe drag. This may give you a clue as to how you should change the programto get rid of the drag.The implementation of certain combined pro�les, as described in [RR96b],collects the needed information in two passes, that is, the program is run twice.In order to create two identical runs, the return values of all I/O operationsmust be recorded during the �rst run and then played back during the secondrun.In order to allow fudget programs to take advantage of the latest heap pro�l-ing technology, Niklas Röjemo added the necessary code for recording and play-ing back the results of the Xlib calls and other extended I/O operations used bythe Fudget library. As a typical example, the glue code for the Xlib procedureXOpenDisplay (which we have already seen in Figure 54) was changed as shownin Figure 55. The macros RECORD_ONE and REPLAY_ONE_AND_SKIP ex-pand to code that records the result during the �rst run and recalls it and skipsthe actual call during the second run. Their de�nitions are shown in Figure 56.The variables replay, record and inputFILE are set by NHC's run-time system asappropriate.22.3.4 The interface for GHCAs a consequence of the NHC implementation, the Fudget library did not dependon a Haskell 1.2 I/O system anymore. This opened the door for an interfaceto Xlib using the I/O monad and the C-interface in GHC [J+97]. By using

106 22 Fudget I/O: the gory detailscase XRqOpenDisplay: /* DisplayName */{ char displayname[1000];Display *display;evalstring(EARG1(p), displayname, sizeof displayname);REPLAY_ONE_AND_SKIP(display)display=XOpenDisplay(displayname[0] ? NULL : displayname);RECORD_ONE(display);return MkPtrXResp(XRDisplayOpened,display);}break;Figure 55. Changes to the Xlib glue code for two pass heap pro�ling.#de�ne REPLAY_ONE_AND_SKIP(x) if(replay) { REPLAY(x); } else#de�ne RECORD_ONE(x) if(record) { RECORD(x); }#de�ne RECORD(x) fwrite((void *)&(x),sizeof(x),1,inputFILE)#de�ne REPLAY(x) fread((void *)&(x),sizeof(x),1,inputFILE)Figure 56. Macros for two pass heap pro�ling.this port, it is possible to take advantage of GHC's time pro�ling tools andpossibility to generate e�cient code.The interface to Xlib in GHC is written in a rather ad hoc style using _ccall_and _casm_ statements. Today, a nicer interface could be created using theforeign-language interface support of Green Card [JNR97].

10723 Automatic layoutThe layout combinators in Chapter 11 are used to specify the position and sizeof graphical objects. Today, these objects can be of two types: GUI fudgets ordrawings as described in Chapter 27. The original layout system was designedfor the GUI fudgets, and its implementation will be described in this section.The purpose of the automatic layout system is to relieve the applicationprogrammer of the task to specify the exact position and size of each GUIfudget. This task has several dynamic aspects. To start with, it depends onfactors that are not known until the program has started. For example, thesize of a text drawn in a label fudget depends on the the font and size chosen,and can only be determined after the label fudget has communicated with theX server. Individual GUI fudgets can also change their size at any time, andthe user might resize a shell window. Both these activities may imply that anumber of GUI fudgets must change their position and size.The layout system also simpli�es the implementation of the individual GUIfudget, in that it does not have to worry about the place and position of otherGUI fudgets. It must only specify an initial request for a size, and the layoutsystem will allocate a place and actual size.The implementation of the layout system operates by moving and resizingrectangular units corresponding to the group fudgets (Section 22.1). Rememberthat a group fudget basically consists of a stream processor controlling an Xwindow, possibly with a number of group fudgets inside it. Each group fudgetalso contains a piece of the layout system, which is responsible for the placementand sizing of each immediate subgroup fudget. The responsibility is only onelevel deep: a group fudget does not control any group contained in any of itsgroups. As an example, the group corresponding to k1 in Figure 51 is responsiblefor the layout of k2 and k4 (but not k3).This division of responsibility is natural, since a group is easily placed andresized by the single Xlib command (Con�gureWindow). All subwindows insidethe group will follow and keep their relative positions.The mechanism of the layout system can be studied by looking at the messagetra�c between a group fudget and its immediate subgroups.The group fudget has a �lter (other �lters are described in Chapter 24),called autoLayoutF, which listens for layout messages that are output on thelow-level streams from the subgroups.data LayoutMessage= LayoutRequest LayoutRequest| LayoutName String| LayoutPlacer Placer| LayoutSpacer Spacer...The subgroups decide what sizes they need, and output a layout request.data LayoutRequest= Layout { minsize :: Size,�xedh, �xedv :: Bool }The �eld minsize is the requested size, and �xedh (�xedv) being true speci�esthat the size is not stretchable in the horizontal (vertical) direction. (Someplacers use this information to allocate extra space to stretchable boxes only.)

108 23 Automatic layoutThe layout �lter also receives placers and spacers that the programmer haswrapped around subgroups. Since all layout messages are tagged with a path,the layout �lter can associate the placers and spacers with the wrapped sub-groups, by analysing the paths. The constructor LayoutName is used in a similarway to associate a subgroup with a name.The placers and spacers are functions that decide the actual layout. A placeroperates on a list of layout requests, yielding one single request for space neededfor the placement of all the associated subgroups. Looking back at the discussionof boxes in Section 11.1, we will recognise that there will be one layout requestcorresponding to each box.In contrast to the placers, a spacer takes a single request as an argument,and the layout �lter maps it on all requests corresponding to the enclosed boxesassociated with the spacer, yielding the same number of requests.type Placer = [LayoutRequest] �> (LayoutRequest, Rect �> [Rect])type Spacer = LayoutRequest �> (LayoutRequest, Rect �> Rect)As can be seen from these types, placers and spacers also return a residualfunction, which we will describe below.Having collected layout requests and having applied the layout functions tothem, the group fudget must decide on one single layout request to output.Since programs should work even if no layout is speci�ed by the programmer, adefault placer is wrapped around the subgroups.The default placer used is called autoP, which picks a suitable layout basedon the layout requests at hand. In the current implementation, it simply choosesbetween verticalP and horizontalP, based on two preferences:1. layouts which do not waste space by unwanted stretching are preferredover those that do,2. square layouts are preferred over long and narrow layouts.Future implementations could conceivably take more parameters into accountwhen choosing a layout and have a wider choice of layouts to choose between.Having produced a single layout request, the group fudget outputs it, and itwill be handled by the enclosing group, unless the group is a shell group. In thiscase, the minsize �eld in the request is used to set the size of the shell window.The XEvent type includes constructors that are used to report changes inlayout to the GUI fudgets:data XEvent = ...| LayoutPlace Rect| LayoutSize SizeThe propagation of these layout events start in the shell group fudget. Whenthe shell window has been resized, the X server sends a Con�gureNotify eventcontaining the new size to the shell group fudget. Note that this event is gener-ated regardless of whether the resize operation was done by the program (as aresult of a layout request) or the user (via the window manager). Anyhow, theshell group fudget generates an event of the form LayoutPlace (Rect 0 s), to thelayout �lter. This informs the layout �lter that the rectangle from the origin

23.1 The historic steps of fudget layout 109to s is available for the subgroups. Now, the layout �lter applies the residualplacers and spacers to this rectangle in a reversed pattern. Each residual placerwill yield a list of rectangles, where the elements correspond to the list of re-quests (and thus to the boxes) that was fed to the original placer. Similarly,residual spacers are mapped over rectangles to adjust positions of the associatedsubgroups.When this reversed process is �nished, the layout �lter outputs one Layout-Place message to each subgroup, which will move itself accordingly, pass themessage to its layout �lter, and so the process goes on recursively.When a group receives a LayoutPlace message, it also sends a LayoutSizemessage to the kernel stream processor, so that it can adjust the graphicalcontent of its window to the new geometry. Note that the kernel only needs toknow the size of its window, and not its place. This is due to the fact that allwindow operations use local coordinates.23.1 The historic steps of fudget layout1. Initially, there was no support at all for layout. The programmer had toexplicitly specify the size and position of each GUI fudget.2. Then, automatic layout was implemented, with the restriction that eachGUI fudget had to correspond to exactly one box. This implied thatwhen two GUI fudgets where composed, a placer had to be speci�ed.The combinators for parallel and serial composition had an extra placerargument. As a result, the layout was too tightly coupled to the data�owbetween the GUI fudgets.3. The current system allows many boxes per fudget. Together with namedlayout, this allows more �exible layout.

110 24 Filter fudgets24 Filter fudgetsThe fact that all I/O e�ects of a fudget are represented through constructors inthe datatypes Request, Response and others, opens up the possibility to writewhat we will call �lters, which alter speci�c aspects of a fudget's input/outputbehaviour. Filters have type F a b �> F a b, which indicates that they do nottamper with the high-level messages, they only analyse and modify the low-levelmessages.A number of problems can be solved by using �lters�for example, swappingthe meaning of the left and the right mouse buttons, or swapping the black andwhite colors in GUI fudgets.In the following sections, we will see two examples of �lters from the Fudgetlibrary which alter the behaviour of complex fudgets:� The cache �lter, which improves the space and time behaviour of fudgetprograms by letting subfudgets share X server resources (Section 24.1).� The focus �lter, which implements click-to-type input style in forms byredirecting keyboard events (Section 24.2).The �lters in the Fudget library are constructed by means of a combinator thatresembles loopThroughRightF, and is called loopThroughLowF:loopThroughLowF :: SP (Either TRequest TResponse)(Either TRequest TResponse)�> F i o �> F i oJust as loopThroughRightF is often used by application programmers to encap-sulate and modify the behaviour of existing fudgets, loopThroughLowF is usedin �lters located in fudlogue and shellF, and can thus modify certain aspects ofall fudgets in an application. The controlling stream processor, which is the�rst argument to loopThroughLowF, receives as input the stream of all taggedrequests that are output from the encapsulated fudgets, and also all taggedresponses directed to the same fudgets. It can analyse and manipulate thesemessages in any manner before outputting them, after which they will continuetheir way to the I/O system (in the case of the requests), or the fudgets (in thecase of the responses). The simplest conceivable �lter isloopThroughLowF idSPwhich simply passes through all requests and responses undisturbed, and thusacts as the identity �lter.24.1 The cache �lterEach GUI fudget allocates or queries a number of resources in the X server, suchas fonts, font descriptions, graphical contexts and colors. For example, a fudgetprogram with a large GUI may query a large number of font descriptions. Thiscan result in a slow startup time, especially if the round trip delay between theprogram and server is large. Usually, most GUI fudgets will query the sameresources as the others in the program, which seems wasteful. It would bebene�cial if the resource allocation could be shared between the GUI fudgets.

24.1 The cache �lter 111Not only would this result in a faster startup and less network load, but theprogram would also consume less memory. This is relevant in the case wherefont descriptions are queried, since these could occupy a signi�cant amount ofthe heap.It is the role of the cache �lter to support this resource sharing betweenfudgets. It is part of fudlogue, which means that all fudgets in the programbene�t from the resource sharing.The e�ect of the cache �lter is most notable on slow connections with highround trip delays, such as dialup connections. To demonstrate this, we have runCla, one of the demonstration programs from the Fudget distribution, over a dial-up connection using PPP and secure shell (ssh, compression rate 9). The modemspeed was 14400 bits per second, and the round trip delay 250 milliseconds onaverage. To eliminate errors due to di�erent compression rates, the programwas started repeatedly, until the startup time converged. Without the cache�lter, the minimum startup time for Cla was clocked to 133 seconds. Whenenabling the cache, the startup time decreased to 9.6 seconds, a speedup factorof over 13. (As a comparison, we also ran Cla on this slow connection withoutcompression: the startup times were 274 seconds with no cache, and 31 secondswith cache. Compression is a good thing!)The heap usage is also better when the cache is enabled, the peak decreasesfrom 990 to 470 kilobytes.These �gures should not come as a surprise since the GUI in Cla consists ofone display, and 28 push buttons which can share the same resources.Using the cache �lter means that there is an overhead in the program. Exceptfor drawing commands, the �lter will analyse each request that is output. As aresult, the calculator startup time is about 5% longer when the X server runson the same computer as the calculator. In this case, the connection is fast andhas negligible round trip delay.24.1.1 ImplementationBefore describing the implementation, we will show a communication scenariothat takes place when a fudget allocates a particular kind of resource, namelya graphics context (GC). First, the fudget outputs the X request CreateGC dtgc al, where d is the drawable in which the GC will be used, tgc is a templateGC, and al is a list of attributes that the new GC should have. The requestis turned into a call to the Xlib function XCreateGC, which returns a referenceto a new GC. This is sent back as the response GCCreated gc to the requestingfudget, which brings it to use. When the GC is not needed anymore, the fudgetcan explicitly deallocate it by outputting the X command FreeGC gc.The idea of using a cache is of course that if a second fudget wants to createa GC with the same template and attributes, we could reuse the �rst GC, ifit is not yet deallocated. So a GC cache maintains table from template andattributes to graphics contexts and reference counts.It turns out that most resource (de)allocation follows the same pattern asour scenario, if we abstract from the speci�c request and response constructors.This abstraction is captured in the type RequestType, which expresses whethera request is an allocation, a deallocation, or something else:

112 24 Filter fudgetsdata RequestType a r = Allocate a| Free r| OtherThe argument to the Allocate constructor carries allocation data that the cache�lter uses as search key in the resource table. Similarly, the Free constructorcarries the resource that should be freed. In the case of graphics contexts, theallocation data are pairs of template GCs and attribute lists, and the resourcesare graphics contexts.The function gcRequestType determines the type of request for graphics con-texts:gcRequestType :: Request �> RequestType (GCId,GCAttributeList) GCIdgcRequestType r =case r ofCreateGC d tgc al �> Allocate (tgc,al)FreeGC gc �> Free gc_ �> OtherThe general cache �lter cacheFilter is parameterised over the function that de-termines the request type:cacheFilter :: (Eq a,Eq r) => (Request �> RequestType a r)�> F i o �> F i ocacheFilter rtf = loopThroughLowF (cache [])where cache table = ...The internal state table is a list of type [(a, (r, Int))], where the elements areallocation data with associated resources and reference counts.The de�nition of a cache for graphics contexts is now simple:gcCacheFilter :: F i o �> F i ogcCacheFilter = cacheFilter gcRequestTypeThe Fudget library de�nes request type functions like gcRequestType for anumber of resources, and the corresponding cache �lters, using the generalcacheFilter. All these �lters are combined into allCacheFilter:allcacheFilter :: F a b �> F a ballcacheFilter =fontCacheFilter .fontStructCacheFilter .gcCacheFilter .colorCacheFilter .bitmapFileCacheFilter .fontCursorCacheFilterThis cache �lter is wrapped around all fudget programs in fudlogue. One shouldfear that allcacheFilter would impose a considerable overhead, since all com-mands must be inspected in turn by each of the six �lters. In practice, theoverhead is not a big problem.

24.2 The focus �lter 11324.2 The focus �lterWhen I type on the keyboard, which GUI element should receive the typedcharacters? Equivalently, which GUI element has the input focus? Initially, theFudget library implemented the simple model of point-to-type focus, since it isdirectly supported by X Windows. With point-to-type, a GUI fudget cannothave the input focus unless the pointer is over it. A GUI fudget (such asstringF) signals its interest in focus by con�guring its event mask to includeKeyPressMask, EnterWindowMask, and LeaveWindowMask. This means that thefudget can receive keyboard input, and also events when the pointer enters orleaves the fudget (crossing events). The crossing events are used to give visualfeedback about which fudget has the focus.A potential problem with point-to-type controlled focus, is that the usermust move a hand back and forth a lot between the keyboard and the pointingdevice (assuming that the pointer cannot be controlled from the keyboard), ifshe wants to �ll in data in a form that consists of several input �elds. It is alsoeasy to touch the pointing device accidentally so that the pointer jumps a little,which could result in a focus change.These problems vanish when using a click-to-type focus model. With click-to-type, the tight coupling between the pointer position and focus is removed.Instead, the user clicks in an input �eld to indicate that it should have the focus.The focus stays there until the user clicks in another input �eld. In addition,if the keyboard can be used for circulating focus between the input �elds in aform, it can be �lled in without using the pointing device.A limited variant of this improved input model has been added to the Fudgetlibrary as a �lter in the shell fudgets, leaving the various GUI fudgets unmodi-�ed. The limitation is that the model is only click-to-type as long as the pointeris inside the shell fudget. When the pointer leaves the shell fudget, focus goesto whatever application window is under it, unless the window manager usesclick-to-type.24.2.1 ImplementationThe implementation of the focus is based on the key observation that GUIfudgets that need keyboard input (let us call them focus fudgets) can be distin-guished by the kind of events that they con�gure their window to report. Allfocus fudgets are of course interested in key press events, but they also needcrossing events, for giving proper visual feedback when they have focus. There-fore, focus fudgets will initially set their window event mask so that �Mask is asubset:�Mask = [KeyPressMask, EnterWindowMask, LeaveWindowMask]A simpli�ed implementation of a focus �lter is shown in Figure 57. The focus�lters reside immediately inside the shell fudgets. To get keyboard events, nomatter the position of the pointer (as long as it is inside the shell window), agroup fudget is created around the inner fudgets with a suitable event mask.This is done with simpleGroupF, which acts as a groupF without a kernel.The �ltering is done in focusSP, whose argument fpaths accumulates a listof paths to the focus fudgets. This is done by looking for window con�gurationcommands with matching event masks. The event masks of the focus fudgets

114 24 Filter fudgets
focusFilter :: F a b �> F a bfocusFilter f = loopThroughLowF (focusSP [])(simpleGroupF [KeyPressMask] f)focusSP :: [Path] �> SP (Either TRequest TResponse)(Either TRequest TResponse)focusSP fpaths = getSP (either request response)whererequest (p,r) =case getEventMask r ofJust mask | �Mask `issubset` mask �>putSP (Left (p,setEventMask (mask' r)) $focusSP (p:fpaths)where mask' = [ButtonPressMask] `union` mask_ �> putSP (Left (p,r)) $focusSP fpathsresponse (p,r) =if keyPressed rthen (putSP (Right (head fpaths, r)) $focusSP fpaths)else if leftButtonPressed 1 r && p `elem` fpathsthen putSP (Right (p,r)) $focusSP (aft++bef)else putSP (Right (p,r))where (bef,aft) = break (==path) fpaths-- Auxiliary functions:simpleGroupF :: [EventMask] �> F a b �> F a bgetEventMask :: Request �> Maybe [EventMask]setEventMask :: [EventMask] �> Request �> RequestkeyPressed :: Request �> BoolleftButtonPressed :: Request �> BoolFigure 57. A focus �lter.

24.3 Pros and cons of �lters 115is modi�ed to mask', so that the windows of focus fudgets will generate mousebutton events.The head of fpaths is considered to own the focus, and incoming key eventsare redirected to it. If the user clicks in one of the focus fudgets, fpaths isreorganised so that the path of the clicked fudget comes �rst.As noted, Figure 57 shows a simpli�ed focus �lter. The �lter in the Fudgetlibrary is more developed; it also handles crossing events, and focus changesusing the keyboard. More complex issues, like dynamic creation and destructionof fudgets, are also handled. Still, it ignores some complications, introduced bythe migrating fudgets in Chapter 25.It should also be noted that the X window model supports special focuschange events which should rather be used when controlling focus. This �tsbetter with window managers that implement click-to-type.24.3 Pros and cons of �ltersThe experience we have had with �lters in the Fudget library are both goodand bad. On the good side, the �lters open the possibility to modify the I/Obehaviour of existing software without having to alter its source code. On theother side, although the �lters were developed without changing the sourcecode of the GUI fudgets, detailed knowledge about their source code was usedin order to decide on what assumptions we could make about their behaviour.For example, we have seen that the focus �lter assumes that all GUI fudgetsthat should be under focus control can be distinguished by analysing their eventmasks. This complicates the semantics of event masks, something that must betaken into account when programming new GUI fudgets. Similarly, the possiblesharing of a resource caused by the cache �lter means that imperative operationson resources (such as XChangeGC) must be avoided in the GUI fudgets.The implementation of �lters often involves that a piece of state must beassociated with each GUI fudget. This means that the state of some GUIfudgets are spread out in the library, in some sense. One piece resides in thefudget itself as local state, then there is non-local state in the focus �lter, and inthe fudlogue tables, which are used to route asynchronous events. If fudget stateis distributed like this, there is always a danger that it becomes inconsistent,for example when fudgets move or die.

116 25 Moving stream processors25 Moving stream processorsOne distinguished feature of stream processors is that they are not directlyconnected to their input streams. Rather, a stream processor reacts to onemessage at a time. A better name would really be message processor, sincethere are no explicit streams anywhere, only messages. This is in contrast tofunctions operating on streams as lazy lists, which are instances of the type[i] �> [o] (if we only consider functions from one input stream to one outputstream). To get the output stream of such a stream function, one must applyit to the input stream. Once that is done, there is no easy way to detach thestream function from the stream again.Why would one want to do such a detachment? One reason arises if we wanta stream processor to run for a while in one environment, and then move it tosome other environment and continue running it there. Remember that streamprocessors are �rst class values and may be sent as messages. This, togetherwith the fact that there is no di�erence (in the type) between a stream processorthat has been executing for a while and a �new� one, allows us to program acombinator that can catch the �current continuation� of an arbitrary streamprocessor whenever we want.extractSP :: SP i o �> SP (Either () i) (Either (SP i o) o)extractSP s = case s ofPutSP o s �> PutSP (Right o) $ extractSP sNullSP �> NullSPGetSP is �> GetSP $ \m �>case m ofRight i �> extractSP (is i)Left () �> PutSP (Left s) $NullSPThe stream processor extractSP s accepts messages of the form Right i, whichare fed to s. Output o from s is output as Right o. At any time, we can feedthe message Left () to it, and it will output the encapsulated stream processorin its current state as a message, tagged with Left. Note that in general, thestream processor that is output in this way is not equal to the original streamprocessor s.So when we demand the continuation, extractSP s outputs it and dies. Butwhy should it die? It might be useful to have it carry on as if nothing hadhappened. This reminds us of cloning of objects, and forking of processes. Thevariant is easily programmed, by modifying the last line of extractSP.cloneSP :: SP i o �> SP (Either () i) (Either (SP i o) o)cloneSP s = case s ofPutSP o s �> PutSP (Right o) $ cloneSP sNullSP �> NullSPGetSP is �> GetSP $ \m �>case m ofRight i �> cloneSP (is i)Left () �> PutSP (Left s) $cloneSP s

117Since stream processors are mere values, we do not need any machinery forduplication of state�this is indeed a case where we appreciate purely functionalprogramming.We can promote these ideas to fudgets as well, although the implementationgets more complicated. In the case of a GUI fudget, some action must be takento ensure that it brings its associated window along when it moves, for exam-ple. We can then program drag and drop for any GUI fudget, as illustrated inFigure 58. In what follows, we will describe a set of combinators for support-ing drag-and-drop in fudget programs. We call the fudgets that the user candrag and drop drag fudgets, and the areas in which they live drop areas. Thecommunication of drag fudgets between the drop areas is mediated by a singleinvisible drag-and-drop fudget. A schematic picture of these fudgets is shownin Figure 59. These three types of fudgets exchange special messages to controlthe motion of the drag fudgets. To allow the drag fudgets to communicate withthe rest of the program independently of these control messages, we pretend fora moment that fudgets have two mid-level input and output connections.type SF mi mo hi ho = F (Either mi hi) (Either mo ho)The type SF stands for strati�ed fudget. With this type, we can think of themessage types of stream processors as strati�ed in three levels. The drag fudgetsare formed by the container dragF:dragF :: F a b �> DragF a btype DragF a b = SF DragCmd (DragEvt a b) a bThe result type of dragF f is a strati�ed fudget in which the high-level streamsare connected to f, and the mid-level streams are used for control, by means ofdrag commands and drag events. The drag commands are sent from the droparea to the drag fudgets during drag. The most important drag command isDragExtract, and informs the drag fudget that it has been accepted by anotherdrop area. To this command, the drag fudget responds with an event containingitself:data DragCmd =DragExtract| ...data DragEvt a b =DragExtracted (DragF a b)| ...Since the drag events can contain drag fudgets, we see that it is necessary toparameterise the type DragEvt. The exact type of the drag fudget must bevisible in the type of drag events, as well as in other control message types wewill introduce in the following. Thus, the type system ensures that a draggedfudget cannot be dropped in an area for fudgets of di�erent type.The drop area is a strati�ed variant of dynListF (see Section 13.4):dropAreaF :: SF (DropCmd a b) (DropEvt a b) (Int,a) (Int,b)The mid-level messages are called the drop commands and drop events, and areused by the drag-and-drop fudget to control the drop areas. Note that both these

118 25 Moving stream processors
About to drag

While dragging

After dropping

Figure 58. Pictures showing a fudget we are about to drag, while dragging, andafter dropping it. After the fudget was dropped, the user changed its text. Notethat the output from the moved fudget now goes to Drop area 2.

119

dropAreaF

dragF f 1

dragF f 2

dragF f 3

dropAreaF

dragF f 4

dragAndDropF

Figure 59. Schematic view of an invisible drag-and-drop fudget (indicated bythe dashed frame) which in this case contains two rectangular drop areas, eachof which contains a number of draggable fudgets. The dotted arrow indicateswhat will happen if a user drags the fudget f1 from the �rst to the secondarea: it will be extracted as a message from the �rst drop area and reach thedrag-and-drop-fudget, which will bounce it to the second drop area.

120 25 Moving stream processorstypes are parameterised, because both can carry drag fudgets as messages. Asindicated in Figure 59, the drop area contains drag fudgets, which furthermoreare tagged. The high-level messages from these are therefore tagged when theyenter or leave the drop area.There is one drop command that is interesting for the application program-mer: dropNew :: DragF a b �> DropCmd a bIt is used to inject new drag fudgets inside a drop area.Finally, we have the drag-and-drop fudget, which mediates dropped fudgetsbetween drop areas.dragAndDropF :: SF (t,DropCmd a b) (t,DropEvt a b) c d �> F c dThe argument to dragAndDropF is a strati�ed fudget whose mid-level messagesshould be uniquely tagged drop area messages. The intension is that the strat-i�ed fudget contains a list of drop area fudgets. Such a list can conveniently becreated using a strati�ed variant of listF:listSF :: Eq t => [(t,SF a b c d)] �> SF (t,a) (t,b) (t,c) (t,d)listSF s� = pullEither >^=< listF s� >=^< pushEitherpushEither (Left (t,a)) = (t,Left a)pushEither (Right (t,a)) = (t,Right a)pullEither (t,Left a) = (Left (t,a))pullEither (t,Right a) = (Right (t,a))By means of dragF, dropAreaF, and dragAndDropF, we can program the example(illustrated in Figure 58. As drag fudgets, we use labelled stringInputF's.drag :: Show i => DragF String Stringdrag i = dragF $labAboveF ("Drag me ("++show i++")") $((show i++": ")++) >^=< stringInputFThe string output from the drag fudget is prepended with its identity i.We de�ne a drop area with an associated display which shows the outputfrom the drag fudgets in it. We initialise the drop area by creating a drag fudgetin it with the same identity as the drop area.area :: Show i =>i �> SF (DropCmd String String) (DropEvt String String)(Int,String) aarea i = vBoxF $idLeftF (displayF >=^< snd) >==<startupF [Left $ dropNew $ drag i] dropAreaFFinally, we de�ne a drag-and-drop fudget with two drop areas inside shell fud-gets. dnd :: F (Int,(Int,String)) (Int,a)dnd = dragAndDropF $ listSF $[(t,shellF ("Drop area "++show t) (area t)) | t <� [1..2]]main = fudlogue dnd

25.1 Problems with dragging windows in X Windows 12125.1 Problems with dragging windows in X WindowsDragging objects as windows under the pointer in the X Window system is notproblem free: it is di�cult to determine where the object is dropped when theuser releases the mouse button. This release generates a button event whichcontains information about what window is under the pointer. But this willnot be the window in which we drop the object, it will be the object's windowitself! If we are content with somewhat less spectacular visual feedback, wecould choose not to move the object itself, but change the pointer to a symbolthat carries a little object, as is done in Open Windows [Sol97].What we need is to have the dragged object'swindow transparent with respect to certain events.We achieve this in a brutal way, by simply zappinga small temporary hole in the object window underthe pointer, as shown in the detail.However, we now have timing problem, which canappear if the user moves the pointer quickly and im-mediately drops the object. There is a delay in themovement of the pointer and the object, since it isthe client which is doing the tracking. With a con-stant delay, the tracking error is proportional to the speed of the pointer, whichmeans that if the speed is large enough, the pointer will not be above the holeanymore. Currently, we do not know if there exists a good solution to this �dropproblem� in X Windows.

122 26 Typed sockets for client/server applications26 Typed sockets for client/server applicationsIn this section, we will see how fudgets can be suitable for other kinds of I/Othan graphical user interfaces. We will write client/server applications, wherea fudget program acts as a server on one computer. The clients are also fudgetprograms, and they can be run on other computers if desired.The server is an example of a fudget program which may not have the needfor a graphical user interface. However, the server should be capable of handlingmany clients simultaneously. One way of organising the server is to have a clienthandler for each connected client. Each client handler communicates with itsclient via a connection (a socket), but it may also need to interact with otherparts of the server. This is a situation where fudgets come in handy. Theserver will dynamically create fudgets as client handlers for each new client thatconnects.We will also see how the type system of Haskell can be used to associatethe address (a host name and a port number) of a server with the type of themessages that the server can send and receive. If the client is also written inHaskell, and imports the same speci�cation of the typed address as the server,we know that the client and the server will agree on the types of the messages,or the compiler will catch a type error.The type of sockets that we consider here are Internet stream sockets. Theyprovide a reliable, two-way connection, similar to Unix pipes, between any twohosts on the Internet. They are used in Unix tools like telnet, ftp, �nger, mail,Usenet and also in the World Wide Web.26.1 ClientsTo be able to communicate with a server, a client must know where the server islocated. The location is determined by the name of the host (a computer on thenetwork) and a port number. A typical host name is www.cs.chalmers.se. Theport number distinguishes di�erent servers running on the same host. Standardservices have standard port numbers. For example, WWW servers are usuallylocated on port 80.The Fudget library uses the following types:type Host = Stringtype Port = IntThe fudgetsocketTransceiverF :: Host �> Port �> F String Stringallows a client to connect to a server and communicate with it.3 Chunks ofcharacters appear in the output stream as soon as they are received from theserver (compare this with stdinF in Section 14.1).The simplest possible client we can write is perhaps a telnet client:telnetF host port = stdoutF >==<socketTransceiverF host port >==<stdinF3The library also provides combinators that give more control over error handling and theopening and closing of connections.

26.2 Servers 123This simple program does not do the option negotiations required by the stan-dard telnet protocol [RFC854,855], so it does not work well when connected tothe standard telnet server (on port 23). However, it can be used to talk to manyother standard servers, e.g., mail and news servers.26.2 ServersWhereas clients actively connect to a speci�c server, servers passively wait forclients to connect. When a client connects, a new communication channel isestablished, but the server typically continues to accept connections from otherclients as well.A simple fudget to create servers issimpleSocketServerF :: Port �> F (Int,String) (Int,String)The server allows clients to connect to the argument port on the host where theserver is running. A client is assigned a unique number when it connects to theserver. The messages to and from simpleSocketServerF are strings tagged withsuch client numbers. Empty strings in the input and output streams mean thata connection should be closed or has been closed, respectively.This simple server fudget does not directly support a program structure withone handler fudget per client. A better combinator is shown in the next section.26.3 Typed socketsMany Internet protocols use messages that are human readable text. When im-plementing these, the natural type to use for messages is String. However, whenwe write both clients and severs in Haskell, we may want to use an appropriatedata type for messages sent between clients and server, as we would do if theclient and server were fudgets in the same program. In this section we show howto abstract away from the actual representation of messages on the network.We introduce two abstract types for typed port numbers and typed serveraddresses. These types will be parameterised on the type of messages that wecan transmit and receive on the sockets. First, we have the typed port numbers:data TPort c sThe client program needs to know the typed address of the server:data TServerAddress c sIn these types, c and s stand for the type of messages that the client and servertransmit, respectively.To make a typed port, we apply the function tPort on a port number:tPort :: (Show c, Read c, Show s, Read s) => Port �> TPort c sThe Show and Read contexts in the signature tells us that not all types can beused as message types. Values will be converted into text strings before theyare transmitted as a message on the socket. This is clearly not very e�cient,but it is a simple way to implement a machine independent protocol.Given a typed port, we can form a typed server address by specifying acomputer as a host name:

124 26 Typed sockets for client/server applicationstServerAddress :: TPort c s �> Host �> TServerAddress c sFor example, suppose we want to write a server that will run on the host animal,listening on port 8888. The clients transmit integer messages to the server, whichin turn sends strings to the clients. This can be speci�ed bythePort :: TPort Int StringthePort = tPort 8888theServerAddr = tServerAddress thePort "animal"A typed server address can be used in the client program to open a socket tothe server by means of tSocketTransceiverF:tSocketTransceiverF :: (Show c, Read s) =>TServerAddress c s �> F c (Maybe s)Again, the Show and Read contexts appear, since this is where the actual con-version from and to text strings occurs. The fudget tSocketTransceiverF willoutput an incoming message m from the server as Just m, and if the connectionis closed by the other side, it will output Nothing.In the server, we will wait for connections, and create client handlers whennew clients connect. This is accomplished with tSocketServerF:tSocketServerF :: (Read c, Show s) =>TPort c s�> (F s (Maybe c) �> F a (Maybe b))�> F (Int,a) (Int,Maybe b)So tSocketServerF takes two arguments, the �rst one is the port number to listenon for new clients. The second argument is the client handler function. When-ever a new client connects, a socket transceiver fudget is created and given tothe client handler function, which yields a client handler fudget. The client han-dler is then spawned inside tSocketServerF. From the outside of tSocketServerF,the di�erent client handlers are distinguished by unique integer tags. When aclient handler emits Nothing, tSocketServerF will interpret this as the end of aconnection, and kill the handler.The idea is that the client handler functions should use the transceiver argu-ment for the communication with the client. Complex handlers can be writtenwith a loopThroughRightF around the transceiver, if desired. In many casesthough, the supplied socket transceiver is good enough as a client handler di-rectly. A simple socket server can therefore be de�ned by:simpleTSocketServerF :: (Read c, Show s) =>TPort c s �> F (Int,s) (Int,Maybe c)simpleTSocketServerF port = tSocketServerF port id26.4 Avoiding type errors between client and serverBy using the following style for developing a client and a server, we can detectwhen the client and the server disagree on the message types.First, we de�ne a typed port to be used by both the client and the server.We put this de�nition in a module of its own. Suppose that the client sendsintegers to the server, which in turn can send strings:

26.5 Example: a group calendar 125module MyPort wheremyPort :: TPort Int StringmyPort = tPort 9000We have picked an arbitrary port number. Now, if the client is as follows:module Main where -- Clientimport MyPort...main = fudlogue (... tSocketTransceiverF myPort ...)and the servermodule Main where -- Serverimport MyPort...main = fudlogue (... tSocketServerF myPort ...)then the compiler can check that we do not try to send messages of the wrongtype. Of course, this is not foolproof. There is always the problem of havinginconsistent compiled versions of the client and the server, for example. Or onecould use di�erent port declarations in the client and the server.Now, what happens if we forget to put a type signature on myPort? Isit not possible then that we get inconsistent message types, since the clientand the server could instantiate myPort to di�erent types? The immediateanswer is no, and this is because of a subtle property of Haskell, namely themonomorphism restriction. A consequence of this restriction is that the type ofmyPort cannot contain any type variables. If we forget the type signature, thiswould be the case, and the compiler would complain. It is possible to circumventthe restriction by explicitly expressing the context in the type signature, though.If we do this when de�ning typed ports, we shoot ourselves in the foot:module MyPort wheremyPort :: (Read a, Show a) => TPort a String -- Wrong!myPort = tPort 9000We said that this was the immediate answer. The real answer is that if theprogrammer uses HBC, we might get inconsistent message types, since it ispossible to give a compiler �ag that turns o� the monomorphism restriction,which circumvents our check. This is a feature that we have used a lot (see alsoSection 40.1).26.5 Example: a group calendarOutside the lunch room in our department, there is a whiteboard where theweek's activities are registered. We will look at an electronic version of thiscalendar, where people can get a view like this on their workstation (Figure 60).The entries in the calendar can be edited by everyone. When that happens,all calendar clients should be updated immediately.The calendar consists of a server maintaining a database, and the clients,running on the workstations.

126 26 Typed sockets for client/server applications

Figure 60. The calendar client.
tSocketServerFdatabaseSPFigure 61. The structure of server. The small fudgets are client handlers createdinside the socket server.26.5.1 The calendar serverThe server's job is to maintain a database with all the entries on the whiteboard,to receive update messages from clients and then update the other connectedclients. The server consists of the stream processor databaseSP, and a tSock-etServerF, where the output from the stream processor goes to tSocketServerF,and vice versa (Figure 61). The program appears in Figure 62. The streamprocessor databaseSP maintains two values: the client list cl, which is a list ofthe tags of the connected clients, and the simple database db, organised as a listof (key,value) pairs. This database is sent to newly connected clients. When auser changes an entry in her client, it will send that entry to the server, whichwill update the database and use the client list to broadcast the new entry toall the other connected clients. When a client disconnects, it is removed fromthe client list. The client handlers (clienthandler) initially announce themselveswith NewHandler, then they apply HandlerMsg to incoming messages.The typeof the (key,value) pairs in the database is the same as the type of the messagesreceived and sent, and is de�ned in the module MyPort:

26.5 Example: a group calendar 127
module Main where -- Serverimport Fudgetsimport MyPort(myPort)main = fudlogue (server myPort)data HandlerMsg a = NewHandler | HandlerMsg aserver port = loopF (databaseSP [] [] >^^=<tSocketServerF port clienthandler)clienthandler transceiver =putSP (Just NewHandler) (mapSP (map HandlerMsg))>^^=< transceiverdatabaseSP cl db =getSP $ \(i,e) �>let clbuti = �lter (/= i) clin case e ofJust handlermsg �> case handlermsg ofNewHandler �>-- A new client, send the database to it,-- and add to client list.putsSP [(i,d) | d <� db] $databaseSP (i:cl) dbHandlerMsg s �>-- Tell the other clients,putsSP [(i',s) | i' <� clbuti] $-- and update database.databaseSP cl (replace s db)Nothing �>-- A client disconnected, remove it from-- the client list.databaseSP clbuti dbreplace :: (Eq a) => (a,b) �> [(a,b)] �> [(a,b)]replace = ... Figure 62. The calendar server.

128 26 Typed sockets for client/server applicationsmodule MyPort whereimport Fudgetstype SymTPort a = TPort a amyPort :: SymTPort ((String,Int),String)-- e.g. (("Torsdag",13),"Doktorandkurs:")port = tPort 8888

12927 Displaying and manipulating graphical objectsSo far, we have seen that fudgets can display text, but we have not seen how tocreate and display other kinds of graphical objects. (You might have wonderedhow button borders are drawn, for example.) In the �rst few sections of thischapter we present data types, type classes and fudgets for handling graphics.Structure editors of various kinds are programs that can make good use ofgraphics. Examples of such programs are drawing programs, WYSIWYG wordprocessors, �le managers, etc. The common characteristic is that they allowyou to manipulate a graphical representation of some object on the screen, forexample, by selecting a part of the object and performing some editing operationon it (for example, making a word italic in a word processor, or deleting a �lein a �le manager). The editing operations performed by the user can leadto marginal or radical changes to the structure of the object and its graphicalrepresentation. The editor will need to have an e�cient mechanism for updatingthe screen to re�ect these changes. The fudget for graphics that we describe inthis chapter supports this.The Fudget library components we have seen so far allow you to build userinterfaces that consist of a number of parts that communicate, but we have notseen any mechanisms that allow an arbitrary part to be selected by the userand perhaps replaced by something else, so we have not seen a general mecha-nism for building structure editors. Some basic fudgets, like toggleButtonF andstringF can be seen as structure editors for particular structures (booleans andstrings, respectively). The later sections in this chapter present data types andfudgets that can be used as a starting point when building more general struc-ture editors. In Chapter 28 we go on and describe combinators more directlyaimed at building structure editors, or syntax directed editors.The support for graphics in the Fudget library was prompted by the de-velopment of the syntax directed editor Alfa (Chapter 33), and functionalitywas added to the fudget system as needed for that particular purpose. Somedevelopment was also prompted by the work on the web browser described inChapter 32.27.1 The class GraphicWe have already encountered the class Graphic many times. Many of the GUIfudgets presented in Chapter 9 display graphics. Recall, for example, buttonF:buttonF :: (Graphic a) => a �> F Click ClickIt has an argument that determines what is displayed inside the button. Inearly versions of the Fudget library, the type of buttonF wasbuttonF :: String �> F Click Clickbut later, the class Graphic was introduced and many fudgets were generalisedfrom displaying only strings to displaying arbitrary graphical objects. Sincethe new types are more general than the old ones, the changes are backwardscompatible (old programs continue to work unmodi�ed).44This kind of change can actually cause ambiguous overloading.

130 27 Displaying and manipulating graphical objectsdata DrawCommand= DrawLine Line| DrawImageString Point String| DrawString Point String| DrawRectangle Rect| FillRectangle Rect| FillPolygon Shape CoordMode [Point]| DrawArc Rect Int Int| FillArc Rect Int Int| CopyArea Drawable Rect Point| CopyPlane Drawable Rect Point Int| DrawPoint Point| CreatePutImage Rect ImageFormat [Pixel]| DrawLines CoordMode [Point]...Figure 63. The type DrawCommand provides an interface to the Xlib librarycalls for drawing geometrical shapes and strings.The Graphic class serves a purpose similar to that of the Show class: typeswhose values have graphical representations are made instances of the Graphicclass, just like types whose values have textual representations are instances ofthe Show class. As with the Show class, the methods of Graphic class are notoften used directly, except when de�ning new instances, and we discuss themin a later section. The library provides instances in the Graphic class for manystandard types.27.2 Primitive drawing operationsBefore we describe the data types that are instances of the Graphic class, wetake a look at the low-level interface that allows a fudget to draw something inits window.The Fudgets GUI toolkit is built on top of the Xlib [Nye90] library level of theX Windows system [SG86] (as described in Section 22.1). This shines throughin the Fudget library support for graphics: the primitive drawing operationsavailable in the fudget library correspond directly to what is provided by Xlib.An interface to the Xlib library calls for drawing geometrical shapes andstrings is provided through the data type DrawCommand shown in Figure 63.Apart from the parameters describing the shape to be drawn, the Xlib callshave some additional parameters that are not present in the constructors of theDrawCommand type. As a typical example of the relationship between the Xlibcalls and the constructors, consider XDrawLine:XDrawLine(display, d, gc, x1, y1, x2, y2)Display *display;Drawable d;GC gc;int x1, y1, x2, y2;

27.3 Types for simple graphical objects 131import Fudgetsmain = fudlogue (shellF "Hello" helloF)helloF = labelF (BitmapFile "hello.xbm")Figure 64. The graphical version of the "Hello, world" program is just as simpleas the textual version in Section 9.1.A drawable d (a window or a pixmap) and a graphics context gc are suppliedby the fudget that outputs the drawing command. The type XCommand (seeSection 22.1.1) contains the following constructor for outputting drawing com-mands:data XCommand = ... | Draw Drawable GCId DrawCommand | ...The display argument can be determined from the drawable. (The currentFudget library supports only one display connection, so nothing extra is neededfor this.)27.3 Types for simple graphical objectsHaving seen how a fudget can output drawing commands to draw in its window,we can now take a look at some simple types for graphical objects. These typesprovide the most low-level interface to the Xlib drawing commands.27.3.1 BitmapFileApart from the drawing commands supported through the type DrawCommand,the Fudget library also supports the Xlib library call XReadBitmapFile for read-ing images (bitmaps) from �les:data XRequest = ... | ReadBitmapFile FilePath | ...data XResponse = ... | BitmapRead BitmapReturn | ...data BitmapReturn = BitmapBad | BitmapReturn Size (Maybe Point) PixmapIdThis means that we can easily create a data type that allows us to use imagesstored in �les as graphical objects.data BitmapFile = BitmapFile FilePathinstance Graphic BitmapFile where ...As you can see in Figure 64, by using the type BitmapFile, a program that loadsan image from a �le and displays it is as just as simple as the "Hello, world!"program (see Section 9.1):

132 27 Displaying and manipulating graphical objects27.3.2 FlexibleDrawingThe Fudget library provides the following type to create stretchable graphicalobjects:data FlexibleDrawing = FlexD Size Bool Bool (Rect �> [DrawCommand])instance Graphic FlexibleDrawing where ...The �rst argument of the FlexD constructor indicates a nominal size, but theactual size is determined by the fudget layout system and depends on the con-text. The next two arguments indicate the stretchiness, that is, whether thesize should be �xed horizontally and vertically, respectively.The last argument is a function that should produce drawing commandsthat draw within the given rectangle. The argument is a rectangle rather thanjust a size to make �exible drawings more e�cient to use as parts of structuredgraphical objects. Although the drawing function could draw completely dif-ferent things for di�erent rectangle position and sizes, changing the position isexpected to have no other e�ect than a translation, that is,f (Rect pos size) = moveDrawCommands (f (Rect origin size)) poswhere moveDrawCommands,moveDrawCommands :: [DrawCommand] �> Point �> [DrawCommand]moves (translates) drawing commands. Changing the size is expected make thefunction adjust the drawing to �ll the available space, typically by stretching it.As an example, here are �exible drawings for �lled rectangles, horizontallines and vertical lines:�lledRect, hFiller, vFiller :: Int �> FlexibleDrawing�lledRect = �ller False FalsehFiller = �ller False TruevFiller = �ller True False�ller fh fv d = FlexD (Point d d) fh fv (\r�>[FillRectangle r])A sample usage can be seen in Figure 66.27.3.3 Fixed size drawingsHaving de�ned the type FlexibleDrawing, we can easily de�ne a function forcreating graphical objects of a �xed size:�xedD :: Size �> [DrawCommand] �> FlexibleDrawing�xedD size dcmds = FlexD size True True drawitwhere drawit (Rect pos _) = moveDrawCommands dcmds posThe arguments are a list of drawing commands to draw the desired shape anda size. The commands are expected to draw within a rectangle of the indicatedsize, with the origin as the upper left corner.55Instead of leaving it to the user to indicate the size of the drawing, it would be possible tocompute a bounding rectangle by inspecting the drawing commands, but doing it accuratelyin the general case is rather involved and would be less e�cient.

27.4 Types for structured graphical objects 133Notice that depending on how you de�ne your FlexibleDrawing value, youmay get very di�erent operational behaviour. Using �xedD, you will get a valuecontaining a reference to a list of drawing commands that will be retained inthe heap and translated to the appropriate position (by moveDrawCommands)each time the drawing is used. For FlexibleDrawings created like �ller above, thedrawing commands may be recomputed and thrown away each time the drawingis used. So, although the result on the screen will be the same, how muchrecomputation that occurs and how much memory is used depends on details inhow the program is written and what kind of lambda lifting the compiler does(whether it supports full laziness [Kar92]).27.4 Types for structured graphical objectsThe types for graphical objects presented above lack two important features:� The ability to specify drawing attributes, such as colors, line widths andfonts.� The ability to compose simple objects into larger ones with a layout spec-i�ed in a simple way.As discussed in the introduction of this chapter, we also need a way to iden-tify parts of a composite graphical object when building structure editors. Weintroduce the type Drawing to take care of these needs.data Drawing label leaf= AtomicD leaf| LabelD label (Drawing label leaf)| AttribD GCSpec (Drawing label leaf)| SpacedD Spacer (Drawing label leaf)| PlacedD Placer (Drawing label leaf)| ComposedD [Drawing label leaf]instance Graphic leaf => Graphic (Drawing label leaf) where ...placedD :: Placer �> [Drawing l a] �> Drawing l aplacedD p ds = PlacedD p (ComposedD ds)So, composite drawings are trees. The leaves (built with the constructor Atom-icD) can contain values of any type, but as seen from the instance declarationabove, the drawing can be displayed only if the leaf type is an instance of theGraphic class. The internal nodes can contain:� drawing attributes (the constructor AttribD) that are in e�ect in the sub-tree of the node. These are discussed further below.� layout information in the form of spacers and placers (the constructorsSpacedD and PlacedD) from the ordinary fudget layout system (Chap-ter 11).� labels that can be used to identify, or just hold some extra informationon, part of a drawing (the constructor LabelD). These have no graphicale�ect.

134 27 Displaying and manipulating graphical objectstype DPath = [Int]up :: DPath �> DPathdrawingPart :: Drawing a b �> DPath �> Drawing a bmaybeDrawingPart :: Drawing a b �> DPath �> Maybe (Drawing a b)updatePart :: Drawing a b �> DPath �> (Drawing a b �> Drawing a b) �> Drawing a bmapLabelDrawing :: (a �> b) �> Drawing a c �> Drawing b cmapLeafDrawing :: (a �> b) �> Drawing c a �> Drawing c bdrawingLabels :: Drawing a b �> [(DPath, a)]deletePart :: Drawing a b �> DPath �> Drawing a b... Figure 65. Some functions for manipulating parts of drawings.� Composed drawings (the constructor ComposedD). Most of the time whendrawings are composed, it is useful to also specify a layout, so rather thanusing the constructor ComposedD directly, you use the function placedD.Since the Drawing type is an instance of the Graphic class, drawings can bedisplayed by GUI fudgets that create labels, buttons, menus, displays and soon. There is also a fudget that makes use of the properties of the Drawing type:hyperGraphicsF :: (Eq lbl, Graphic gfx) =>Drawing lbl gfx �> F (lbl, Drawing lbl gfx) lblIt displays a drawing, with labels in it. When you click on a point in a drawing,the fudget outputs the label of the smallest part containing the point where youclicked. You can replace a part by feeding a pair of a label and a new drawing tothe fudget. hyperGraphicsF can thus be the starting point for simple graphicalbrowsers and editors.27.4.1 Manipulating drawingsSome functions to manipulate parts of drawings are shown in Figure 65. Thesecan be used in the implementation of structure editors. Values of type DPathidentify parts of drawings.27.4.2 Mixing graphical objects of di�erent types in one drawingIn a Drawing, all the leaves must have the same type. Although you could drawanything using only leaves of type FlexibleDrawing, it would be more conve-nient to be able to mix di�erent types of leaves. For this purpose, the Fudgetlibrary provides the following type that makes use of existentially quanti�edtypes [LO92]:data Gfx = (Graphic ?a) => G ?ainstance Graphic Gfx where ... -- trivialg :: Graphic a => Drawing lbl Gfxg = AtomicD . G

27.4 Types for structured graphical objects 135placedD verticalP [SpacedD centerS (g "1"),g (hFiller 1),g "x+y"]Figure 66. A sample drawing with leaves of di�erent types.In the de�nition of Gfx, ?a is an existentially quanti�ed type variable. Thecontext (Graphics ?a) => limits the domain of the variable to the types in theGraphic class. The result is that the constructor G can be applied to a value ofany type in the Graphic class, yielding a value of type Gfx. When you later usepattern matching to extract the argument of G, you will not know what type ithas, but you will know that the type is in the Graphic class, so you can applythe methods of that class on it. So, making Gfx an instance of the Graphic classbecomes trivial. (The instance declaration is shown in Figure 71).An example where strings and a FlexibleDrawing are mixed in a Drawing isshown in Figure 66.The use of existential types gives us a way of packaging data with the meth-ods that operate on it and abstract away from the concrete representation ofthe data. This is reminiscent of how data abstraction is achieved in object-oriented programming. (The reader is referred to [CW85] for a fuller discussionof the relation between existential types, data abstraction and object-orientedprogramming.)27.4.3 Drawing attributesMost of the Xlib drawing commands have an argument of type GC, a graphicscontext. This is a data structure containing the values of a number of parametersthat a�ect the result of the drawing commands, but which would be tiresome tohave to pass explicitly as arguments every time you draw something. Examplesof such parameters, or attributes, are:� foreground and background colors,� which font to use for text,� line width, line style (e.g., solid or dashed), �ll style.Most of these attributes are speci�ed by numbers or elements of enumerationtypes, but colors and fonts are more troublesome. Colors can be speci�ed using,e.g., color names or RGB values, but before a color can be used in a GC it mustbe converted to a pixel value. Depending on the visual type of the display, apixel value can be, e.g., an 8-bit index into a 256 element colormap (for 8-bitPseudoColor displays) or RGB information packed into 16 or 24 bits (for 16-bitand 24-bit TrueColor displays, respectively).Fonts can be speci�ed by font names, but before they can be used, they haveto be converted to font identi�ers. Also, if you want to know how much spacethe text you draw will take up, you need obtain a data structure containingmetric information on the font.

136 27 Displaying and manipulating graphical objectsThe data types provided by the Fudget library for specify drawing attributesare shown below. The types ColorSpec and FontSpec are described further inthe next section.data GCSpec= SoftGC [GCAttributes ColorSpec FontSpec]| HardGC GCtxdata ColorSpec -- see belowdata FontSpec -- see belowdata GCAttributes color font= GCFunction GCFunction| GCForeground color| GCBackground color| GCLineWidth Width| GCLineStyle GCLineStyle| GCFont font| GCCapStyle GCCapStyle| GCFillStyle GCFillStyle| GCTile PixmapId| GCStipple PixmapId...data GCtx = GC GCId FontStructdata FontStruct -- abstract type for font metric infodata GCId -- An Xlib GCtype Width = Intdata GCFunction = GXclear | GXand | GXandReverse | GXcopy | ... | GXsetdata GCLineStyle = LineSolid | LineDoubleDash | LineOnO�Dashdata GCCapStyle = CapNotLast | CapButt | CapRound | CapProjectingdata GCFillStyle = FillSolid | FillTiled | FillStippled | FillOpaqueStippledTo include drawing attributes in a Drawing (de�ned above), you use the con-structor AttribD applied to a GCSpec, which usually is the constructor SoftGCapplied to a list of attributes containing high-level speci�cations of fonts and col-ors. However, before the drawing can be displayed, this high-level speci�cationmust be converted into a GC. In addition, to be able to automatically determinethe size of text, the metric information for the speci�ed font is required. Thehigh-level drawing attributes are therefore converted into a value of type GCtxby fudgets that display drawings. This conversion may require calls to Xliblibrary functions like XLoadQueryFont, XAllocNamedColor and XCreateGC. Fordrawings that are to be displayed many times, making these calls every timecan cause a noticeable performance degradation, so the library provides a wayto create GCtx values in advance. These can then be included in drawings us-ing GCSpecs with the constructor HardGC. The drawing can then be displayedwithout making any calls except for the necessary drawing commands. Thereason for choosing the names SoftGC and HardGC is that the subdrawings ofa node setting the drawing attributes using the SoftGC alternative, inherit the

27.4 Types for structured graphical objects 137attributes not present in the GCAttributes list from the parent drawing, whereaswith the HardGC alternative, all attributes are taken from the given GCtx.27.4.4 Specifying fonts and colorsTo allow fonts and colors to be speci�ed conveniently in di�erent ways, we haveintroduced the following types and classes:class ColorGen a where ...data ColorSpec -- an abstract typecolorSpec :: ColorGen a => a �> ColorSpecclass FontGen a where ...data FontSpec -- an abstract typefontSpec :: FontGen a => a �> FontSpecThe following types are instances of the ColorGen class and can be used to specifycolors:type ColorName = String -- color names, as used by Xlibdata RGB = RGB Int Int Int -- RGB values, as used by Xlibdata Pixel -- previously obtained pixel valuesValues of the RGB type speci�es the intensities of the primary colors red, greenand blue, using 16-bit integers. RGB 0 0 0 is black, and RGB 65535 65535 65535is white.The following types are instances of the FontGen class and can be used tospecify fonts:type FontName = String -- font names as used by Xlibdata FontStruct -- a previously obtained FontStructThe canonical way of including font and color speci�cations in a drawing is todo something like this:blueHelloMsg =AttribD (SoftGC [GCForeground (colorSpec "blue"),GCFont (fontSpec "�*�times�*�r�*�18�*")]),(g "Hello, world!")As you can see, this is rather clumsy, so the Fudget library provides the following,more convenient functions:bgD, fgD :: ColorGen color =>color �> Drawing lbl leaf �> Drawing lbl leaffontD :: FontGen font =>font �> Drawing lbl leaf �> Drawing lbl leafUsing these, you can write the above example like this:blueHelloMsg = fgD "blue" $ fontD "�*�times�*�r�*�18�*" $g "Hello, world!"

138 27 Displaying and manipulating graphical objects27.4.5 Allocating colors and fonts in advanceAs mentioned above, you might for e�ciency reasons want to allocate colorsand fonts in advance, and include the resulting GCtx values in the drawings youconstruct. For this purpose, the Fudget library provides the following:wCreateGCtx :: (FontGen b, ColorGen a) =>GCtx �> [GCAttributes a b] �> (GCtx �> F c d) �> F c drootGCtx :: GCtxThe function wCreateGCtx allows you to create GCtx values, by modifying atemplate GCtx. You can start from rootGCtx which contains the default settingsfor all attributes.27.5 ImplementationHow should a fudget that displays Drawings be implemented? Drawings aretrees, composed from leaves containing simple graphical objects, using placersand spacers from the ordinary fudget layout system. A natural solution thusseems to be to implement new fudgets for displaying simple graphical objectsand then display composed drawings by composing fudgets that display theleaves. While this at �rst seems like a simple and elegant solution that givesus maximal reuse of existing Fudget library components, remember that wenot only want to display drawings: to build structure editors we also need amechanism that lets the user select and manipulate parts of a structure. Wewould need to set up a structure where every node in a Drawing is representedby a fudget, and a communication structure which allows us to communicatewhich each node fudget. Further, in order to be able to replace arbitrary nodeswith new drawings, we would have to use the combinator dynF (Section 13.4)at each node.dynF :: F a b �> F (Either (F a b) a) bWe tried this approach, but when taking all requirements into account, thisseemingly natural solution became rather tricky. It also turned out to be ratherine�cient and there are several possible reasons for this:� the solution requires a lot of the work to be done by message passing in acomplex structure of fudgets. Compared to making function calls, passingmessages between fudgets can be expensive (see Section 39.1.2.4).� each graphical fudget is represented by a window in the X Windows sys-tem. This means that there will be at least one window per drawing leaf.Creating and maintaining windows requires some work both by the fudgetprogram and the X server.As a result, we have developed another solution that is now part of the Fudgetlibrary. It uses one fudget, graphicsF, to display complete drawings in one win-dow. This has proved to be reasonably e�cient. It has allowed us to implementusable, non-trivial applications, the syntax directed editor Alfa (Chapter 33)and the web browser WWWBrowser (Chapter 32) being the largest. A draw-back is that some functionality (most notably hit detection and clipping) that in

27.5 Implementation 139principle could be handled by the window system (and it was in the �natural�solution) had to be duplicated in the implementation of graphicsF. The fud-get graphicsF could actually be seen as an implementation of a simple windowsystem!27.5.1 The capabilities of graphicsFSince graphicsF is intended to satisfy all the needs for displaying graphics withinthe Fudget library, and also be the ground on which applications like syntaxdirected editors and web browsers can be built, it has been made fairly general.In addition to just displaying graphics, graphicsF� can receive requests to change parts of a complex drawing. This allows youto create editors with e�cient screen updates. If graphicsF only acceptedcomplete drawings as input, either the entire window would have to beredrawn after each change, or expensive computations would be needed tocalculate the di�erence between the new and the old drawing.� can highlight part of a drawing in a fairly e�cient way. This can be usedto implement cursors in editors.� supports receiving mouse and keyboard input. graphicsF indicates whichpart of a drawing a mouse click occurred in.� can display a background image behind a drawing.� can sound the terminal bell.� can be told to make a certain part of a drawing visible when displaying alarge drawing in a scrolling area.The type of graphicsF is:graphicsF :: (Graphic a) => F (GfxCommand a) GfxEventThe de�nitions of the message types GfxCommand and GfxEvent are show inFigure 67. The constructor ChangeGfx creates messages that allow you to re-place or modify the graphical object being displayed. The argument is a list ofchanges. Each change has the form(path,(hilite,opt_repl))where path selects which part of the object should be changed, hilite switcheson or o� highlighting and opt_repl is an optional replacement for the selectedpart.graphicsF is actually a simpli�cation of graphicsGroupF,graphicsGroupF :: (Graphic gfx) =>(F a b) �> F (Either (GfxCommand gfx) a)(Either GfxEvent b)which like groupF, discussed in Section 22.1.2, can contain subfudgets. The fud-get activeGraphicsF (discussed in Section 32.3) for displaying drawing with activeparts (for example forms in a web browser) is built on top of graphicsGroupF.There are also customisable versions of these fudgets, allowing you to changeparameters like the event mask, border width and resizing policy.

140 27 Displaying and manipulating graphical objectsdata GfxCommand gfx= ChangeGfx [(DPath,(Bool,Maybe gfx))]| ChangeGfxBg ColorSpec| ChangeGfxBgPixmap PixmapId Bool -- True = free pixmap| ShowGfx DPath (Maybe Alignment,Maybe Alignment)-- makes the selected part visible| BellGfx Int -- sound the bell| GetGfxPlaces [DPath] -- ask for rectangles of listed pathsdata GfxEvent= GfxButtonEvent { gfxState :: ModState,gfxType :: Pressed,gfxButton:: Button,gfxPaths :: [(DPath,(Point,Rect))] }| GfxMotionEvent { gfxState :: ModState,gfxPaths :: [(DPath,(Point,Rect))] }| GfxKeyEvent { gfxState::ModState,gfxKeySym::KeySym,gfxKeyLookup::KeyLookup }| GfxPlaces [Rect] -- response to GetGfxPlaces| GfxResized SizeFigure 67. The message types used by graphicsF.27.5.2 Implementation of graphicsFThe fudget graphicsGroupF is implemented using groupF:graphicsGroupF subfudgets = groupF graphicsK subfudgetsgraphicsK = ...The behaviour of the fudget is thus implemented in the fudget kernel graphicsK.Here is roughly what graphicsK does in the course of displaying a graphicalobject.� A graphical object is received on the high-level input.� The sizes of the parts of the graphical object are determined and therequired resources (fonts, colors, GCs) are allocated. This part requirescalls to Xlib, which are made by graphicsK through the appropriate low-level messages. The result is a value of type MeasuredGraphics (Figure 68),containing leaves of known sizes (i.e., with known LayoutRequests), GCtxsand placers/spacers.The conversion from an arbitrary graphical object to a value of type Mea-suredGraphics is done using the methods of the Graphic class. These areshown in Figure 69. Sample instance declarations are shown last in thissection.

27.5 Implementation 141data MeasuredGraphics= LeafM LayoutRequest GCtx (Rect�>[DrawCommand])| SpacedM Spacer MeasuredGraphics| PlacedM Placer MeasuredGraphics| ComposedM [MeasuredGraphics]Figure 68. The type MeasuredGraphics.class Graphic a wheremeasureGraphicK :: a �> GCtx �> Cont (K i o) MeasuredGraphicsmeasureGraphicListK :: [a] �> GCtx �> Cont (K i o) MeasuredGraphics-- Default method for lists:measureGraphicListK xs gctx cont = ...-- converts xs one element at a time and applies ComposedM-- to the resulting list.Figure 69. The methods of the Graphic class.� The layout is computed, generating a value of type CompiledGraphics (Fig-ure 70), containing bounding rectangles and drawing commands for all theparts. This step is taken by a pure function:compileMG :: MeasuredGraphics�> (CompiledGraphics, LayoutRequest)� When Expose events are received, the drawing commands of the partswhose bounding rectangles intersect with the damaged rectangles can ef-�ciently be extracted and output. Notice that the drawing commands arekept in the form of XCommands in the CompiledGraphicss. This means thatthey can be output as they are. No temporary data structures need to becreated when responding to an Expose event. This fact, in combinationwith the use of bounding rectangles allows Expose events to be handledvery e�ciently. This is noticeable in applications like WWWBrowser andAlfa.� When a part of the drawing is replaced by a new drawing, the new draw-ing is converted into a MeasuredGraphics and inserted in the old Measured-Graphics at the appropriate place. (Paths are preserved when a Drawingdata CompiledGraphics = CGraphics Rect Cursor [XCommand] [CompiledGraphics]-- The only XCommand used is-- Draw MyWindow some_GC some_DrawCommandtype Cursor = Bool Figure 70. The type CompiledGraphics.

142 27 Displaying and manipulating graphical objectsinstance Graphic Gfx wheremeasureGraphicK (G x) = measureGraphicK xinstance Graphic FlexibleDrawing wheremeasureGraphicK (FlexD s fh fv drawf) gctx k =k (LeafM (plainLayout s fh fv) gctx drawf)-- plainLayout is de�ned in Section 27.6.2.instance Graphic Char wheremeasureGraphicK c = measureString [c]measureGraphicListK = measureStringinstance Graphic a => Graphic [a] wheremeasureGraphicK = measureGraphicListKinstance Graphic Int where -- and similarly for other basic typesmeasureGraphicK i = measureString (show i)measureString s gctx@(GC gc fs) k =let r@(Rect _ size) = string_rect fs sd = font_descent fsa = font_ascent fsp1 = Point 0 a -- left end of base line reference pointp2 = Point (xcoord size) a -- right end of base line ref pointdrawit (Rect p (Point _ h)) = [DrawString (p+(Point 0 (h�d))) s]in k (LeafM (refpLayout size True True [p1,p2]) gctx drawit)-- refpLayout is de�ned in Section 27.6.2.Figure 71. Some sample instances for the Graphic class.is converted into a MeasuredGraphics.) A new CompiledGraphics is thencomputed from the new MeasuredGraphics. Guided by the paths of thechanges and the di�erences between the bounding rectangles of the cor-responding parts in the old and new CompiledGraphics, only those partsthat have actually changed, or have moved because of the changes, areredrawn.A shortcoming of current implementation of graphicsF is that it does not handleoverlapping parts properly, not because overlapping parts would be too di�cultto handle in the current solution, but simply because it has not been importantin the applications where graphicsF has been used so far. This means thata drawing with overlapping parts can look di�erent after part of it has beenredrawn in response to an Expose event.Finally, some sample instance declarations for the Graphic class are shownin Figure 71.

27.6 Extended layout mechanisms 14327.5.3 E�ciency issues in the implementation of graphicsFAs mentioned above, when part of a drawing is replaced, graphicsF recomputesthe layout of the complete drawing. None of the old layout computations areutilised in this step. This may put an upper limit on how big objects can behandled with reasonable response times in a structure editor. A better solutionwould be to reuse layout information for parts that are not a�ected by a change.This is done in the ordinary fudget layout system (see Chapter 23).Large drawings consist of many DrawCommands. Outputting these one at atime in low-level messages turned out to entail a considerable overhead. For ex-ample, redrawing the window after a page scroll in the editor Alfa (Chapter 33)in a typical situation could take 1 second. In an attempt to improve this, weadded a new constructor to the XCommand type:data XCommand = ... | XDoCommands [XCommands] ...It allows many commands to be passed in one low-level message, thus allowingall the DrawCommands needed to redraw a window to be passed in one messagefrom graphicsF to the top level of the fudget hierarchy. The message passingoverhead thus becomes negligible. Also, caches and other �lters (see Chapter 24)that previously had to examine every DrawCommand now only examine oneXDoCommands message (they do not look inside). This reduced the abovementioned redrawing time from 1 second to about 0.1 second, which makes abig di�erence from the user's point of view.27.6 Extended layout mechanismsIn Chapter 11, we saw placers and spacers suitable for specifying the layout ofGUI elements. However, to describe the layout of text in structured graphicalobjects fully and conveniently, two new features are needed:� Base line alignment. Text has a base line and when text is composedhorizontally, the base lines of the pieces should be aligned.� Line wrapping. When displaying longer pieces of text, it is usually notconvenient to specify in advance where line breaks should be inserted,since this can depend on the size of the window, which is under usercontrol.These two new features are provided through two new placers, alignP,alignP :: Placerwhich allows you to compose text with base line alignment, and paragraphP,paragraphP :: Placerwhich does line breaking.To implement these, two extensions of the layout system were needed. Al-though they should still be considered to be in an experimental stage, we de-scribe them below.We also present the idea of conditional placers and spacers, which could beimplemented without any extensions. These can be used, for example, to selectbetween di�erent layouts depending on the size of an object.

144 27 Displaying and manipulating graphical objects27.6.1 Reference pointsTo implement alignP, the layout requests (see Chapter 23) were extended tocontain, in addition to the nominal size and the stretchiness, a list of referencepoints:data LayoutRequest= Layout { minsize :: Size,�xedh, �xedv :: Bool,refpoints :: [Point] }The use of these appear in the Graphic instance for strings (see the functionmeasureString in Figure 71).alignP places the argument boxes so that the last reference point in one boxcoincides with the �rst reference point in the next box. This gives us base linealignment when composing text.Unlike most other placers, alignP does not stretch the argument boxes. Infact, we have not included a mechanism for specifying how reference points area�ected by stretching, so you may get odd layout if a box containing refer-ence points is �rst stretched by one placer and then aligned with another boxcontaining reference points by alignP.We have also found use for some spacers that manipulate reference points:refMiddleS, refEdgesS, noRefsS :: SpacermoveRefsS :: Point �> SpacerThe spacer refMiddleS replaces the reference points of a box with two referencepoints placed on the middle of the left and right edges. refEdgesS takes the�rst and last reference points and moves them horizontally to the left and rightedges, respectively. noRefsS removes the reference points from a box. moveRefsSdisplaces the reference points of a box by a given vector.The placers and spacers we have presented do not make use of more than tworeference points, so it perhaps seems more appropriate to have a pair (insteadof a list) of reference points in the layout requests. One can also considermore elaborate use of reference points, for example, di�erent placers might usedi�erent sets of reference points. To take a concrete example, when puttingequations together horizontally in a comma separated list, you probably wantto do base line alignment, but when placing equations in a vertical list, you maywant them to appear with the = symbols on the same vertical line. Also, youmay want the layout system to choose between horizontal and vertical placementdepending on the available space, so the equations must contain reference pointsfor both possibilities, and the placers must be able to choose between them.27.6.2 Line breakingThe fudget layout system computes the layout in two steps: �rst a bottom-uppass collects the layout requests from the leaf boxes, giving the required sizeof the top-level window as a result. Based on this size, the exact placement ofeach box is computed in a top-down pass. The actual size of each box dependson the requested sizes of all boxes. The actual sizes can also be changed if theuser resizes the shell window.

27.6 Extended layout mechanisms 145To display text with automatic line breaking, we would like the requestedheight to depend on the actual width. The line breaking should be redone whenthe width of the window is changed.In the original fudget layout system, there was no way for a fudget to askfor a size where the requested height depends on the available width. A fudgetcould still achieve this behaviour: whenever noti�ed of a size change, it couldoutput a new request with the same width as in the noti�cation but with a newheight. Care of course had be taken to avoid generating in�nite sequences ofnoti�cations and requests and other unpleasant e�ects. This solution was usedin an early version of the web browser described in Chapter 32.As part of the work on support for structured graphics, we developed a bettersolution to the line breaking problem. We extended the layout requests witha function that answers the question �if you can be this wide, how tall do youwant to be?�. For symmetry, there is also a function that allows the requestedwidth to depend on the actual height (otherwise �ipP would not work). Thetwo functions are called wAdj and hAdj, respectively.data LayoutRequest= Layout { minsize :: Size,�xedh, �xedv :: Bool,refpoints :: [Point],wAdj, hAdj :: Int �> Size}The placers now combine such functions in addition to combining nominal sizesand stretchiness. Although the old behaviour can be achieved by using con-stant wAdj/hAdj functions, the layout requests still contain the usual nominalsize. This saves us from having to rewrite all placers and spacers. Also, theusual nominal size is still used rather than the wAdj/hAdj functions on the toplevel in normal shell windows, while the wAdj function is used in vScrollF (seeSection 10.7) , where the width is constrained but the height can vary freely.(Not surprisingly, hAdj is used in hScrollF.)Changing the data type LayoutRequest meant that all occurrences of theconstructor Layout in the Fudget library had to be adjusted. The functionsplainLayout and refpLayout were introduced to simplify these adjustments:plainLayout s fh fv = refpLayout s fh fv []refpLayout s fh fv rps = Layout s fh fv (const s) (const s) rps27.6.3 Conditional spacers and placersOccasionally, we have found use for combinators that try alternative layoutsand pick the best one according to some condition. We have implemented anad hoc choice of such combinators:ifSizeP :: (Size�>Size�>Bool) �> Placer �> Placer �> PlacerifSizeS :: (Size�>Size�>Bool) �> Spacer �> Spacer �> SpacerstretchCaseS :: ((Bool,Bool)�>Spacer) �> SpaceralignFixedS :: Alignment �> Alignment �> Spacer

146 27 Displaying and manipulating graphical objectsThe �rst two allow you to choose between two placers/spacers depending onthe size of the resulting box, i.e., if placer1 and placer2 yield boxes of size1 andsize2, respectively, then ifSizeP p placer1 placer2 uses placer1 if p size1 size2 isTrue, and placer2 otherwise. ifSizeS works analogously for spacers.stretchCaseS allows you to write spacers that depend on the horizontal andvertical stretchiness of the argument box. alignFixedS is an application of stretch-CaseS. It can be used to allow stretchable graphical objects to be stretched whileobjects of �xed size are aligned. As an example, when buttonF was generalisedfrom displaying strings to arbitrary graphics, we switched from unconditionallycentering the label with centerS to conditionally centering it with alignFixedSaCenter aCenter. This means that text labels will be centered as before, whilegraphical labels may be stretched.27.7 Concluding remarksAs mentioned, the support for graphics in the Fudget library was promptedby the development of the syntax directed editor Alfa (Chapter 33), and stu�was added as needed for that particular purpose. Some development was alsoprompted by the work on the web browser described in Chapter 32.The fudget graphicsF was designed to support e�cient screen updates aftersmall changes to structured graphical objects. Changes are made by sendingmessages to graphicsF telling explicitly with part of an object to replace. Struc-tured graphical objects are trees and parts are identi�ed by their path from theroot of the tree. A di�erent approach to modifying graphical objects is used inPidgets [Sch96] (see Section 41.5.1), where the nodes of a tree (actually a dag)can be modi�ed through mutable variables.We have of course been inspired by other work on graphics in functional lan-guages. An early example of such work is [Hen82], where vertical and horizontalcomposition of simple graphical objects are used together with recursion to cre-ate complex images in the style of Escher. A more recent example is the Picturedata type [FJ95] provided in the GUI toolkit Haggis [FP96] (see Section 41.3.2).Although our purpose was not to implement a window system, graphicsFactually provides some of the core functionality of a window system. Rob No-ble has studied the problem of implementing a window system in a functionallanguage more directly. His implementation of Gadgets (see Section 41.3.1)includes an implementation of a window system [Nob95].Some compromises in the design have been made because of peculiarities ofHaskell:� We have limited the use of existential types, since they are not part of theHaskell standard.� Since you can't directly make the String type an instance of a type class,we had to add extra methods to the class de�nitions and make more typesthan we wanted instances of the classes.These peculiarities are discussed further in Section 40.3 and Section 40.2, re-spectively.We have not yet added any good support for animation to the Fudget library.The ideas from [Ary94] or [Ell97] could probably be used as they are withouttoo much di�culty.

14728 Combinators for syntax-oriented manipulationIn Chapter 27, we have seen how graphical objects can be drawn and manipu-lated using the type Drawing and the fudgets graphicsF and hyperGraphicsF. Inthis chapter, we will present a set of combinators that can be used for buildingsyntax-oriented editors. Such editors present a graphical view of a structuredvalue in an abstract syntax, for example a program in a programming language.The editors let the user manipulate the (graphical view of) the program invarious controlled ways.One problem the programmer must deal with, when developing syntax-oriented editors, is how the values of the abstract syntax should be represented,and how they should be connected to the graphical objects. We will presenta solution where the operations on the abstract syntax is de�ned closely withthe corresponding operations on the graphical objects, to avoid inconsistenciesbetween the abstract syntax and its graphical view.As a concrete example, consider a grammar for a tiny expression languagewith arithmetic operations on numbers.Expr ::= Integer| Expr Op ExprOp ::= +| �| �| /Such an abstract syntax is straightforward to represent in Haskell using onedatatype for each non-terminal in the grammar, and where each alternativecorresponds to a data constructor.data Expr = Number Integer| Operation Expr Op Exprdata Op = Add| Subtract| Multiply| DivideHow should we connect these datatypes to the graphical objects? One solution isto de�ne Graphic instances for each type, which means that they can be used asleaves in the type Drawing (confer Section 27.4). The drawing can be decoratedwith labels containing functions for building the abstract syntax when needed,and manipulation functions describing how the user can modify di�erent partsof the abstract syntax. However, all labels in a Drawing must have the sametype, which presents a complication when we want to use di�erent datatypesfor di�erent non-terminals. In contrast, the combinators in this chapter alloweditors of di�erent type, representing di�erent non-terminals, to be combined.The inspiration of the combinators comes from a certain style of parsingcombinators that is part of the functional folklore (the earliest publication weknow of is [Röj95a]). If P a is the type of parsers which returns a value of typea, the combinators that are interesting in this context are� ap :: P (a �> b) �> P a �> P b, which combines two parsers sequentially.It also acts as lifted function application, in that the function returned by

148 28 Combinators for syntax-oriented manipulationsomF :: h �> SOM i o h a �> F (Either i (SOM i o h a))(Either o a)leaf :: Graphic g => g �> a �> SOM i o h aap :: SOM i o h (a �> b) �> SOM i o h a �> SOM i o h bmap :: (a �> b) �> SOM i o h a �> SOM i o h bselect :: (h �> a �> o)�> (h �> a �> i �> Maybe (SOM i o h a))�> SOM i o h a�> SOM i o h aattr :: (h �> a �> (h',a')) �> SOM i o h' a�> SOM i o h a'Figure 72. The SOM combinators.the �rst parser is applied to the value returned by the second, yielding avalue that the combination returns.� map :: (a �> b) �> P a �> P b, which applies a function to the valuethat a parser returns.The ap combinator is left associative (just like function application), and maphas higher precedence than ap. This allow a concise style when writing parsers.For example, if pExpr is an expression parser, and pOp is an operation parser,Operation `map` pExpr `ap` pOp `ap` pExpr :: P Exprparses an expression followed by an operation and another expression, and re-turns the appropriate Expr value using the Operation constructor.The next section presents the basic combinators for building editors. Sec-tion 28.2 shows how the combinators can be used to build an editor for arith-metic expressions. Section 28.3 discusses how non-local editing operations, likevariable renaming, can be handled. The implementation of the combinators isoutlined in Section 28.4.28.1 The SOM combinatorsThe combinators operate on the abstract type SOM i o h a (Syntax OrientedManipulation), which represents a value (or piece of abstract syntax) of type a,that can be manipulated through input/output of values of type i and o. Theparameter h is used to pass inherited attributes. The parameter a can also beused for passing synthesised attributes, if needed.A SOM expression not only represents a (structured) value, but also containsinformation about how di�erent parts of this value might be manipulated, andhow the value should be graphically displayed.The combinators that operate on SOM expressions are shown in Figure 72.The display and manipulation of SOM expressions are controlled by somF. Thefudget somF h s will initially display the SOM expression s, given an attribute

28.2 Example: manipulating arithmetic expressions 149h to inherit. This expression can at any time be replaced by sending a newSOM expression to the fudget. The fudget can also output the value that themanipulated expression represents. This happens when a new expression is sentto the fudget, or when a selected part of it is replaced. The message types i ando in somF are used for the manipulation of selected subexpressions.Primitive SOM expressions are built with the function leaf. The argumentsto leaf are a graphical object to display, and the value it represents. Thiscombinator is used, together with ap and map, to compose SOM expressions inthe same style as parsers.To manipulate a SOM expression, the user must �rst select a subexpression.A SOM expression might contain some nodes that are not possible to manipulate(for example, syntactic decorations like keywords), and some that are. Theprogrammer declares that it should be possible to select and manipulate a nodeby using the select combinator. The composition select fo fi s makes the SOMexpression s selectable. When the user clicks inside the graphical representationof s, but not inside any inner selectable node, the composition is selected andhighlighted. As a result, the output function fo is applied to the inheritedattribute and the current value. The result is output from the fudget somF thatcontains the composition, and is typically a set of editing operations that areapplicable to the selected node. Initially, the current value is merely the valuethat s represents, but this might change if some part of s is replaced. If someinput (typically an editing operation picked by the user) is sent to the fudgetwhile s is selected, the input function fi is applied to the inherited attribute, thecurrent value and the input, yielding a new expression which replaces select fofi s. The input function also has a choice of returning Nothing, in case the inputcould not be handled. This is used to delegate input to selectable ancestors,and is covered in Section 28.3.The combinator attr allows the inherited attribute and the current value tobe modi�ed simultaneously. In the composition f `attr` s, f is applied to theinherited attribute and the current value that s represents. The result of f isthe attribute that s will inherit, and the current value of the composition.28.2 Example: manipulating arithmetic expressionsBy using leaf, ap and map, we can turn structured values into SOM expressions.As an example, let us consider the expression language from the introduction.We will de�ne the functions edExpr and edOp that turn arithmetic expressionsand operators into SOM expressions. Since we do not need any inherited at-tributes for the moment, and the type of input and output will always be thesame, we de�ne a type synonym for the kind of SOM expressions that we willform. type ArithSOM a = SOM Choice [Choice] () aedExpr :: Expr �> ArithSOM ExpredOp :: Op �> ArithSOM OpThe expression editor edExpr is used in exprF to form the fudget that presentsthe editor.

150 28 Combinators for syntax-oriented manipulation

Figure 73. An arithmetic expression manipulator. The user has selected thesubexpression 2 � 3, which can be replaced by 5, 7, or 0 + 0.exprF :: Expr �> F (Either Choice (ArithSOM Expr))(Either [Choice] Expr)exprF e = somF () (edExpr e)When the user selects a subexpression, exprF outputs a list of choices that ispresented in a menu. These choices represent the operations that are availableon the subexpression. If a choice is picked, it will be sent back to the editor.exprF also outputs the arithmetic expression for evaluation in the main fudget.A screen dump of the program is shown in Figure 73.main = fudlogue $loopF (shellF "Choose" (smallPickListF show >+<(displayF >=^< (show . evalExpr))) >==<shellF "Expression" (scrollF (exprF (Number 0))))evalExpr :: Expr �> IntegerevalExpr (Number i) = ievalExpr (Operation e1 b e2) = evalOp b (evalExpr e1)(evalExpr e2)evalOp :: Op �> (Integer �> Integer �> Integer)evalOp Add = (+)evalOp Subtract = (�)evalOp Multiply = (*)evalOp Divide = \x y �> if y == 0 then 0 else x `div` yWhen we de�ne edExpr and edOp, we use a programming style which resemblesthe one we presented for parsing combinators in the introduction:

28.2 Example: manipulating arithmetic expressions 151edExpr e = selExpr $ case e ofNumber i �> Number `map`leaf i iOperation e1 b e2 �> Operation `map`edExpr e1 `ap`edOp b `ap`edExpr e2Numbers are shown as they are, whereas binary expressions are handled recur-sively and by means of edOp. Each subexpression can be selected and manipu-lated by selExpr, which is de�ned later.The de�nition of edOp is similar.edOp b = selOp $ leaf (showOp b) bshowOp Add = "+"showOp Subtract = "�"showOp Multiply = "�"showOp Divide = "/"We de�ne the type Choice to contain expressions that can replace the selectedsubexpression. Since subexpressions can be of both type Expr and Op, we use aunion type for the output.data Choice = ReplaceExpr Expr| ReplaceOp OpWhen the user selects an expression, we arbitrarily choose to present threealternatives which let the user replace the expression with its value plus or minusone, or replace it with 0 + 0. The interface is not at all the most convenientone could imagine, but it allows a patient user to enter an arbitrary expression(the + can be replaced with any of the other operators, as we will see below).This part of the editor could of course be elaborated as desired.selExpr :: ArithSOM Expr �> ArithSOM ExprselExpr = select outf infwhereoutf _ e = map ReplaceExpr[Number (evalExpr e�1),Number (evalExpr e+1),Operation (Number 0) Add (Number 0)]inf _ _ = map edExpr . stripExprstripExpr (ReplaceExpr e) = Just estripExpr _ = NothingIf the user picks one of the choices, it will be propagated to the selected node, theexpression is extracted from the type union, and a replacement SOM expressionis formed. However, the type system cannot prevent programming errors thatresult in an operator being sent to selExpr. To get a more robust program, thefunction stripExpr ignores the input in this case and returns Nothing.When an operator is selected, we present a choice of the four arithmeticoperators.

152 28 Combinators for syntax-oriented manipulationselOp :: ArithSOM Op �> ArithSOM OpselOp = select outf infwhereoutf _ _ = map ReplaceOp [Add,Subtract,Multiply,Divide]inf _ _ = map edOp . stripOpstripOp (ReplaceOp b) = Just bstripOp _ = Nothing28.3 Non-local manipulationWith the combinators presented so far, we can de�ne local manipulation oper-ations. The user can select a SOM subexpression, and arbitrary replacementscan be speci�ed for that expression. If a manipulation would imply a change inother parts of the expression, we are forced to replace the complete expressionglobally, by sending a new SOM expression to somF. There are situations wherewe want the possibility to specify replacements that are somewhere in betweenthe local and global alternatives. Suppose that we want to add variables to ourarithmetic expressions. We would then like to provide an operation for chang-ing the name of a variable, by selecting one occurrence (possibly the bindingoccurrence), and give a new name to it. This is an operation that a�ects thewhole subtree that starts with the binding of the variable.This e�ect can be achieved by using the possibility to delegate input asfollows. Recall that the input function (the second parameter of select) canreturn Nothing for input that cannot be handled. Instead of discarding theinput, somF will delegate it to the closest selectable ancestor, and apply its inputfunction. This delegation propagates towards the root of the SOM expression,until a select node is found that accepts the input.In the case of variable manipulation, delegation can be used to propagateinput to the node where the variable is bound. We will do this in the followingsection, where we present a variant of the expression manipulator in Section 28.2,extended with variables.28.3.1 Extended example: manipulating variablesWe extend the datatype Expr with constructors for variables and let expressions.data Expr =...| Var Name| Let Name Expr Exprtype Name = StringIn the construction of a SOM expression, we assume the presence of an environ-ment where we can lookup the value of variables.type Env = [(Name,Integer)]We will use the inherited attribute for propagating the environment. The typeof SOM expressions we will use are instances of ArithEnvSOM.type ArithEnvSOM a = SOM Choice [Choice] Env a

28.3 Non-local manipulation 153We introduce the additional combinators drLeft or drRight to prepend or appenda graphical decoration to an expression.drLeft :: Graphic g => g �> SOM i o h a �> SOM i o h adrRight :: Graphic g => SOM i o h a �> g �> SOM i o h aThese are used for drawing keywords, as we will see in the case of let expressions.The associativity of ap, drLeft and drRight are set so that we avoid paren-theses, at least in this application.in�xl 3 `ap`in�xr 8 `drLeft`in�xl 8 `drRight`Haskell does not declare any �xity for map, which means that it gets a defaultdeclaration.in�xl 9 `map`But the type of map suggests that it should be right associative. If it were,and had the same precedence level as drLeft, we could skip the parentheses inexpressions like f `map` (d `drLeft` s). If local �xity declarations were allowed inHaskell, we could �x the �xity.edExpr e =let in�xr 8 `map`in ...Local �xity declarations are not allowed in Haskell, so we give map a new namewith the desired �xity.in�xr 8 `mapp`mapp :: (a �> b) �> SOM i o h a �> SOM i o h bmapp = mapWith mapp, we can construct SOM expressions in the style shown in in Figure 74.The function extendEnv will be applied to the current let expression, from whichit will extract su�cient information to extend the environment that the bodyshould inherit. To avoid that the right-hand side in the let expression alsoinherits the extended environment, we use the function dropEnv to pop theadded binding. (If we want to allow recursive declarations, we omit dropEnv.)Note that we have also used di�erent selection functions for di�erent kindsof expressions. Variables are handled by selVar, let expressions by selLet, andthe others by selExpr.The binding occurrence of a variable is handled by edName (Figure 75), andselecting such a name results in a choice of renaming it. For simplicity, we pickan arbitrary new name that is not present in the environment by using freshVar.The input function in selName ignores all input, which instead is delegated toselLet.We have extended the manipulation type with a command for renaming avariable.data Choice =...| Rename Name Name

154 28 Combinators for syntax-oriented manipulationedExpr :: Expr �> ArithEnvSOM ExpredExpr e = case e ofNumber i �> selExpr $ Number `mapp`leaf i iOperation e1 b e2 �> selExpr $ Operation `mapp`edExpr e1 `ap`edOp b `ap`edExpr e2Var n �> selVar n $ Var `mapp`leaf n nLet n e1 e2 �> selLet $ extendEnv `attr`Let `mapp`"let" `drLeft`edName n `ap`"=" `drLeft`(dropEnv `attr` edExpr e1) `ap`"in" `drLeft`edExpr e2extendEnv :: Env �> Expr �> (Env,Expr)extendEnv = \env e@(Let n e1 _) �> ((n,evalExpr env e1):env,e)dropEnv :: Env �> Expr �> (Env,Expr)dropEnv = \env e �> (tail env,e)Figure 74. The function edExpr extended for variables.edName :: Name �> ArithEnvSOM NameedName n = selName $ leaf n nselName :: ArithEnvSOM Name �> ArithEnvSOM NameselName = select outf infwhere outf env n = [renameCommand n env]inf _ _ _ = NothingrenameCommand :: Name �> Env �> ChoicerenameCommand old env = Rename old (freshVar env)freshVar :: Env �> NamefreshVar env = head (map (:[]) ['a'..] \\ map fst env)Figure 75. The editor for variable names.

28.3 Non-local manipulation 155
selExpr :: ArithEnvSOM Expr �> ArithEnvSOM ExprselExpr = selExpr' (const []) exprInfselLet :: ArithEnvSOM Expr �> ArithEnvSOM ExprselLet = selExpr' (const []) letinfwhere letinf env (Let n e1 e2) (Rename n' new) | n == n'= Just (edExpr (Let new (rename n new e1)(rename n new e2)))letinf env e i = exprInf env e iselVar :: Name �> ArithEnvSOM Expr �> ArithEnvSOM ExprselVar n = selExpr' (\env �> [renameCommand n env]) exprInfselExpr' :: (Env �> [Choice])�> (Env �> Expr �> Choice�> Maybe (ArithEnvSOM Expr))�> ArithEnvSOM Expr�> ArithEnvSOM ExprselExpr' xchoices inf = select outf infwhere outf env e = xchoices env ++map ReplaceExpr([Number (v+1), Number (v�1), Operation n0 Add n0, Let (freshVar env) n0 n0]++ map (Var . fst) env)where v = evalExpr env en0 = Number 0exprInf :: Env �> Expr �> Choice �> Maybe (ArithEnvSOM Expr)exprInf env _ = map edExpr . stripExprFigure 76. The selection functions for expressions.

156 28 Combinators for syntax-oriented manipulation

Figure 77. Manipulating variables. There are additional choices for the variablesin the environment. Since a variable is selected, there is also a choice of renamingit. The selection functions are de�ned in Figure 76. The functions for let ex-pressions and variables are variants of the original selExpr from Section 28.2. Wede�ne a parameterised version (selExpr'), which lets us add choices and specifythe input function. Note that we have added choices for all variables in scope.The standard selection function (selExpr) does not have any additionalchoices, whereas the selection function for let expressions (selLet) de�nes an ex-tended input function which handles the renaming command. For a renamingcommand to match, the old variable must equal the bound variable. Otherwise,input is meant for some outer let expression. We assume a function rename,where rename old new e substitutes new for old in e.When selecting a variable, we extend the expression selection menu with arenaming choice. Variable renaming can then take place at any occurrence of avariable. Note that we do not handle renaming in the input function, it is thesame as in selExpr.The rest of the program is almost the same as in the �rst example, exceptthat we pass the empty environment as an initial inherited attribute in exprF.The program is seen in action in Figure 77.exprF :: Expr �> F (Either Choice (ArithEnvSOM Expr))(Either [Choice] Expr)exprF e = somF emptyEnv (edExpr e)emptyEnv :: EnvemptyEnv = []

28.4 The implementation of the SOM combinators 15728.4 The implementation of the SOM combinatorsWe have taken the approach to implement SOM as a datatype with constructorscorresponding to the combinators leaf, select, map and ap. Since the types of thearguments to map and ap have variables that do not show up in the result type,we use the possibility to specify local existential quanti�cation using variablesbeginning with ? in the datatype declaration. Again, existential quanti�cationin datatypes proves to be a useful extension to Haskell (see also Section 27.4.2).data SOM i o h a =Select (h �> a �> o)(h �> a �> i �> Maybe (SOM i o h a))(SOM i o h a)| Map (?b �> a) (SOM i o h ?b)| Ap (SOM i o h (?b �> a)) (SOM i o h ?b)| Attr (h �> ?a �> (?h,a)) (SOM i o ?h ?a)| Leaf Dr a| Decor (Dr �> Dr) (SOM i o h a)The �rst four constructors correspond directly to the respective combinators.select = Selectap = Apattr = Attrinstance Functor (SOM i o h) where map = MapThe �rst argument to the Leaf constructor is a drawing:type Dr = Drawing SOMPointer GfxThe label type SOMPointer, which is de�ned later, is used to identify whatpart of a SOM expression the user has selected. The type Gfx is used to storearbitrary graphical objects in the leaves (Section 27.4.2). In the de�nition ofleaf, we turn these graphics into drawings by means of g (which was de�ned inSection 27.4.2).leaf :: Graphic g => g �> a �> SOM i o h aleaf d a = Leaf (g d) aThe �nal constructor in SOM is Decor, and can be used to de�ne layout oradd additional graphics on a part of a SOM expression. Its �rst argument is afunction which will be applied to a drawing that is constructed from its secondargument. The combinators drLeft and drRight uses this constructor:drLeft d n = Decor (\d' �> hboxD [g d,d']) ndrRight n d = Decor (\d' �> hboxD [d',g d]) nThe fudget somF is built around a hyperGraphicsF, which outputs a SelectionPtrwhenever the user selects a subexpression.data Dir = Le | Ritype SelectionPtr = [Dir]A SelectionPtr is a list of turns to take whenever an Ap node is encounteredin the SOM tree, and points out a select node. Using the function somOutput

158 28 Combinators for syntax-oriented manipulationsomOutput :: h �> SOM i o h a �> SelectionPtr �> osomOutput h n p = case n ofSelect outf _ n �> case p of[] �> outf h (somValue h n)_ �> somOutput h n pAp f n �> case p ofLe:p �> somOutput h f pRi:p �> somOutput h n pMap _ n �> somOutput h n pAttr f n �> somOutput (fst (apAttr f h n)) n pDecor _ n �> somOutput h n pFigure 78. The function somOutput.in Figure 78, somF can get the output choices of a selected node. If somFreceives an input choice for the selected node, the function somInput (Figure 79)is applied to the input and the selection pointer, to get the modi�ed SOM tree.somInput also returns the pointer to the node whose input function accepted theinput, which is used by somF to update the correct part of the drawing. If allinput functions ignore the input, somInput returns Nothing.The functions somOutput and somInput use the function somValue, to get thecurrent value of a SOM expression, and the function apAttr, to apply attributefunctions (Figure 80). The recursive de�nition in apAttr mirrors the fact thatattributes and values can have cyclic dependencies.The implementation of somF is shown in Figure 81, and as mentioned pre-viously, it is built around hyperGraphicsF. The auxiliary functions tohg, out,updateDr, and replaceDr are routing functions that are typical when program-ming with loopThroughRightF. The function out is used when outputting mes-sages from somF, and updateDr and replaceDr are used when updating part ofor the whole of the drawing in the hyperGraphicsF. (Compare with the type ofhyperGraphicsF in Section 27.4.)The controlling stream processor ctrl has an internal state which consists ofthe SOM expression being edited (n), and a pointer to the selected node (p). Ifthere is no selected node, p is Nothing. An incoming message to ctrl is either aclick from the hyperGraphicsF, indicating a new selection by the user (handledby click), an input choice (handled by input) or a new SOM expression (handledby replace).In click, the old selection cursor is removed, and a new node is selected.In input, it is checked that there is a selection, and that a replacement nodecan be obtained from somInput. In this case, the appropriate subdrawing isreplaced, and selected.

28.4 The implementation of the SOM combinators 159somInput :: h �> SOM i o h a �> i �> SelectionPtr�> Maybe (SelectionPtr,SOM i o h a)somInput h n i p = case n ofSelect o inf n �> case p of[] �> myInput_ �> mapSOM (Select o inf)(somInput h n i p)++ myInputwhere myInput = map (\n�>([],n))(inf h (somValue h n) i)Ap f n �> case p of[] �> NothingLe:p �> map (mapPair ((Le:),(`ap` n)))(somInput h f i p)Ri:p �> map (mapPair ((Ri:),(f `ap`)))(somInput h n i p)Map f n �> mapSOM (Map f)(somInput h n i p)Attr f n �> mapSOM (Attr f)(somInput (fst (apAttr f h n)) n i p)Leaf dr a �> NothingDecor f n �> mapSOM (Decor f)(somInput h n i p)where mapSOM = map . apSndmapPair f g (x,y) = (f x,g y)Figure 79. The function somInput.somValue :: h �> SOM i o h a �> asomValue h n = case n ofSelect _ _ n �> somValue h nAp n1 n2 �> (somValue h n1) (somValue h n2)Map f n �> f (somValue h n)Leaf _ a �> aAttr f n �> snd (apAttr f h n)Decor _ n �> somValue h napAttr :: (h �> a �> (h',a'))�> h�> SOM i o h' a�> (h',a')apAttr f h n = h'a' where h'a' = f h (somValue (fst h'a') n)Figure 80. The functions somValue and apAttr.

160 28 Combinators for syntax-oriented manipulationsomF :: h �> SOM i o h a �> F (Either i (SOM i o h a))(Either o a)somF h n = loopThroughRightF(absF (ctrl n Nothing))(hyperGraphicsF (unselectedSomDr n))wheretohg = putSP . Leftout = putSP . RightupdateDr = tohg . Left . unselectedSomDrreplaceDr = tohg . RightunselectedSomDr = somDrawing []ctrl n p = getSP $ click `either` (input `either` replace)wheresame = ctrl n pclick p' = maybe id (deselect n) p $selectO n p' $ctrl n (Just p')input i = �ip (maybe same) p $ \jp �>�ip (maybe same) (somInput h n i jp) $ \(rp,n') �>replaceDr (rp,somDrawing rp n') $selectO n' jp $out (Right (somValue h n')) $ctrl n' preplace n' = updateDr n' $ctrl n' Nothing-- Select subnode and send its output.selectO n p = select n p . out (Left (somOutput h n p))-- Draw cursorselect = setselect cursor-- Remove cursordeselect = setselect idsetselect cu n p = replaceDr (p,cu (somDrawing p n))-- The cursor is a frame around the nodecursor d = placedD overlayP (boxD [d,(g (frame' 1))])-- Extract selected subdrawingsomDrawing :: SelectionPtr �> SOM i o h a �> DrFigure 81. The function somF.

16129 Type directed GUI generation29.1 IntroductionIn the HCI (Human Computer Interaction) school [Shn98], it is good designto �rst concentrate on a good user interface when developing a GUI applica-tion, then implement the functionality behind. For example, the Logical User-Centered Interactive Design Methodology (LUCID) [Kre96] consists of six stages,in which the third stage includes the development of a so-called key-screen pro-totype using a rapid prototyping tool. After a stage of iterative re�nement, thisprototype is turned into a full system in the �fth stage.To promote quick development of prototype programs, a programmer mightprefer to concentrate on the functionality, and ignore the GUI design (at least tostart with). Since this method can make life easier for the programmer, and toput it in contrast with HCI, we call it PCI (Programmer Computer Interaction)oriented.With the PCI method, the GUI must be generated automatically somehow.The basic idea is simple, and can be seen as the GUI variant of the Read andShow classes in Haskell, which allow values of any type to be converted to andfrom strings, using the functions read and show:read :: Read a => String �> ashow :: Show a => a �> StringPart of the convenience with these classes is that instances can be derived auto-matically by the compiler for newly de�ned datatypes. By using read and show,it is easy to store data on �les, or exchange it over a network (as is done inChapter 26).In this section, we will de�ne the class FormElement, which plays a similarrole to Read and Show, but for GUIs. Form elements are combined into forms,which can be regarded as simple graphical editors that allow a �xed number ofvalues to be edited. They are often used in dialog windows to modify variousparameters in a GUI application.Assuming that all the necessary instances of FormElement are available, weshow how forms can be generated automatically, entirely based on the type ofthe value that the form should present.29.2 The FormElement classAn individual form element displays a value of some type a. Whenever thisvalue is changed, it will be output by the element. Such a change occurs when auser enters a new value, but it should also be possible to change the value fromthe program itself.A candidate type for form elements for a type a is a fudget with the type aboth on input and output.type FormF t = F t tThe form element class has a method which speci�es such a fudget.

162 29 Type directed GUI generationclass FormElement t whereform :: FormF tformList :: FormF [t]instance (FormElement t) => FormElement [t]where form = formListWe have used the standard trick of adding a special method formList whichhandles lists, so that we can get an instance for strings (this is discussed inSection 40.2).We can now de�ne instances for the basic types integers, booleans, andstrings.instance FormElement Intwhere form = intInputFinstance FormElement Boolwhere form = toggleButtonF " "instance FormElement Charwhere formList = stringInputFWe also need instances for structured types. The fundamental structured typesare product and sum.instance (FormElement t,FormElement u) =>FormElement (Either t u)where form = vBoxF (form >+< form)instance (FormElement t,FormElement u) =>FormElement (t,u)where form = hBoxF (form >�< form)Note the vertical layout of alternatives, whereas elements within an alternativehave a horizontal layout.The combinator >�< puts two fudgets in parallel, just like >+< and >*<,but input and output are pairs.(>�<) :: F a1 b1 �> F a2 b2 �> F (a1, a2) (b1, b2)f >�< g = pairSP >^^=< (f >+< g) >=^^< splitSPpairSP :: SP (Either a b) (a,b)pairSP = merge Nothing Nothing wheremerge ma mb =(case (ma,mb) of(Just a,Just b) �> put (a,b)_ �> id) $get $ \y �> case y ofLeft a �> merge (Just a) mbRight b �> merge ma (Just b)

29.3 Some suggestions for improvements 163Input to f >�< g is split, the �rst component is fed into f, and the secondcomponent is fed into g. The combined fudget will not output anything untilboth f and g has output something. After this has occurred, a message from oneof the subfudgets f or g is paired with the last message from the other subfudgetand emitted.We are ready for a small example. The �gure shows a form which can handleinput which either is an integer, or a pair of a string and a boolean.
myForm :: FormF (Either Int (String,Bool))myForm = border (labLeftOfF "Form" form)An extended example connects the input and output of the form with fudgetsto demonstrate the message tra�c:main = fudlogue $shellF "Form" $labLeftOfF "Output" (displayF >=^< show)>==< myForm>==< labLeftOfF "Input" (read >^=< stringInputF)This program is illustrated in Figure 82.29.3 Some suggestions for improvementsThe little form program is a tangible example of how types can in�uence thesemantics of a Haskell program through overloading. To some extent, this styleallows a programmer to freely modify the type of data structures during devel-opment without the need to change the code that deals with the GUI. Togetherwith the automatic layout system, this provides (limited) automatic GUI gener-ation. However, as can be seen in Figure 82, there is much room for improvementof the form. For example, there is no visual feedback that reveals the state of aform element of type Either. It would be desirable to highlight the part that isvalid (or to dim the other part).This generation can also be performed for user de�ned datatypes by usingpolytypic programming [JJ97], based on the instances for products and sums.Polytypic programming allows us to de�ne how instances should be derived,based on the structure of the user-de�ned datatype. For more complicated (forexample recursive) types, it might be a better idea to base the form elementson the fudgets for structured graphics in Chapter 27.After the functionality is there, the programmer's attention might turn tothe look of the forms, and we need a way to tune them. An approach thatimmediately comes to mind is to add an extra attribute parameter to the formmethod.class FormElement a t whereform :: a �> FormF t

164 29 Type directed GUI generation

Figure 82. First, the user has entered the string "Hello" and activated the togglebutton. Then, the user entered a number in the integer form element. The lastpicture is a simulation of how the form can be controlled by the program, inthis case by entering a value in the Input �eld. The value sets the form and ispropagated to the output.

29.3 Some suggestions for improvements 165If we have an instance FormElement a t, we can construct a form for a typet, given an attribute value of type a. A problem with this approach is thatcurrently, only one parameter may be speci�ed in a class declaration in Haskell.Multi-parameter classes are allowed in Mark Jones' Gofer [Jon91], which alsoallows instance declarations for compound types like String. With these features,we could de�ne instances as follows.instance (FormElement a t,FormElement b u) => FormElement (a,b) (Either t u)where form (a,b) = vBoxF (form a >+< form b)instance (FormElement a t,FormElement b u) => FormElement (a,b) (t,u)where form (a,b) = hBoxF (form a >�< form b)instance Graphic a => FormElement a Stringwhere form a = labLeftOfF a $ stripInputSP >^^=< stringFinstance Graphic a => FormElement a Intwhere form a = labLeftOfF a $ stripInputSP >^^=< intFinstance Graphic a => FormElement a Boolwhere form a = toggleButtonF a

166 30 Parameters for customisation30 Parameters for customisationThere are many aspects of GUI fudgets that one might want to modify, e.g.the font or the foreground or background colours for displayF. The simple GUIfudgets have some hopefully reasonable default values for these aspects, butsooner or later, we will want to change them.In early versions of the Fudget library, the GUI fudgets had several extraparameters to make them general and adaptable to di�erent needs. For example,the type of displayF was something like:displayF :: FontName �> ColorName �> ColorName �> F String aHaving to specify all these extra parameters all the time made it hard to writeeven the simplest program: when creating a program from scratch, it was nextto impossible to write even a single line of code without consulting the manual.When we wrote programs on overhead slides or on the blackboard, we alwaysleft out the extra parameters, to make the code more readable.A simple way to improve on this situation would be to introduce two versionsof each GUI fudget: one standard version, without the extra parameters, andone customisable version, with a lot of extra parameters:displayF :: F String adisplayF' :: FontName �> ColorName �> ColorName �> F String adisplayF = displayF' defaultFont defaultBgColor defaultFgColorThis would make it easy to use the standard version, and the blackboard exam-ples would be valid programs. But the customisable version (displayF') wouldstill be hard to use: even if you just wanted to change one parameter, you wouldhave to specify all of them and you would have to remember the order of theparameters. So, we went a step further.First, we wanted be able to change one parameter without having to explic-itly give values for all the other ones. A simple way of doing this would be tohave a data type with constructors for each parameter that has a default value.In the case of displayF, it might bedata DisplayFParams = Font FontName| ForegroundColor ColorName| BackgroundColor ColorNameThen, one could have the display fudget take a list of display parameters as a�rst argument:displayF' :: [DisplayFParams] �> F String aWe no longer have to remember the order of the parameter, and, whenever weare happy with the default values, we just leave out that parameter from thelist, and all is �ne.displayF = displayF' []However, suppose we want to do the same trick with the button fudget. Wewant to be able to customise font and colours for foreground and background,like the display fudget, and in addition we want to specify a �hot-key� thatcould be used instead of clicking the button:

30.1 A mechanism for default values 167data ButtonFParams = Font FontName| ForegroundColor ColorName| BackgroundColor ColorName| HotKey (ModState,Key)Now, we are in trouble if we want to customise a button and a display in thesame module, because in a given scope in Haskell, no two constructor namesshould be equal. Of course, we could qualify the names with module names,but this is tedious. We could also have di�erent constructor names to start with(ButtonFFont, ButtonFForegroundColor etc.), which is just as tedious.30.1 A mechanism for default valuesOur current solution6 is not to use constructors directly, but to use overloadedfunctions instead. We will de�ne a class for each kind of default parameter.Then, each customisable fudget will have instances for all parameters that itaccepts. This entails some more work when de�ning customisable fudgets, butthe fudgets become easier to use, which we feel more than justi�es the extrawork.Let us return to the display fudget example, and show how to make it cus-tomisable. First, we de�ne classes for the customisable parameters:type Customiser a = a �> aclass HasFont a wheresetFont :: FontName �> Customiser aclass HasForegroundColor a wheresetForegroundColor :: ColorName �> Customiser aclass HasBackgroundColor a wheresetBackgroundColor :: ColorName �> Customiser aThen, we de�ne a new type for the parameter list of displayF:newtype DisplayF = Pars [DisplayFParams]and add the instance declarationsinstance HasFont DisplayF wheresetFont p (Pars ps) = Pars (Font p:ps)instance HasForegroundColor DisplayF wheresetForegroundColor p (Pars ps) = Pars (ForegroundColor p:ps)instance HasBackgroundColor DisplayF wheresetBackgroundColor p (Pars ps) = Pars (BackgroundColor p:ps)The type of displayF will bedisplayF :: Customiser DisplayF �> F String a6The basics of this design are due to John Hughes.

168 30 Parameters for customisationWe put these declarations inside the module de�ning displayF, making DisplayFabstract. When we later use displayF, the only thing we need to know aboutDisplayF is its instances, which tell us that we can set font and colours. Forexample:myDisplayF = displayF (setFont "�xed" .setBackgroundColor "green")If we want to have buttonF customisable in the same way, we de�ne the addi-tional class:class HasKeyEquiv a wheresetKeyEquiv :: (ModState,Key) �> Customiser aThe button module de�nesnewtype ButtonF = Pars [ButtonFParams]and makes it abstract, as well as de�ning instances for font, colours and hot-keys. Note that the instance declarations for font and colours will look exactlythe same as for the display parameters! (We can reuse the constructor namePars as long as we de�ne only one customisable fudget in each module.) Inthe Fudget library implementation, we have used cpp macros to simplify theimplementation of customisable fudgets and avoid code duplication.We can now customise both the display fudget and the button fudget, if wewant:myFudget = displayF setMyFont >+< buttonF (setMyFont.setMyKey) "Quit"where setMyFont = setFont "�xed"setMyKey = setKeyEquiv ([Meta],"q")If we do not want to change any default values, we use standard, which does notmodify anything:standard :: Customiser astandard p = pstandardDisplayF = displayF standard30.2 Naming conventions for the customisable GUI fudgetsThe GUI fudget library is designed so that when you start writing a fudgetprogram, there should be as few distracting parameters as possible. Defaultvalues will be chosen for colour, fonts, layout, etc. But a customisable fudgetmust inevitably have an additional argument, even if it is standard. We useshort and natural names for the standard versions of GUI fudgets, withoutcustomisation argument. So we have

30.3 Dynamic customisation 169buttonF :: String �> F Click ClickbuttonF = buttonF' standardbuttonF' :: Customiser ButtonF �> String �> F Click ClickbuttonF' = ...displayF :: F String adisplayF = displayF' standarddisplayF' :: Customiser DisplayF �> F String adisplayF' = ...and so on. This way, a programmer can start using the toolkit without having toworry about the customisation concept. Later, when the need for customisationarises, just add an apostrophe and the parameter. One could also have thereverse convention and use apostrophes on the standard versions, somethingthat sounds attractive since apostrophes usually stand for omitted things (inthis case the customiser). But then a programmer must learn which fudgetsare customisable (and thus need an apostrophe), even if she is not interested incustomisation.30.3 Dynamic customisationApart from specifying parameters in the program text, most parameters canin fact be changed dynamically, if needed. Therefore, each customisable fudgetcomes in a third variant, which is the most expressive. Their names end withtwo apostrophes. These dynamically customisable fudgets allow customisers asinput messages in addition to the usual message type:type CF p a b = F (Either (Customiser p) a) bAs an example, the button and the display fudgets can be dynamically cus-tomised:buttonF� :: Customiser ButtonF�>String�>CF ButtonF Click ClickdisplayF� :: Customiser DisplayF �> CF DisplayF String a30.4 DiscussionCollecting all parameters in a customiser rather than using a high arity functionhas a number of advantages:� When you use a customisable fudget, you only need to mention the pa-rameters you want to change from the default value.� Future versions of the library can add new parameters without invalidatingold code.� You do not have to remember the order of the parameters.� By using Haskell's class system for overloading, the name of the customiserfor a certain parameter can be the same for all fudgets that have thatparameter. For example, all fudgets that display text can be customisedwith the setFont function.

170 30 Parameters for customisation� Customisers are �rst class values. They can be named and used in manyfunction calls, even in calls to di�erent functions. (Section 30.1 containsan example of this.)The last point is an advantage even when compared to what you can do inlanguages with support for default values for parameters.In the X Windows system, customisation is done via a resource database,where the application can lookup values of various parameters. The databaseis untyped, that is, all values are strings, so no static type checking can beperformed. With our customiser solution, parameters are type checked. Inaddition, the compiler can check that the parameters you specify are supportedby the fudget in question, whereas parameters stored in the resource databaseare silently ignored if the are not supported.Disadvantages with this method, as compared to such languages, are that� de�ning customisable functions is more cumbersome,� you do not get an error message if you specify the same parameter twice,and that� you need two versions of each customisable function (for example, buttonFand buttonF')We used lists of parameters in the implementation of customisers:newtype DisplayF = Pars [DisplayFParams]data DisplayFParams = ...An alternative would be to use record types instead:data DisplayF = Pars { font::FontName,foregroundColor, backgroundColor :: ColorName }instance HasFont DisplayF where setFont f p = p { font=f }...This would make it easier to extract the values of the various parameters inthe implementation of the customisable fudgets. A possible disadvantage withthis representation is that in the implementation of dynamically customisablefudgets, it would be more di�cult to tell what parameters have actually beenchanged. With the list representation, only the parameters that have beenchanged occur in the list.

17131 Gadgets in FudgetsGadgets [Nob95] is a GUI toolkit on top of a modi�ed version of the Goferinterpreter [Jon91]. As will be described the related work (Section 41.3.1),the term Gadgets stands for Generalised Fudgets, and [Nob95] indeed presentsfudget combinators in Gadgets. In this section, we describe a purely functionalimplementation of the underlying process scheduler in Gadgets, which enabledus to port the source code for Gadgets to Haskell and use it on top of Fudgets.The Gofer implementation of the process scheduler is implemented in C aspart of Gofer's runtime system. A feature of the scheduler is that it attempts tokeep the message queues short by giving higher priority to processes that readfrom channels with many waiting messages.A limitation in the Gofer implementation of Gadgets resulted in that for eachchannel, at most one process can be waiting for arriving messages, and channelsmust be explicitly claimed by a process before trying to read from them.The functional scheduler that we will describe is not as advanced as theoriginal one, but it is simpler and does not have the above mentioned limitation.Before describing the functional scheduler, we give an overview of the processprimitives as they appear in the original Gofer version.31.1 Wires and processes in Gadget GoferGadget Gofer relies on an extension of Gofer with processes and wires. The typeProcess s represents processes which have an internal state of type s. Commu-nication between processes is asynchronous, and mediated by typed wires.type Wire a = (In a,Out a)data In a = In Intdata Out a = Out IntThe communication along wires is directed, one end is input only (In a), theother is output only (Out a). If a process only knows the input (output) end ofa wire, it can only read from (write to) it. Note that the wire ends are merelyrepresented by integer identi�ers, although the types carry extra informationabout the message type.Wires are created by the primitive primWire.primWire :: (Wire a �> Process s) �> Process s(Just as with stream processors, the sequential behaviour of a process is pro-grammed in a continuation passing style). To transmit something along a wire,one uses primTx.primTx :: Out o �> o �> Process s �> Process sA process can wait for input from many wires simultaneously, by using guardedprocesses. A guarded process (which we denote AGuarded s) is a process con-tinuation that is waiting for input from one wire, and is formed by primFrom.primFrom :: In m �> (m �> Process s) �> AGuarded sGiven a list of guarded processes, we can wait for input to any of them byprimRx.

172 31 Gadgets in Fudgetstype Guarded s = [AGuarded s]primRx :: Guarded s �> Process sNow, why are there two primitives for receiving input, when there is only one fortransmitting output? The reason is that although we could combine primFromand primRx,-- not general enough!primRxFrom :: [(In m, (m �> Process s))] �> Process s �> Process sprimRxFrom = primRx . map (uncurry primFrom)the combination forces us to wait for messages of the same type. The introduc-tion of guarded processes hides the message types and allows a process to selectinput from wires of di�erent type.Processes need not live forever, they can die by calling primTerminate.primTerminate :: Process sLast but not least, a process can spawn a new process.primSpawn :: Process s' �> s' �> Process s �> Process sThus, primSpawn p s0 c will spawn the new process p, giving it initial state s0,and continue with c.Gadget Gofer also uses primitives for claiming and disowning wires, andrequires that a wire should be claimed by a process before attempting to receivefrom it. Since the functional scheduler does not have this restriction, we ignorethem in the following. The presentation will also ignore1. that primRx actually takes an additional debugging argument, and2. the existence of the global, polymorphic wire ends nci and nco, which arenot connected to anything.31.1.1 Connecting processes to the worldWires are not only used for inter-process communication, they also interface theprocesses to the outside world. There are three primitive device processes that,when spawned, attach wires to the keyboard, the mouse, and the screen.keyboard :: In KeyboardCmnd �> Out KeyboardEvnt �> Process smouse :: In MouseCmnd �> Out MouseEvnt �> Process sscreen :: In [ScreenCmnd] �> Out ScreenEvnt �> Process sThe mouse and keyboard can be con�gured by transmitting mouse or keyboardcommands, respectively, whereas the screen commands are used for drawing.The events report key presses, mouse clicks, mouse movements, and exposureevents.These three primitives are started once inside the Gadget window system.For example, the keyboard process is started withwire $ \smk �>wire $ \ksm �>spawn (keyboard (ip smk) (op ksm))

31.2 A functional process implementation 173After this, the keyboard events are read from op smk, and the keyboard iscon�gured by writing to ip ksm.To execute a process with a given initial state, Gadget Gofer provides theprimitive primLaunch.primLaunch :: Process s �> s �> IO ()31.1.2 Manipulating the process stateA process uses the operations readState and setState.readState :: (s �> Process s) �> Process ssetState :: s �> Process s �> Process sIn Gadget Gofer, the type Process s is a synonym for a function from s to s,that is, a state transformer.type Process s = s �> sThe implementation of readState and showState is then straightforward.readState c = \s �> c s ssetState s c = _ �> c s31.2 A functional process implementationThe Fudgets implementation of Gadgets is purely functional, written in Haskell,which means that all primitives described above are de�ned within Haskell. The�runtime� system (the process scheduler) is also written in Haskell, except thatit uses a type cast (not de�ned in ordinary Haskell) at one place, as we will see.In the functional version, processes cannot have the simple function types �> s any more, since we must be explicit about the e�ects that processes canhave. Instead, we will de�ne the process type in steps, where we start with astream-processor type that handles messages related to the keyboard, mouse andscreen. On top of the stream-processor type, we de�ne a state monad (SPms)with operations for manipulating a state in addition to the I/O operations ofthe stream processor. The state is used by the scheduler, and is used to de�nea simple process type Process0, which amounts to the Gadget processes exceptthat they do not have any local state. Having done this, we de�ne the fullGadget processes on top. The steps are summarised in the following table.Process Gadget processes with stateProcess0 Processes without stateSPms Stream-processor state monadsSP Plain stream processors31.2.1 The stream-processor monad with stateWe can build a stream-processor monad with state by using the type SPms:type SPms i o s a = (a �> (s �> SP i o)) �> (s �> SP i o)A computation of type SPms i o s a can input messages of type i, outputmessages of type o, manipulate a state of type s, and return a value of type athrough the following operations:

174 31 Gadgets in FudgetsgetSPms :: SPms i o s iputSPms :: o �> SPms i o s ()loadSPms :: SPms i o s sstoreSPms :: s �> SPms i o s ()getSPms = \k s �> getSP $ \i �> k i sputSPms o = \k s �> putSP o $ k () sloadSPms = \k s �> k s sstoreSPms s = \k _ �> k () s31.2.2 Processes without stateWe use the state stream-processor monad to implement the stateless processes,called Process0. The state of the stream processor is used by the scheduler forbookkeeping.type Process0 i o = SPms i o (SchedulerState i o) ()data SchedulerState i o = SS{ freeWire :: Wno, messageQs :: MessageQueues, ready :: [Process0 i o], guarded :: [Guarded0 i o], input :: [i �> Process0 i o]}Just as in the Gofer implementation, we use integers to identify wire ends, exceptthat we call the integers wire numbers (Wno).newtype Wno = Wno Intnewtype In a = In Wnonewtype Out a = Out WnoWhat follows are de�nitions of the primitives for creating wires and processes,and communication over wires. We su�x the primitives with a 0 to indicatethat they operate on processes without local state.A new wire is allocated with primWire0, which increments the �eld freeWirein the state, and hands a fresh wire to the continuation.primWire0 :: (Wire a �> Process0 i o) �> Process0 i oprimWire0 c =do ps@(SS{ freeWire = w@(Wno i) }) <� loadSPmsstoreSPms ps{ freeWire = Wno (i+1) }c (In w, Out w)The second component in the scheduler state (messageQs) is a mapping fromwire numbers to queues of not yet delivered messages.type MessageQueues = IntMap (Queue Msg)The types IntMap and Queue implement integer maps and Okasaki's queues[Oka95] come from HBC's library, and have the following signatures:

31.2 A functional process implementation 175module Queue whereempty :: Queue asnoc :: a �> Queue a �> Queue atail :: Queue a �> Queue ahead :: Queue a �> anull :: Queue a �> Boolmodule IntMap whereempty :: IntMap amodify :: (a �> a) �> a �> Int �> IntMap a �> IntMap adelete :: Int �> IntMap a �> IntMap alookup :: Int �> IntMap a �> Maybe aThe operations are standard, except modify, which deserves an explanation. Theexpression modify f a i m applies the function f to the entry i in m if it exists.Otherwise, it inserts the value a at i.Each message is paired with the wire number. Since di�erent wires can havedi�erent type, messages can also be of di�erent type. We use an existentialtype (an extension to Haskell provided by HBC) to hide the message type whenputting messages in the queue.data Msg = Msg ?aConstructing values of type Msg is easy, but when de-constructing them, wecannot assume anything about the type of the argument. We return to thisproblem later.Sending a value on a wire amounts to queueing the wire number togetherwith the value.primTx0 :: Out a �> a �> Process0 i o �> Process0 i oprimTx0 (Out wno) msg p =if wno == ncWno then pelsedo ps@(SS{ messageQs, ready }) <� loadSPmsstoreSPms ps{ messageQs = addMsg wno (Msg msg) messageQs, ready = p:ready}scheduleraddMsg :: Wno �> Msg �> MessageQueues �> MessageQueuesaddMsg wno m = modify (snoc m) (snoc m Queue.empty) wnoThe �eld ready holds a list of processes that are ready to run. When spawningo� a new process, we put it on the ready list.primSpawn0 :: Process0 i o �> Process0 i o �> Process0 i oprimSpawn0 p' p =do ps@(SS{ ready }) <� loadSPmsstoreSPms ps{ ready = p':ready }pThere is also a list of processes waiting for messages, stored in the �eld guarded.The elements are lists of stateless guarded processes (AGuarded0 i o).

176 31 Gadgets in Fudgetsdata AGuarded0 i o = AGuarded0 Wno (?a �> Process0 i o)A guarded process is a wire number and a function which takes a message as aparameter. The actual type of the message is hidden in AGuarded0, so that wecan form a list of guarded processes regardless of what message type they arewaiting for.type Guarded0 i o = [AGuarded0 i o]A guarded stateless process is formed with primFrom0.primFrom0 :: In m �> (m �> Process0 i o) �> AGuarded0 i oprimFrom0 (In wno) f = AGuarded0 wno fThe function primRx0 will wait for a message to arrive to any of the guardedprocesses in the �rst parameter. It adds the guarded processes to the state, andthen jump to the scheduler to �nd another process to execute.primRx0 :: Guarded0 i o �> Process0 i o �> Process0 i oprimRx0 g def =do ps@(SS{ guarded }) <� loadSPmsstoreSPms ps{ guarded = g:guarded }schedulerThe scheduler's (Figure 83) job is to apply guarded processes to matching mes-sages, move them to the ready list, and pick one from the ready list to run.In case the ready list is empty, the input list is investigated. This list con-tains processes waiting for input from the outside of the stream processor. Ifthis list is also empty, then the gadget program is �nished. Otherwise, we dostream-processor input and give the message to all processes in the input list.The function match applies all guarded processes for which there are match-ing messages. It returns the remaining unmatched messages and guarded pro-cesses, together with a list of new ready processes.Recall that each element in the �eld guarded is itself a list, which comes froma call to primRx. The function match1 looks for a matching message for one ofthe elements in such a list, possibly returning a new message queue and a readyprocess. A matching message must have the same wire number as the guardedprocess. It seems like this cannot be expressed in the type system, so we areforced to use a type cast (see the function match1 in Figure 83).The stateless processes can do stream-processor input/output by means ofget0 and put0. The output part is easy:put0 :: o �> Process0 i o �> Process0 i oput0 o p =do putSPms (Right o)pWhen it comes to input, the process does not directly call getSPms, since thatwould block other threads as well. Instead, the continuation is put on the inputlist in the scheduler state, and jump to the scheduler. Note that more than oneprocess may call get0. As we have already seen, the scheduler will ensure thatall of them will receive the next message that the stream processor inputs.

31.2 A functional process implementation 177
scheduler :: Process0 i oscheduler =do ps@(SS{ freeWire, messageQs, ready, guarded, input }) <� loadSPmslet (messageQs',guarded',moreReady) = match messageQs guardedlet run p ready' input' =do storeSPms ps{ messageQs = messageQs', ready = ready', guarded = guarded', input = input'}pcase (moreReady++ready) of[] �> if null inputthen nullSPmselse do i <� getSPmscase [ih i | ih <� input] ofp:ready' �> run p ready' []p:ready' �> run p ready' inputmatch :: MessageQueues �> [Guarded0 i o]�> (MessageQueues,[Guarded0 i o],[Process0 i o])match m [] = (m,[],[])match m (g:f) = case match1 m g ofNothing �> (m',g:f',r) where (m',f',r) = match m fJust (m1,p) �> (m2,f',p:r) where (m2,f',r) = match m1 fmatch1 :: MessageQueues �> Guarded0 i o�> Maybe (MessageQueues,Process0 i o)match1 m [] = Nothingmatch1 m ((AGuarded0 (Wno w) f):gs) =case IntMap.lookup w m ofNothing �> match1 m gsJust mq �> case Queue.head mq ofMsg msg �> Just (m',cast f msg) -- ! type cast !where mq' = Queue.tail mqm' = if Queue.null mq'then delete w melse modify Queue.tail unde�ned w mcast :: a �> b -- Not de�ned in Haskell.Figure 83. The scheduler.

178 31 Gadgets in Fudgetsget0 :: (i �> Process0 i o) �> Process0 i oget0 i =do ps@(SS{ input }) <� loadSPmsstoreSPms ps{ input = i:input }schedulerIf a process terminates, we need to schedule some other process for execution ifpossible. Therefore, primTerminate0 simply jumps to the scheduler.primTerminate0 :: Process0 i oprimTerminate0 = schedulerTo launch a process, the process state must be initialised. This is done inprimLaunch0.primLaunch0 :: Process0 i o �> Process0 i oprimLaunch0 p =do storeSPms SS{ freeWire = startWno, messageQs = IntMap.empty, ready = [], guarded = [], input = []}pSo far, we have been quite general about the type of messages that our statelessprocesses will speak. To implement gadget processes, we will use the stream-processor I/O to simulate the keyboard, mouse and screen, as discussed inSection 31.1.1. We will call stateless gadget processes GProcess0.type GProcess0 = Process0 GEvent GCommandThe types GEvent and GCommand will be de�ned in Section 31.2.4.31.2.3 Gadgets processes with stateNow, we have de�ned most of the necessary primitive operations required forGadget processes, except for the ones that manipulate a local state. It turnsout to be straightforward to add state to GProcess0:newtype Process s = P ((s �> GProcess0) �> s �> GProcess0)A stateful process is a process-valued function which takes a stateless processcontinuation (parameterised over its input state), and an input state as param-eters. It can modify the state before applying it to the continuation, and alsouse the stateless process primitives.The state parameter is accessed by setState and readState.unp (P p) = psetState :: s �> Process s �> Process ssetState a p = P $ \c s �> unp p c areadState :: (s �> Process s) �> Process sreadState p = P $ \c s �> unp (p s) c s

31.2 A functional process implementation 179We now need to lift the primitive operations of type GProcess0 to Process. Weuse two auxiliary functions, depending on whether the continuation takes anargument or not. (This �duplication of code� is a price we pay for not workingwith monads: in monadic style, all operations return a value, which might be() if it is uninteresting. In CPS, operations without a result take continuationswithout an argument, which can be seen as a slight optimisation, but adds tothe complexity of CPS programming.)liftP0arg :: ((a �> GProcess0) �> GProcess0)�> (a �> Process s) �> Process sliftP0arg p0 p = P $ \c s �> p0 (\a�>unp (p a) c s)liftP0c :: (GProcess0 �> GProcess0)�> Process s �> Process sliftP0c p0 p = P $ \c s �> p0 (unp p c s)We also need to lift stateless processes into stateful ones:liftP0 :: GProcess0 �> Process sliftP0 p0 = P $ \c s �> p0The operations for creating a wire and transmitting a message are straightfor-ward to lift.primWire :: (Wire a �> Process s) �> Process sprimWire = liftP0arg primWire0primTx :: Out o �> o �> Process s �> Process sprimTx o m = liftP0c $ primTx0 o mWe will also need an auxiliary function to �downgrade� a stateful process to afunction from state to a stateless process.down :: Process s �> (s �> GProcess0)down (P p) s = p (\s' �> primTerminate0) sWhen lifting primFrom, we must ensure that the guarded processes get access tothe state. Guarded stateful processes are therefore guarded stateless processesparameterised over the state.type AGuarded s = s �> AGuarded0 GEvent GCommandtype Guarded s = [AGuarded s]primFrom :: In m �> (m �> Process s) �> AGuarded sprimFrom i p = \s �> primFrom0 i (\m �> down (p m) s)In primRx, we apply the state to each guarded process, revealing the statelessguarded processes that primRx0 accepts.primRx :: Guarded s �> Process sprimRx gs = P $ \c s �> primRx0 [g s | g <� gs]The remaining primitive operations are straightforward to lift.

180 31 Gadgets in FudgetsprimTerminate :: Process sprimTerminate = P $ \c s �> primTerminate0primSpawn :: Process a �> a �> Process s �> Process sprimSpawn p' s p = liftP0c (primSpawn0 (down p' s)) pprimLaunch :: Process s �> s �> GProcess0primLaunch p s = primLaunch0 (down p s)31.2.4 Simulating Gadget input/outputTo complete the functional implementation of the Gadget primitives, we stillmust de�ne mouse, screen and keyboard. We use the stream-processor in-put/output to mediate the events and commands from/to the mouse, keyboardand screen.data GEvent = ME MouseEvnt | KE KeyboardEvnt | SE ScreenEvntdata GCommand = MC MouseCmnd | KC KeyboardCmnd | SC [ScreenCmnd]Each device is controlled by two processes: the output handler, which injectscommands received on a wire into the type GCommand and outputs them, andthe input handler, which inputs events, extracts those speci�c for the device andtransmit them on a wire. These two handlers run in parallel. This is capturedwith the deviceHandler.deviceHandler :: (c �> GCommand) �> (GEvent �> Maybe e)�> In c �> Out e �> Process sdeviceHandler inj extract cw ew =liftP0 $ primSpawn0 ohandler ihandlerwhere ohandler = primRx0 [primFrom0 cw $ \cmd �>put0 (inj cmd) ohandler]ihandler = get0 $ \i �>case extract i ofJust evt �> primTx0 ew evt $ihandlerNothing �> ihandlerWe can now form our devices.keyboard :: In KeyboardCmnd �> Out KeyboardEvnt �> Process skeyboard = deviceHandler KC (\i �> case i of KE e �> Just e_ �> Nothing)mouse :: In MouseCmnd �> Out MouseEvnt �> Process smouse = deviceHandler MC (\i �> case i of ME e �> Just e_ �> Nothing)screen :: In [ScreenCmnd] �> Out ScreenEvnt �> Process sscreen = deviceHandler SC (\i �> case i of SE e �> Just e_ �> Nothing)

31.3 Discussion 181

Figure 84. Example of wire queue length pro�les, provided by the Gadgets-in-Fudgets implementation. Each pro�le represents one wire, its height is pro-portional to the length of the queue of messages waiting to be delivered. Thepicture is a snapshot of the computation; by pressing the button, a new snapshotis taken. The time axis is the one growing into the graph.Outside the Gadget stream processor, the screen commands are transformed intocorresponding Fudget drawing commands, whereas the keyboard and mousecontrol commands are ignored. Conversely, Fudget keyboard presses, mouseclicks and screen exposure events are transformed into GEvent messages. Thisis done in the fudget gadgetF, of typegadgetF :: Gadget �> F a bNote that the high-level streams of gadgetF are unused. It would be nice to usethem for communication between gadget processes and the rest of the fudgetprogram, but this is not possible in a type-safe way. The reason is that such acommunication could be used to exchange wires between di�erent instances ofgadgetF. Each gadgetF has its own scheduler, and mixing wires between sched-ulers is not type safe.31.3 DiscussionFor the functional programmer, the Haskell implementation of a Gadget sched-uler seems attractive. Di�erent scheduling principles can be implemented andcompared. Pro�ling tools can be added, also in Haskell. For example, it mightbe interesting to see how the wire queue length evolves over time (Figure 84).A disappointment is that we are not able to safely type check all parts of thescheduler. Nevertheless, we believe that the Haskell implementation is �more�type safe than the original scheduler, which was written in C.The functional scheduler also has a serious performance problem for certainprocesses. If a process dynamically creates wires, sends messages to them, andthen forgets them, the wire queues cannot be garbage collected. The functionalscheduler can never know if a process drops its reference to a wire.A remedy for these problems is to use lazy state threads [LPJ94] and theirimperative variables for representing the queues.

V ApplicationsOne strong motivation behind the development of Fudgets was practical useful-ness, that is, we wanted to be able to write serious applications with graphicaluser interfaces in a declarative style, in a pure functional language. Hand inhand with the development of the library, we have therefore developed a num-ber of small and large applications.To give you some idea of what the potential of the fudget library is, andto discuss various practical programming considerations, this part presents, invarying detail, some applications we have implemented using Fudgets.

183

Figure 85. WWWbrowser, a simple web browser implemented using fudgets in1994. It supports inlines images and forms.32 WWWBrowser � a WWW clientA good example of an application that makes full use of all aspects of the Fudgetlibrary is a World-Wide-Web client. It displays hyper-text documents with em-bedded images and GUI elements (to implement �ll-in forms). The documentsare obtained from various information sources on the Internet through protocolslike ftp, nntp, gopher and http.In this section we will take a look at how such an application can be im-plemented on top of the Fudget library, in Haskell. An actual implementation,called WWWBrowser, was done mainly during the summer 1994. Some updatesand improvements were made in the summer 1997. A window snapshot is shownin Figure 85. The 1994 version of WWWBrowser had the following features:� It accepted most of HTML 2.0 (the HTML standard in use in 1994),including� �ll-in forms.� inlined images (�le formats: gif, jpeg, xbm, pnm).� It supported the usual protocols: http, gopher, ftp, news, local

184 32 WWWBrowser � a WWW client�les/directories.� It fetched multiple inlined images in parallel. This made WWWBrowserfaster than Mosaic (the most widely used browser in 1994) when fetchingpages with many small images.� It simpli�ed copy and paste of URLs. You could mark a URL in, e.g., atext editor and then click with the middle mouse button in the browserwindow to view that page.Some quick facts about the 1994 implementation:� The HTML input was parsed into an abstract syntax tree, which was thenconverted in several stages into drawing commands producing text withthe appropriate layout, font and other attributes. This was done usingfudget kernels (see Section 22.1.2) written speci�cally for this purpose.� The HTML parser was implemented using the fairly e�cient, backtrackingparsing combinators developed by Niklas Röjemo [Röj95a] for use in hisHaskell compiler. To improve the tolerance of bad HTML, an extra tagbalancing pass was added between the lexical analyser and the parser, butthe parser still failed on some web pages.� Form elements and images were implemented as ordinary fudgets, placedappropriately in the text. (Their sizes a�ect the layout.)� Image conversion (e.g., decompressing gif and jpeg) was done by callingexternal programs (giftoppm, etc.).� Image processing (color remapping and, optionally, dithering) was donein Haskell.� Program size: approximately 4000 lines of Haskell.� Implementation time: approximately 1 man month.The following was changed and added in 1997:� The source code was translated from Haskell 1.2 to Haskell 1.4.� The parser was rewritten using a version of Swierstra & Duponcheel'sdeterministic, error-correcting parsing combinators [SD96]. This parserturned out to be more elegant (the extra tag balancing pass could beremoved) and more tolerant to bad HTML. At the same time, the parserwas updated to accept most of HTML 3.2 [Eng97]. The new parser ranat roughly the same speed as the old one.� The rendering was done by translating the HTML into a Drawing (seeSection 27.4), using a function of the type Html �> Drawing ... (roughly).The old tailor made fudget kernels were thrown out. The fudget libraryplacer tableP was be used to add support for tables (the table cell at-tributes rowspan and colspan were not supported yet).� The fudget layout system was improved with the capabilities to do para-graph �lling and adjust the layout according to the width of the window(see Section 27.6).

32.1 Overall structure of the current WWW browserimplementation 185� Support for background colors and background images was added.� Support for fetching documents via a proxy was added. (A proxy is a serverthat relays document requests. Most WWW browsers can be con�guredto fetch all documents via a proxy instead of fetching them directly fromthe server that has the document.)� Image fetching, conversion and processing was moved to a separate pro-cess, allowing the text of a page to be displayed and be sensitive to clicksbefore the images have been loaded. Part of the page may be redrawnwhen the size of an image becomes known. (With a parallel implementa-tion of fudgets, you would get this for free.)� Experimental support for fupplets (functional applets) was added. Fup-plets are applets written in Haskell using the Fudget library.� WWWBrowser can now read the bookmark �le created by Netscape [Netb]and display it in a hierarchical menu.� The program size now is approximately 4500 lines.32.1 Overall structure of the current WWW browser im-plementationWWWBrowser is implemented in a straight-forward way. The key data typesare, not surprisingly, URL and Html. The key operations on these types are:data URL = ...data Html = ...parseURL :: String �> Maybe URLshowURL :: URL �> StringjoinURL :: URL �> URL �> URLparseHtml :: String �> Either ErrorInfo HtmldrawHtmlDoc :: URL �> Html �> HtmlDrawingtype HtmlDrawing = Drawing ... -- details in Section 32.3Documents are fetched from their location on the web by the fudget urlFetchF,urlFetchF :: F HttpRequest HttpResponse -- details in Section 32.2data HttpRequest = HttpReq { reqURL::URL, ... }data HttpResponse = HttpResp { respBody::String, ... }The fudget urlFetchF handles several protocol besides the HTTP protocol, butsince HTTP is the primary protocol on the WWW, it was the one that wasimplemented �rst. The fudgets for other protocols were then implemented withthe same interface.Documents are displayed by the fudget htmlDisplayF,htmlDisplayF :: F (URL,Html) HttpRequest

186 32 WWWBrowser � a WWW clientwwwBrowserF =httpMsgDispF >==<loopThroughRightF urlFetchF' mainGuiF >==<menusFwheremainGuiF = urlInputF >*< srcDispF >*<(urlHistoryF >*< htmlDisplayF) >=^< toHtmlhttpMsgDispF =nameF "MsgDisp" $ "Progress:" `labLeftOfF` displayFurlFetchF' = post >^=< urlFetchF >=^< stripEitherwherepost msg = ...urlInputF = ... parseURL ... stringInputF ... showURL ...srcDispF = ...urlHistoryF = ...Figure 86. wwwBrowserF � the main fudget in WWWBrowser.which displays HTML documents received on the input, and outputs requests fornew documents when the user clicks on links in the document being displayed.Not all documents on the WWW are HTML documents. Other types ofdocuments (for example plain text, gopher pages, ftp directory listings andUsenet news articles) are handled by converting them to HTML:toHtml :: (URL, HttpResponse) �> (URL,Html)The function toHtml uses parseHtml and other parsers.Using the components presented above we can create a simple web browserby something likesimpleWebBrowser =loopF (htmlDisplayF >==< mapF toHtml >==< urlFetchF)But in addition to the HTML display, WWWBrowser provides back/forwardbuttons, an URL-entry �eld, a history window, a bookmarks menu, a documentsource window and a progress report �eld. The structure of the main fudget isshown in Figure 86. The layout is speci�ed using name layout (see Section 11.2).32.2 Implementing Internet protocolsThe fudget urlFetchF is implemented as a parallel composition of fudgets han-dling the di�erent protocols. This is shown in Figure 87. The function distr

32.2 Implementing Internet protocols 187urlFetchF :: F HttpRequest HttpResponseurlFetchF = snd >^=< listF fetchers >=^< distrwherefetchers =[("�le",�leFetchF>=^<reqURL), -- local �les and ftp("http",httpFetchF), -- http and gopher requests("news",newsFetchF>=^<reqURL),("telnet",telnetStarterF>=^<reqURL)]distr req@(HttpReq {reqURL=url}) = (fetcher,req)wherefetcher = ...Figure 87. The fudget urlFetchF.extracts the protocol �eld from the request URL and sends the request to theappropriate subfudget. The implementation of the individual protocol fudgetkernels are written in continuation style. For the http protocol, the followingoperations are performed:1. A request is received in a high-level input.2. The host �eld of the URL is extracted and a socket connection to thathost is opened. If a proxy is used, a connection to the proxy is openedinstead.3. The request is sent to the host (or the proxy).4. The reply is received in chunks (see Section 14.1) and assembled and theconnection is closed.5. If a redirection response was received, the process is restarted from step 2with the redirection URL.6. If a normal or an error response was received, it is put in the high-leveloutput stream.The implementation of the NNTP (news) protocol is similar. A di�erence isthat the NNTP protocol can handle several requests per connection, so theconnection is kept open after a request is completed, so that it can be reused ifthe next request is directed to the same host. This is usually the case, since younormally fetch all news articles from the same, local news server. (It is possible,but uncommon, to specify a particular news server explicitly in the URL.)The FTP protocol can also handle several requests per connection, and sinceyou are required to log in before you can transfer �les, it is even more bene�cialto reuse connections.The FTP protocol di�ers in that it uses a control connection for sendingcommands that initiate �le transfers and a separate data connection for each�le transfer. The data connection is normally initiated by the server, to a socketspeci�ed by the client. In the fudget implementation, these two connections arehandled by two separate, but cooperating, fudgets.

188 32 WWWBrowser � a WWW client32.3 Displaying HTMLHTML documents contain a sequence of elements, which are delimited by tags.Elements can contain plain text and other, nested elements. For example,<H1>The fudget <TT>htmlDisplayF</TT></H1>is an element tagged as a top-level heading, and it has a nested element markedto be displayed with a typewriter font.There is a distinction between block-level elements and text-level elements.The former mark up text blocks that are to be treated as complete paragraphs.They are thus composed vertically. Heading elements are examples of block-level elements. The latter mark up arbitrary sequences of characters withina paragraph. Block-level elements can contain text-level elements (as in theexample above), but not vice versa.WWWBrowser makes use of the distinction between block-level and text-level elements. This makes it easier to do the layout. The function parseHtmlbuilds a syntax tree which on the top level is a sequence of block-level ele-ments. Plain text occuring on the top level, outside any block-level element,is understood as occuring inside an implicit paragraph (<P>) element. So, forexample,<H1>The fudget <TT>htmlDisplayF</TT></H1>The implementation of...is parsed into the same syntax tree as as<H1>The fudget <TT>htmlDisplayF</TT></H1><P>The implementation of...</P>With this approach, the function drawHtmlDoc can simply recurse down thesyntax tree, composing the drawings of block-level elements using verticalP andtext-level elements using paragraphP.Web pages contain not only text, but also images and form elements. InWWWBrowser, these are implemented by embedding fudgets in the drawing.We introduce the type ActiveDrawing for drawings containing active componentsand de�ne the type HtmlDrawing introduced above astype HtmlDrawing = ActiveDrawing HtmlLabel Gfx HtmlInput HtmlOutputtype ActiveDrawing lbl leaf i o = Drawing lbl (Either (F i o) leaf)where HtmlInput and HtmlOutput are the message types used by the fudgetsimplementing images and forms. Elements with special functionality are markedwith a label of type HtmlLabel. Currently, hyperlinks, link targets, forms andimage maps are labelled.To display ActiveDrawings, a generalisation of graphicsF (see Section 27.5.1)has been de�ned:activeGraphicsF ::F (Either (GfxCommand (ActiveDrawing lbl leaf i o)) (Int,i))(Either GfxEvent (Int,o))

32.4 Fetching images in parallel 189The fudget htmlDisplayF uses activeGraphicsF to display HTML documents. Italso contains� a stream processor that collects the contents of form elements and gen-erates the appropriate HttpRequest when the submit button of a form ispressed.� an instance of the fudget imageFetchF (described below) that the imagefudgets communicate with to obtain the images they should display.32.4 Fetching images in parallelImages in HTML documents are included by reference using URLs and arefetched from their sources separately. The fudget htmlDisplayF uses the fudgetimageFetchF for this:imageFetchF :: F ImageReq (ImageReq,ImageResp)type ImageReq = (URL,Maybe Size)type ImageResp = (Size,PixmapId)The requests handled by imageFetchF contain the URL of an image to fetch andan optional desired size to which the image should be scaled. The responsescontain the actual size (after scaling) and a pixmap identi�er.Since documents may contain many images and the time it takes to fetch animage often is dominated by network latency rather than bandwidth limitations,it makes sense to fetch several images in parallel. The fudget parServerF,parServerF :: Int �> F req resp �> F req respis a generic fudget for creating servers that can handle several requests in par-allel. If serverF is a fudget that handles requests sequentially with a 1-1 corre-spondence between requests and responses, then the fudget parServerF n serverFhandles up to n requests in parallel.Clients of parServerF must have some way of telling which response belongsto which request, since the order in which the responses are delivered is notguaranteed to correspond to the order in which the requests are received. Thefudget imageFetchF accomplishes this by including the requests in the responses.We also want to avoid fetching the same image twice. This is solved by usinga caching fudget,cacheF :: Eq req => F req (req,resp) �>F (client,req) (client,(req,resp))In addition to caching responses, it keeps track of multiple clients and avoidssending the same request twice to the server even if two clients send the samerequest at the same time. (This situation arises easily in htmlDisplayF, since itis common for the same image to occur in several places in the same HTMLdocument.)In WWWBrowser, a composition like this is used to fetch images:cacheF (parServerF 5 imageFetchF)The implementation of parServerF is shown in Figure 88. The implementationof cacheF is shown in Figure 89.

190 32 WWWBrowser � a WWW client

parServerF :: Int �> F req resp �> F req respparServerF n serverF =loopThroughRightF (absF ctrlSP0) serversFwhereserversF = listF [(i,serverF) | i<�ns] -- n parallel serversns = [1..n] -- server numbersctrlSP0 = ctrlSP ns-- The argument to ctrlSP is a list of currently free serversctrlSP servers =case servers of-- If all servers are busy, wait for a response.[] �> getLeftSP $ fromServer-- If there is a free server:s:servers' �> getSP $ either fromServer fromClientwherefromClient req =-- When a requests is received, send it to the-- �rst server in the free list and continue-- with the remaning servers still in the free list.putSP (Left (s,req)) $ ctrlSP servers'wherefromServer (n,resp) =-- When a response is received from a server-- output it and add the server to the free list.putSP (Right resp) $ ctrlSP (n:servers)Figure 88. The fudget parServerF.

32.4 Fetching images in parallel 191
cacheF :: Eq req => F req (req,resp) �> F (client,req) (client,(req,resp))cacheF serverF = loopThroughRightF (absF (cacheSP [] [])) serverFcacheSP cache pending =getSP $ either answerFromServerSP requestFromClientSPwhererequestFromClientSP (n,req) = -- A request from client n.assoc oldSP newSP cache reqwhereoldSP ans = -- The answer was found in the cache.putSP (Right (n,(req,ans))) $cacheSP cache pendingnewSP = -- A new request, send it to the server, and-- add the client to the pending list.if req `elem` map snd pendingthen contelse putSP (Left req) contwherecont = cacheSP cache ((n,req):pending)answerFromServerSP ans@(req,_) =-- The server delivered an answer to request req,-- save it in the cache,-- forward it to waiting clients and remove them from-- the pending list.putsSP [Right (n,ans) | (n,_)<�ready] $cacheSP (ans:cache) pending'where(ready,pending') = part ((==req).snd) pendingFigure 89. The fudget cacheF.

192 32 WWWBrowser � a WWW client32.5 DiscussionA drawback with WWWBrowser, as compared to other modern browsers, isthat it does not display documents incrementally as they are received from thenetwork. This is due to several facts:� The current design of urlFetchF does not output anything until it hasreceived the complete document.� Even if urlFetchF was changed to output chunks as they are received, youwould have to concatenate all the pieces before you apply the functionparseHtml to it.� The fudget htmlDisplayF is implemented with graphicsF. When graphicsFreceives a new drawing to display, it computes its size and adjusts thewindow size accordingly before it draws anything in the window. Thismeans that it needs the complete drawing before it can display anything.One way of achieving incremental display of received documents would be to leturlFetchF output a response containing the document as a lazy list of charactersas soon as it begins receiving it from the server. This would allow you to applythe parser and the drawing function immediately and send the resulting drawingto graphicsF. The parser parseHtml and drawing function drawHtmlDoc must becarefully constructed to be lazy enough to produce some output even when onlyan initial fragment of the input is available. You would also have to changegraphicsF so that it does not start by computing the size of the drawing. Itshould instead lazily compute drawing commands (see Section 27.2) to sendto the window system. The size of the window should be adjusted regularlyaccording to where the drawing commands generated so far have drawn.The above solution seems to require the introduction of some mechanism forindeterministic choice, since while the drawing commands for the document arebeing computed and output, the program should to continue to react to otherinput.However, the trend in I/O systems for functional languages goes towardsmaking I/O operations more explicit. Even the Fudget library has abandonedthe representation of streams as lazy lists in favour of a simpler deterministicimplementation. Using a lazy list for input as above is thus a step in theopposite direction. However, to program indeterministic systems on a high levelof abstraction, streams as lazy lists seem to be useful.One can of course think of ways of achieving incremental display withoutdoing input in the form of lazy lists.� We could let urlFetchF output chunks of characters as they become avail-able.� We could create a parsing library that creates parsers in the form of streamprocessors. The type of the function parseHtml would then be SP StringHtml instead of String �> Html. However, we will not achieve incrementaldisplay if we continue to output the syntax tree of whole document inone message. We would instead have to output a sequence of documentfragments.

32.5 Discussion 193� The input of the fudget htmlDisplayF would be document fragments in-stead of complete document. We are thus moving one step in the directionof an HTML editor instead of a simple display.But it does not seem like good software engineering to have to create a di�er-ent parsing library just because we want to use the constructed parsers in aninteractive program, but sticking to the philosophy behind the Haskell I/O, itseems that this is what we would have to do.The conclusion we draw from this is that the current I/O system in Haskelldoes not integrate well with laziness.

194 33 Alfa � a proof editor for type theory

Figure 90. Window dump of Alfa, illustrating the construction of a simple proofin natural deduction style.33 Alfa � a proof editor for type theoryAlfa is a WYSIWYG proof editor. It allows you to, interactively and incre-mentally, de�ne theories (axioms and inference rules), formulate theorems andconstruct proofs of the theorems. All steps in the proof construction are imme-diately checked by the system and no erroneous proofs can be constructed. Thelogical framework used is one of Thierry Coquand's versions of Per Martin-Löf'sType Theory.Alternatively, you can view Alfa as a syntax-directed editor for a small purelyfunctional programming language with a type system that provides dependenttypes. The editor immediately checks that programs you enter are syntacticallycorrect and type correct.Alfa is largely inspired by Window-Alf [AGNvS94], implemented by LenaMagnusson and Johan Nordlander, and has a similar user interface.The plan is that Alfa should improve on Window-Alf by� allowing the user to de�ne how proof terms should be presented on thescreen (and on paper). This includes simple things like argument hidingand in�x operators, but also more advanced mathematical notation andnatural deduction style proof trees and other representations of proofs.Alfa should also allow you to produce documents where explanatory textand proof fragments are interleaved.� using ideas from hypertext and Web browser to allow the user to e�cientlynavigate through large proofs and libraries.Some of this has been implemented. As shown in Figure 90, proofs can bepresented in natural deduction style.Whereas Window-Alf was implemented in Standard ML (proof engine) andC++ & Interviews (user interface), Alfa is implemented entirely in Haskell,using Fudgets for the user interface. At the time of writing, the source codeconsists of about 8000 lines, distributed as follows:

195

Figure 91. The smiley indicates whether there is a syntactic error in the input.� The proof engine by Thierry Coquand. 2700 lines. This includes a parserand parser combinators (480 lines).� Extensions and improvements of the Fudget library. 1900 lines. Thelargest part of this is the new fudgets for displaying structured graphics(described in Chapter 27) and syntax-directed editing. It also includesa new �le-selection window and a string-entry window with immediatesyntax checking and feedback via a smiley (see Figure 91). Although thedevelopment of these were prompted the Alfa project, they are generalenough to be used in other contexts.� The Alfa User Interface. 3400 lines. The largest parts are the implementa-tion of the WYSIWYG style editing operations (1000 lines) and the codefor drawing/building abstract syntax trees used by the syntax-directededitor fudget (800 lines).In addition, Aarne Ranta has supplied 2100 lines with support for natural lan-guage. Some of this code had been integrated in Alfa, but this work was in arather experimental stage.More detailed and up-to-date information on Alfa is available on the WWW[Hal97].

196 34 Humake � a distributed and parallel make tool for Haskell

Figure 92. The user interface of Humake.34 Humake � a distributed and parallel maketool for HaskellHumake is a tool for compiling Haskell programs. It allows independent mod-ules to be compiled in parallel, possibly on di�erent computers. It has a graph-ical user interface (see Figure 92) where the progress of the compilation canbe monitored and information on individual modules can be obtained. Themodule-dependency graph is automatically extracted from the source code. Thedependency graph, �le-modi�cation dates and other module information is re-tained between compilations and can be dynamically updated when a module ischanged, to minimise the work required to start a recompilation and thus makethe edit-compile-test development cycle faster. In the current version, the userinterface shows� a module list where the status of each module is indicated by a coloredlamp. The color is green if the module is up-to-date, yellow if it is be-ing compiled or waiting to be compiled (because it is out of date withrespect to its source code or the interface of an imported module), red ifcompilation of the module failed and blue if the module was taken froma pre-compiled library. A menu allows you to choose from a number ofdi�erent sorting orders.� a module information window, which shows imported modules, modulesthat import this module, �le location and modi�cation dates.� an update button which makes Humake re-read the module informationafter it has been changed. Humake can also receive change noti�cationsdirectly from a text editor. This has been implemented for Emacs.� a list showing which modules are currently being compiled and how manymodules are currently waiting to be compiled.

34.1 Implementation 197main = fudlogue $ shellF "Humake" humakeFhumakeF =loopLeftF ((moduleInfoF>+<parallelCompileF) >==< dependencyF)>==< editorInterfaceF--- GUI fudgets:statusDisplayF = ... --the bottom part of the windowmoduleInfoF = ... -- the module list, module info and the update buttons--- Non-GUI fudgets:parallelCompileF =�lterRightSP >^^=< (statusDisplayF>+<idF) >==<loopThroughRightF (absF ctrlSP) (parServerF hosts compileF)wherectrlSP = ...parServerF :: [id] �> (id�>F req resp) �> F req respparServerF ids serverF = ... -- essentially as in Figure 88compileF :: String �> F CompilerReq CompilerRespcompileF host = ... -- a compilation servereditorInterfaceF :: F a StringeditorInterfaceF = ... -- outputs the name of a �le when it is savedFigure 93. Implementation of Humake.34.1 ImplementationThe structure of the implementation is sketched in Figure 93. Most of the workis handled by the fudget dependencyF. It traverses the modules to extract themodule-dependency graph and builds a representation of it. It also maintains adata structure representing the status of the compilation process. This structureis chosen so that when a compilation completes, or a module is updated, a newcompilation can be started as quickly as possible.The source is about 1200 lines long.

198 35 Space Invaders � real-time and simulation

Figure 94. Space Invaders � a typical interactive real-time game.35 Space Invaders � real-time and simulationThis section illustrates how the Fudget system can be used to write real-timeinteractive games. This shows that the Fudgets GUI toolkit is not limitedto traditional, fairly static, graphical user interfaces, but also allows you toconstruct interfaces with lots of animated objects. By structuring the programwith one concurrent process (one fudget) per animated object the program canbe seen as a model that simulates some real-world objects and the way theycommunicate.35.1 Space InvadersWe start with a brief description of the classical game Space Invaders. Onlythe most fundamental parts of the game have actually been implemented. Inthis game, an army of invaders from outer space is approaching the earth. Theplayer must shoot them all down before they reach the surface. Some pointsare added to the player's score for each invader that is shot down. The playercontrols a gun, which can be moved horizontally at the bottom of the screen(the surface of the earth) and which can �re vertically. The invaders initiallymove from left to right. When the right-most invader reaches the right edgeof the screen all invaders �rst move downwards a small distance, then movehorizontally again until the left-most invader reaches the left edge, and so on.35.2 Structure of the Space-Invaders implementationIn this section we describe an implementation of Space Invaders, where the eachobject is implemented as a fudget. The objects are:

35.2 Structure of the Space-Invaders implementation 199
spaceInvadersF =

gunF spaceFtorpedoFinvadersFscoreF

XEventPointPointInt

invadersF =

tempoFshoutSPlistF [invaderF n | n<- ...]

PointPoint+TickInt

InvaderMsg

Figure 95. The processes and their interconnection in the Space-Invaders im-plementation.1. spaceF: the space fudget. This is the black background in which all theother objects move around.2. gunF: the gun.3. torpedoF: the torpedoes �red by the gun.4. invaderF: a number of invadersThere is also scoreF, which displays the current score and a high-score. gunFand torpedoF use timers internally to control the speed of their motion. Tocoordinate the motion of the invaders, they are controlled by a common timerwhich is located in a windowless fudget called tempoF. There is also an abstractfudget called shoutSP, which broadcasts timer alarms and other input to allinvaders.Section 35.2 illustrates how the fudgets are interconnected. The information�ow is as follows: the space fudget outputs mouse and keyboard events to gunF.(This allows the user to place the mouse pointer anywhere in the window tocontrol the gun.) The gun responds to these events by starting or stopping itsmovement, or by �ring a torpedo. When the gun is �red, it outputs its currentposition to the torpedo fudget. The torpedo then starts moving upwards fromthat position. When it hits something, it outputs its current position to theinvaders. Each invader then checks if the hit is within the area it occupies onthe screen and, if so, it removes its window and dies.Below, we take a closer look at invaderF. The other fudgets are just variationson a theme, so we will not discuss them further.The fudget invaderF maintains an internal state consisting of the followingparts: the current position (a Point), the current direction (left or right), if itis time to turn (i.e., move downward at the next timer alarm, and then changedirections).

200 35 Space Invaders � real-time and simulationThe invaders speak the following language:data InvaderMsg = Tick | Turn | Hit Point | Death (Int,Int)When an invader hears a Tick, it moves one step in the current direction. Italso checks if it has reached an edge, in which case it outputs Turn, which isreceived by all invaders. When an invader hears a Turn it remembers that it istime to turn at the next Tick. When a torpedo has hit something at positionp, all invaders receive Hit p, and check if p is within their screen area. If so, itoutputs Death n, where n is the identity of the invader. This identity is recordedby shoutSP, so that it does not have to shout to dead invaders. It is also usedto determine how many points to add to the score.The fact that all objects are implemented as group fudgets means that eachobject has its own X window. To move an object you move its window. Nodrawing commands need to be output.How does the torpedo know if it has hit something? The torpedo is a windowwhich moves behind all other windows. This means that it becomes obscuredwhen it hits something. The X server sends a VisibilityNotify event when thishappens. This causes the torpedo to stop and send its current position to theinvaders. (Nice hack, isn't it? But isn't there a timing problem? And what ifthe torpedo is obscured by some other application window? We leave it to thereader to ponder over this.)35.3 About the e�ciency of the Space-Invaders implemen-tationOne major point of the Fudget system (and of functional programming in gen-eral) is to simplify and speed up program development. But it is of course alsoimportant that the e�ciency of the resulting program is acceptable.We have measured the CPU time consumption of the Space-Invaders imple-mentation described above running on a Sparcstation IPX in a situation where55 invaders move twice per second, the gun and the torpedo move every 30ms.The average CPU load was approximately 60%. 10% of this was consumed bythe X server. As a comparison, the program xinvaders, a C program imple-mented directly on top of Xlib, consumes less than 5% CPU time in a similarsituation.As usual, programming on a higher abstraction level results in a less e�-cient solution. Part of the ine�ciency comes from the use of Haskell and theFudget system. The load on the X server comes from the fact that the mov-ing objects are represented as windows. Not surprisingly, moving a window isa more expensive operation than just drawing an image of the same size. Butusing techniques outlined in the next section, it is possible to rewrite the Fudgetprogram to draw in a single window, like the C program, and still keep the samenice program structure, i.e., one process per moving object.Above, we compared the e�ciency of a high-level implementation (using theFudget system) of the game with a low-level implementation. It would also beinteresting to compare other user interface toolkits, e.g. Motif and Interviews,to the Fudget system.The CPU time consumption �gures above do not say much about the real-time behaviour of the two implementations. The fact is that the C program

35.4 Replacing fudgets with stream processors for e�ciency 201meets the real-time deadlines, but the Fudget program does not. As a responseto a Tick from tempoF, all 55 invaders should move one step. Computing andoutputting 55 MoveWindow commands unfortunately takes longer than 30ms,which means that the MoveWindow commands for the gun and the torpedo willbe output too late, resulting in a jerky motion. This problem can be solvedin at least two di�erent ways: manually, by not moving all 55 invaders at thesame time and thus not blocking output from other fudgets for longer than30ms; automatically (from the point of view of the application programmer),by introducing parallel evaluation and some kind of fair, indeterministic mergeof the output from di�erent fudgets. The latter solution is of course the moregeneral one, and we hope to improve the Fudget system in this direction.35.4 Replacing fudgets with stream processors for e�ciencyAbove, we outlined a program structure where each moving object on the screenis represented as fudget with an associated window on the screen. It is of coursepossible to use fudgets for other kind of simulations where the objects do notcorrespond to user interface elements.The behaviour of a single fudget is usually implemented as a sequentialprogram by using the stream-processor operators putSP, getSP and nullSP. Toincrease the e�ciency of our space invaders implementation, we can insteadstructure the program as one fudget whose behaviour is described by somecomposition of stream processors. This increases the e�ciency in two ways:� The communication between stream processors is cheaper (less tag-ging/untagging).� The number of windows is reduced. This means that conversions betweenpaths and window identi�ers in fudlogue (Section 22.2.2) will be somewhatcheaper, and that the load on the X server is reduced (since windows willnot be moved).In Section 35.2 the input to the invaders is broadcast to all invaders. We im-plemented this using listF (tagged parallel composition) and a separate streamprocessor shoutSP. Some overhead can be avoided by using untagged parallelcomposition of stream processors instead:�*� :: SP a b �> SP a b �> SP a bThis also makes it easy to write stream processors that dynamically split intotwo or more parallel processes. One of the processes in a parallel compositioncan terminate without leaving any overhead behind, sincenullSP �*� sp == sp �*� nullSP == spDoing the same with processes represented as fudgets would not give you thesame e�ciency advantage since the low-level streams remain tagged even inuntagged parallel compositions. Thus when one process in a parallel compositionterminates, some tagging overhead will remain.The fact that parallel compositions can reduce to nullSP gives us an oppor-tunity to make use of the sequential composition operator seqSP (Section 16.4)in an interesting way. Suppose that all that is needed to start a new level in

202 35 Space Invaders � real-time and simulationthe game is the creation of a new army of invaders. Then the behaviour of thegame could be programmed in the following way:playGameSP = playLevelSP 1playLevelSP level = startNewLevelSP level `seqSP` playLevelSP (level+1)startNewLevelSP level = invaderArmySP levelinvaderArmySP level = ... -- creates a parallel composition of invadersWhen the last invader in the invader army dies, the parallel composition will bereduced to nullSP, which causes seqSP to invoke the next level.

20336 FunGraphFunGraph is a prototype implementation of a typed visual programming envi-ronment, inspired by the commercial product ProGraph.A screen dump of FunGraph is shown in Figure 96. Basically, FunGraph is afree-form spread sheet with types, where the user can place and connect objectssuch as cells, sliders and graphs at will. The objects have input connectors ontop, and output connectors below.FunGraph was developed before the fudget graphicsF of Section 27.5.1 wasimplemented. Instead, graphics where implemented with �ne grained fudgets,so to speak. Each object is implemented with a number of fudgets. So each pinis a separate fudget, for example. The objects reside in a dynListF placed in agroup window which controlled the wires. All messages from the output pins ofthe objects are routed by the group window's kernel and looped back into thedynListF, so that the values seem to follow the wires.

204 36 FunGraph

Figure 96. A screen dump of the program FunGraph. Two sliders controlsamplitude and frequency of a sine function de�ned in a cell. This function is thenvisualised in a graph. The bubble window (implemented by bubbleRootPopupF)shows the type of the pin that the user points at for the moment, which happensto be the left input pin of the graph object. It has the type Num �> Num, whichis the type of the functions that the graph object can display.The cell also shows the visual e�ect of one of the �lter fudgets in the library,which is called the shapeGroupMgr. The cell is currently being selected, whichis indicated by a yellow, glowing border around it. This e�ect is achieved bywrapping a shaped window whose border tightly follows the fudgets inside it (inthis case three pin fudgets and one stringF). The border of the shaped windowis yellow, and its width is set to zero when the object is deselected, or a coupleof pixels as is the case with our cell. The shapeGroupMgr ensures that the shapeof the yellow-border window tightly follows the contour of the wrapped fudgetsby analysing the Con�gureWindow commands that they output.

205

Figure 97. The user interface of the protocol prototyping tool.37 A mobile data communication protocol proto-typing toolIn collaboration with Carlstedt Research & Technology AB and Eritel AB, wedeveloped a prototyping tool for testing and modelling communication protocolsin the mobile data network Mobitex. A screen dump of the tool is found inFigure 97, and shows a con�guration with three radio base stations, each whichcovers a triangular area. The small circular objects are mobile users. Roamingof the users between base station areas is simulated using the drag-and-dropfeature from Chapter 25.

206 38 Two board games

Figure 98. The Explode game.38 Two board gamesWe have implemented two board games, Explode (Figure 98) and Othello (Fig-ure 99) using Fudgets.The two games use the same underlying combinators for implementing theboard. The �rst is a button that can display changing graphics:boardButtonF :: (ColorGen bgcolor, Graphic gfx) =>bgcolor �> Size �> F gfx ClickboardButtonF bg size =buttonF� (setBgColor bg) (g (blankD size)) >=^< Left . setLabel . gwhere buttonF� is the dynamically customisable (see Section 30.3) version ofbuttonF and setLabel is a customiser that changes the button label.The second combinator is boardF,type Coord = (Int,Int)boardF :: Coord �> (Coord �> F a b) �> F (Coord,a) (Coord,b)boardF (w,h) squareF =placerF (matrixP w) $listF [((x,y),sqF (x,y)) | y<�[0..h�1],x<�[0..w�1]]which, given the size of the board and a function from the coordinates of asquare to a fudget implementing that square, creates a parallel composition ofsquare fudgets with the appropriate layout. The square fudgets are addressedwith their coordinates.

38.1 The Explode Game 207

Figure 99. The Othello game.38.1 The Explode GameBefore the 1995 GUI Festival in Glasgow, a workshop on graphical user-interfacetoolkits and functional programming [Car95], a number of progamming chal-lenges were distributed to the participants. One of the challenges was to imple-ment the Explode game.In the Explode game, two players take turns placing stones, or atoms, inthe squares of a board. A player can not place atoms in a square that alreadycontains atoms from the opponent. When a square is full, that is, containsas many atoms as it has neighbours, it explodes, sending one atom to eachneighbour. All atoms of the invaded square change color to the invading atom'scolor. Invaded squares may become full and explode in turn. When the boardhas settled, a new move can be entered. When the board starts to get full ofatoms, placing a new atom may cause an in�nite chain reaction. When thishappens, the game is over and the player who caused it is the winner.38.1.1 The Fudgets implementation of the Explode gameThe Fudgets implementation of the Explode game was done as shown in Fig-ure 100. Comments:� The loop on the top level together with routeSP allow all square fudgets tocommunicate with each other. However, each square knows its coordinatesand send messages only to its neighbours. The actual communicationstructure is thus not directly re�ected in the program structure.� routeSP also acts as a referee. It keeps track of whose turn it is, to beable to discard illegal moves. This is also where you would put a test for

208 38 Two board gamesmain = fudlogue (shellF "Explode" explodeBoardF)explodeBoardF =loopF (absF routeSP >==< boardF boardSize boardSize atomsSquareF)whererouteSP = concatMapAccumlSP route Whiteroute side (src,msg) =case msg ofClickedWhileEmpty �> (otherSide side, [(src,side)])ClickedWithColor side' �>if side'==sidethen (otherSide side, [(src,side)])else (side, []) -- illegal moveExplode dsts side' �> (side, [(dst,side')|dst<�dsts])atomsSquareF :: Coord �> F AtomColor (SquareEvent Coord)atomsSquareF (x,y) =loopThroughRightF (absF ctrlSP) atomsButtonFwherectrlSP = concatMapAccumlSP ctrl (0,Nothing)ctrl s@(oldcnt,oldside) msg =case msg ofLeft Click �> (s,[Right (case oldside ofJust side �> ClickedWithColor sideNothing �> ClickedWhileEmpty)])Right side �>let cnt=oldcnt+1in if cnt>=sizethen become (cnt�size) side (explodemsgs side)else become cnt side []become cnt side msgs = ((cnt,optside),Left (cnt,side):msgs)where optside = if cnt==0 then Nothing else Just sidesize = length neighboursexplodemsgs = (:[]) . Right . Explode neighboursneighbours = �lter inside2d [(x�1,y),(x+1,y),(x,y�1),(x,y+1)]inside2d (x,y) = inside x && inside yinside x = 0<=x && x<boardSizeatomsButtonF :: F (NumberOfAtoms,AtomColor) ClickatomsButtonF = boardButtonF bgColor sqsize >=^< drawAtomsdrawAtoms (count,color) = ... -- 20 linesFigure 100. Fudgets implementation of the Explode game.

38.1 The Explode Game 209explosions involving all squares (which should end the game). Otherwise,all the work is done by the squares themselves.� Square fudgets receive input when they are invaded by an atom. Squarefudgets produce output in the type SquareEvent:data SquareEvent dest= ClickNoColor| ClickColor AtomColor| Explode [dest] AtomColorwhere the messages mean� ClickNoColor "I was clicked and I was empty". routeSP then replieswith an atom of the appropriate color (depending on whose turn itis).� ClickColor color: "I was clicked and my color was color". If the colormatches with color of the current player, routeSP replies with an atomof that color, otherwise the message is ignored (some indication of anillegal move could be produced).� Explode square color: "I explode and invade square with color".routeSP forwards the message to the square at square. 2-4 messagesof this kind are sent when a square explodes.The square fudgets also communicates with the internal atomsButtonF.� The auxiliary function drawAtoms in atomsButtonF produces the appro-priate graphical image for a square, using the types FlexibleDrawing andDrawing described in Chapter 27.38.1.2 A comparison of the Fudgets and Gadgets versions of theExlode GameThe submitters of the Explode challenge also provided a solution using Gadgets(see Section 41.3.1). Their solution (see section 6 in [NR95]) is similar to oursin that the e�ects of the users' moves are computed by message passing betweenprocesses representing the squares of the board. In both solutions, there is aseparate referee process that, for example, keeps track of whose turn it is tomove.In the Fudgets solution, the squares are in e�ect connected to all othersquares, whereas in the Gadgets solution, each square process is connectedthrough wires only to its neighbours. As noted in [NR95], combining fudgets toachieve exactly this connectivity would be di�cult, and it would probably alsobe di�cult to add new processes to such a solution.As described above, in the current Fudgets solution, each square fudgetknows its coordinates and computes the coordinates of its neighbours. It wouldof course be possible to parameterise the square fudgets by an abstract repre-sentation of the neighbours instead,atomsSquareF :: [address] �> F AtomColor (SquareEvent address)

210 38 Two board gamesand let routeSP compute the concrete addresses of the neighbours. This perhapsmakes the communication pattern more visible in the program text and preventserrors in the implementation of atomsSquareF from breaking the pattern.Since the Gadgets system uses indeterministic process scheduling, it is nec-essary to explicitly keep track of when an explosion is in progress and when theboard is stable, since moves are allowed to be entered only when the board isstable. The implementation of Fudgets is deterministic and internal communi-cation has priority over external communication, so user input is automaticallyqueued until an explosion has subsided.38.2 The Othello GameThe fudgets version of the game Othello allows a human player to play againstthe computer or another human player. It was implemented by reusing anexisting implementation from 1990 with a TTY-based user interface. 388 of584 lines were reused without changes. About 100 new lines were added for thenew graphical user interface. This demonstrates that the separation of user-interface-speci�c code and application-speci�c code is good.In the implementation of the Explode game, we used a distributed solution:the work of computing the e�ects of the users' moves is handled almost en-tirely by the square fudgets. In the implementation of Othello, we have takenthe opposite approach: the board fudget only displays the board and receivesuser input. The checking of the validity of a move and computation of itse�ect is handled by a stream processor attached in the typical way with theloopThroughRightF combinator (see Section 18.2). The structure of the pro-gram is:main = fudlogue (shellF "Othello" ottoF)ottoF =displayF>==< loopThroughRightF (absF newGameSP) ottoBoardF>==< buttonF "New Game"ottoBoardF :: F BoardReq CoordottoBoardF = ...newGameSP = playSP (reptree moves startpos)playSP :: GameTree �> SP (Either Coord Click) (Either BoardReq String)playSP current_position = ...The function reptree (lazily) computes a game tree which has startpos as the rootnode and where the children of a node are obtained by applying the functionmoves to it.The stream processor playSP checks the current position for whose turn it isto play, and then either waits for the user to enter a move or computes a goodmove for the computer using standard alfa-beta game-tree search.

VI Discussion

212 39 E�ciency and program transformations39 E�ciency and program transformationsE�ciency considerations are of course important when building software li-braries. Below, we discuss some e�ciency aspects of stream processors thathave attracted our attention while working on the Fudget library.We can distinguish two kinds of e�ciency:� execution e�ciency: programs should run reasonably fast.� programmer e�ciency: programs should be easy to write.While execution e�ciency was, and to a large extent still is, a weak point offunctional language implementations (as compared to C, for example), program-mer e�ciency is a strong point, and one of the reason why functional languagesare interesting in the �rst place. There is often a trade-o� between the two.In the following section, we will discuss, in the context of the Fudgets system,how we obtain reasonable execution e�ciency. We have not tried to quantifyprogrammer e�ciency in a way that permits further comparison or judgement.39.1 Execution e�ciencyTwo factors that in�uence how fast fudgets program run are:� the e�ciency of the interface to the window system X Windows, in par-ticular e�ciency of event processing.� the e�ciency of the fudget combinators.39.1.1 E�ciency of the interface to the window systemThe e�ciency of the interface to the window system was a concern right fromthe start of the work on fudgets. The initial implementation used conventionaltext I/O to talk to a C program which called routines in Xlib and returned theresults (see Section 22.3.1). The C program also forwarded events from X tothe functional program. This was not a very e�cient implementation and hencewe tried to minimise the amount of data passed between the window systemand the functional program. Although this was done to avoid problems causedby slow execution of functional programs, an additional positive e�ect is thatfudget programs perform well when using a low bandwidth connection (e.g.,modem connection) between the X server and the application. Some �gures toback up this statement are given in Figure 101. (One can not draw any generalconclusions on performance from these, of course.)When it comes to event processing, we naturally wanted to to minimise thenumber of events that has to be handled by the functional program. Fortunately,the X Windows system can do a lot of event processing for the application. Bysetting event masks and button grabs appropriately, you can often eliminate allinsigni�cant events, i.e., all events that are sent to the application program carrysome meaningful information. In simpler window systems, the application hasto deal with every little mouse move and button/key presses/releases by itself.

39.1 Execution e�ciency 213Two tiny programs:The Fudgets counter example from Section 9.4: 13sThe Motif counter example from Figure 112: 14sSome small programs:The Fudget calculator from Section 9.8 with 15 buttons: 13sThe Fudgets calculator Cla with 28 buttons: 16sThe calculator xcalc with 40 buttons, from X Windows distribution: 18sSome larger programs:The Fudgets WWW browser from Chapter 32: 22sMosaic 2.6: 75sNetscape 3.0: 137sNetscape 4.04j2: 313sFigure 101. Comparing the startup times of some programs when running viaa 16.8kbps modem connection.As an example, consider the implementation of a commandbutton. It should behave as follows:� When the pointer is over the area of the screen occupied bythe button and the user presses the mouse button, the button image shouldbe changed to look depressed (that is, pressed down, not discouraged!). Ifthe mouse button is released when the button appears depressed, thebutton command is triggered.� If the mouse pointer leaves the button image, it should revert to its normal(raised) appearance (indicating that nothing will happen if the user nowreleases the mouse button). If the user returns the pointer to the buttonimage, without releasing the mouse button, the button should return toits depressed appearance.The following type of events are thus of interest to the program:� Mouse button presses (but only if the pointer is within the commandbutton).� Mouse button releases (but only if the mouse button has been pressedwhile the pointer was inside the command button).� Mouse motion (but only if the mouse button has been pressed while thepointer was inside the command button and only if the pointer crosses theborder of the screen area occupied by the command button).In the X windows system a button grab, (see XGrabButton() in the Xlib manual)with an event mask that selects button presses/releases and enter/leave windowevents (each GUI element is a window), can be used to select exactly theseevents, with only one small exception: if the mouse pointer enters the button

214 39 E�ciency and program transformationsarea, the mouse button is pressed, the pointer leaves the button area and themouse button is released, the program will receive an insigni�cant button re-lease event. The important thing is that no unnecessary motion events will bereceived.39.1.2 E�ciency of the Fudget combinators39.1.2.1 E�ciency of di�erent representations of stream processorsTwo of the stream-processor representations presented above have been used inpractice. Early versions of the Fudget library used list functions and syntheticoracles (Section 20.4.1). We later changed to the continuation-based represen-tation (Section 20.4.2) since it proved to be slightly more e�cient with thecompiler we used (HBC [Aug97]).We also tried a third representation,data SP i o = StepSP [o] (i�>SP i o)which was slightly less e�cient than the continuation-based representation.In the discussion below, we assume the continuation-based representation(although some of the ideas can be carried over to other representations).39.1.2.2 Program transformations for e�ciency Using loopThroughRight(Section 18.2) is a general way to adapt an existing stream processor for use ina new context. Another simple and common way to adapt a stream processoris by mapping a function on the elements of the input or output stream:sp �==� mapSP gmapSP f �==� spFor example, tagged parallel composition of fudgets, >+<, can be de�ned likefud1 >+< fud2 =mapSP post �==� (fud1 �+� fud2) �==� mapSP prewhere pre and post are the appropriate re-tagging functions. However, if imple-mented directly, such a de�nition has a rather high overhead.By transforming>+< to a form not involving�==�, �+� and mapSP, butinstead recursion and pattern matching on the stream-processor constructors, amore e�cient solution can be obtained.Programs transformations of this kind are tedious to do by hand, but it couldstill be worthwhile if the resulting code is to be included in a library. The abovedescribed transformation has been done by hand in the Fudget library. Wemeasured the e�ect on a communication intensive fudget program containinga parallel composition of 50 fudgets (the Space Invaders program described inChapter 35). The transformation reduced the CPU time consumption by over35%. Encouraged by this result, we also transformed some more combinators(for example >^=< and >=^< discussed in Section 13.1) in the same way.It would of course be nicer to have these transformations done automati-cally, especially when they are needed in application programs. The kind ofautomatic transformation that would be useful here is deforestation [Wad90],which eliminates intermediate data structures (applications of PutSP and GetSPin this case) by using certain unfold/fold transformations.

39.1 Execution e�ciency 21539.1.2.3 A practical semi-automatic transformation Between the man-ual and fully automatic implementations of the above program transformationis a semi-automatic alternative. It is interesting because it requires less workthan the manual solution and it is more likely to be supported by a compilerthan the fully automatic solution.The manual work required in this solution is located in the library. Theapplication programmer need not be aware of it. The automatic work requiredis inlining (unfold) by the compiler. It actually works even without inlining, butthe e�ciency gain is not as big.The expressions we wish to optimise are of the kind illustrated above: astream-processor combinator applied to mapSP f, for some f. The trick is tomake mapSP a constructor in the stream-processor data type:data SP a b = PutSP b (SP a b)| GetSP (a �> SP a b)| MapSP (a �> b)| NullSPSince the type is abstract, adding constructors to it like this will not be visibleto application programmers.Now that MapSP is a constructor, the implementation of serial composition(as shown in Figure 45) can be extended to handle the case when one or botharguments are applications of MapSP in a more e�cient way. This means thatan expression likeMapSP f �==� MapSP gcan evaluate toMapSP (f . g)With inlining, this step can be taken by the compiler and the composition f .g can then be optimised further. Without inlining, we have at least eliminateda use of �==�, and thereby reduced the number of generated applications ofthe PutSP and GetSP constructors.We have not tested the above ideas in the Fudget library.39.1.2.4 Performance measurements To get some idea of how high thecommunication overhead is in the fudgets system, we performed some simplemeasurements.The �rst test measures the e�ciency of serial composition and comparesthe operators >==<, >^^=< and �==�. We measured the time it took tosend around 5000 messages through a serial composition of a varying number ofidentity fudgets (or identity stream processors). The program used is shown inFigure 102. It was compiled with HBC and run on a Pentium Pro 200Mhz underNetBSD 1.2 [Neta]. The results are shown in Figure 103. We can see that thetime grows roughly linearly with the length of the composition and that serialcomposition of fudgets is much more expensive than serial composition of streamprocessors.The last table in Figure 103 shows the performance of the function composi-tion map id map id. It is more e�cient than the other serial compositions.

216 39 E�ciency and program transformationsimport Fudgetsmain = fudlogue mainFmainF = nullF >==< tstF >==< concatSP >^^=< stdinFtstF = case argReadKey "comb" 1 of1 �> nest (idF>==<) idF depth2 �> nest (idSP>^^=<) idF depth3 �> absF (nest (idSP �==�) idSP depth)nest f z 0 = znest f z n = f (nest f z (n�1))depth = argReadKey "depth" 0Figure 102. A program to measure the e�ciency of serial composition.The second test measures the e�ciency of parallel composition. We mea-sured the time it took to send about 70000 messages through one of the fudgetsin a parallel composition of identity fudgets. The program used is shown inFigure 104. The parallel compositions were created by listF,listF :: (Eq a) => [(a, F b c)] �> F (a, b) (a, c)which internally constructs a balanced binary tree of parallel compositions anda table for translating the addresses of the fudgets to positions in the tree. Theresults are shown in Figure 105. The depth of the tree, and hence the timeit takes to send a message to a particular fudget in tree grows logarithmicallywith the size of the parallel composition. However, since all that is known aboutthe address type is that it is an instance of the Eq class, the table lookup hasto be implemented as a linear search and hence the lookup time varies linearlywith the position in the list. From the results we see that the time of the tablelookup soon becomes the dominating factor. This suggests that it would be agood idea to provide alternative combinators to listF, which require the addresstype to be an instance of the Ord class, or even the Ix class, to reduce the timecomplexity of the table lookup time to logarithmic or constant, respectively.39.1.3 Space e�ciencyA problem that almost inevitably occurs at some point when developing pro-grams in lazy functional languages is space leaks. In early versions of the Fudgetlibrary, streams were represented as (potentially in�nite) lists. As discussed inSection 20.4.1, this gave us problems with streams being retained inde�nitely,eventually causing programs to run out of memory. This problem was �rstsolved by changing the way the compiler (HBC) treats pattern bindings, as de-scribed in [Spa93]. Later, the switch to the continuation-based representationof stream processors also eliminated the problem.

39.1 Execution e�ciency 217
time ./Internal <testinput1 �S �h8M � �depth n�comb 1 (idF >==< idF >==< ... >==< idF):n User time GCs GC time Max heap Max stack0 0.080u 0 0.0050 4.173u 40 0.10 62432 836100 8.475u 80 0.25 95840 1410200 18.418u 163 0.95 159884 3042400 44.521u 334 3.35 288020 3768�comb 2 (idSP >^^=< idSP >^^=< ... >^^=< idF):n User time GCs GC time Max heap Max stack0 0.100u 0 0.0050 0.755u 8 0.01 35712 210100 1.452u 15 0.03 42270 272200 2.869u 30 0.08 53504 642400 5.706u 59 0.18 76976 1218�comb 3 (idSP �==� idSP �==� ... �==� idSP):n User time GCs GC time Max heap Max stack0 0.076u 0 0.0050 0.411u 4 0.01 32524 171100 0.812u 7 0.00 35840 348200 1.574u 15 0.04 41956 651400 3.047u 30 0.07 54924 1260map id . map id map idn User time GCs GC time Max heap Max stack0 0.000u 0 0.0050 0.094u 2 0.00 3956 98100 0.203u 4 0.00 5616 275200 0.434u 8 0.00 9712 566400 0.906u 16 0.01 17616 473Figure 103. The e�ciency of serial composition.

218 39 E�ciency and program transformations
import Fudgetsmain = fudlogue mainFmainF = nullF >==< tstF >==< concatSP >^^=< stdinFtstF = listF [(i,idF) | i<�[1..size]] >=^< (,) selsize = argReadKey "size" 1sel = argReadKey "sel" 1Figure 104. A program to measure the e�ciency of parallel composition.
time ./Internal2 <testinput2 � �size n �sel kk=1 n 2log n time GCs GC time max heap1 0 1.352u 0.198s 11 0.02 2990832 5 2.179u 0.149s 18 0.03 34924256 8 2.457u 0.198s 22 0.07 667442048 11 2.989u 0.248s 27 0.31 317776n=256k 2log n time GCs GC time max heap64 8 4.640u 0.179s 33 0.11127 8 7.001u 0.238s 44 0.12128 8 6.801u 0.288s 44 0.16256 8 11.126u 0.278s 67 0.24 87880Figure 105. The e�ciency of parallel composition of fudgets.

21940 Comments on Haskell and other language de-sign issuesFor the most part, we have found Haskell to be a pleasant language to workwith, but there are a small number of features that we are not so pleased with.We discuss them below.Through experiences with other languages, we have also realised that somelanguages features not currently supported by Haskell would be useful to have.40.1 The annoying monomorphism restrictionOne of the most annoying features of Haskell, when trying to program in acombinatorial style, is the monomorphism restriction. It means that a de�nitionthat is not syntactically a function is not allowed to be overloaded, unless anexplicit type signature is provided.As a simple example, say that you are going to use the function show a lotand want to introduce a shorter name, s say. Because of the monomorphismrestriction, you can not writes = showThere are two solutions: you can provide a type signatures :: Show a => a �> Strings = showor you can eta-expand the de�nitions x = show xIn the Fudget library, we have used the eta expansion trick whenever possible,since the inclusion of explicit type signatures just entail extra maintenance workwhen the library is changed. For example, when a type is renamed or a functionis made more general, an arbitrary number of type signatures may need to beupdated.Unfortunately, the eta expansion trick can not always be used, because notall overloaded values are functions. For example, fudgets are not functions, soin case you want to introduce a short name for displayF, you have to use a typesignature:dF :: (Graphic a) => F a bdF = displayFEven more unfortunately, there are cases when it is not possible to express thetype signature. This occurs when the de�nition is local to another de�nitionwhich is polymorphic. It can happen that the local type depends on type vari-ables in the outer de�nition, but Haskell has no mechanism for expressing suchtypes explicitly. Although these cases turn out to be rare in practice, it is aprincipal �aw of the language.

220 40 Comments on Haskell and other language design issues40.2 The Haskell string + class system anomalyAn inelegance of Haskell is that you can not directly make the type String aninstance of a class. This is due to the combination of two facts:� String is not a data type, but a synonym for [Char].� Instance de�nition can only be made for uninstantiated type constructors,i.e., you can make instances for Char, and for lists in general, but you cannot make a particular instance for [Char]. (See [JJM97] for a discussion ofclass system design choices.)This has a�ected the classes Graphic, ColorGen and FontGen presented in Chap-ter 27, and FormElement in Section 29.2. At one point during the development,we avoided the problem by de�ning a data type that was used instead of strings,newtype Name = Name Stringbut since this required the use of the constructor Name in a lot of places, welater resorted to the same hack that is used for the Haskell classes Show andRead, i.e., we added extra methods for dealing with lists to the classes. Thisallow the methods for strings to be de�ned in the instance declarations for Char.This means that instead of getting an instance for String, you get instances forChar, String, [String], [[String]] and so on. For our classes it was not too di�cultto invent a meaning for the extra instances: Char was treated as one-characterstrings. For the Graphic class, (nested) lists of strings are drawn by drawing allthe strings using some layout chosen by the layout system. For the ColorGenand FontGen classes, lists were taken to mean spare alternatives: you can write,e.g., ["midnightblue","black"] to provide one nice color and a safe fallback color.Empty lists can give run-time errors, but are also likely to cause typing problems(making the overloading unresolvable) which are discovered at compile time.40.3 Existentially quanti�ed typesExistentially quanti�ed types [LO92] provide a very nice language feature, inparticular in conjunction with Haskell's type classes [Läu94]. We feel that thisfeature should have been made part the Haskell standard a long time ago. Asit is now, existentially quanti�ed types are provided as a language extension bysome Haskell compilers (at the time of writing, only HBC [Aug97], as far as weknow).We have found existential types useful in several contexts: the implementa-tion of Gadgets in Fudgets (Chapter 31), the combinators for syntax-orientedmanipulation (Chapter 28) and the datatypes for graphics (Chapter 27).Since existential types are not part of the Haskell standard, we have triedto keep their use away from core machinery of the Fudget library. Instead weuse them on the side to provide a nice feature as an additional bonus. This hasa�ected how we used them in the graphics data types. For example, since leavesof drawing usually are of type Gfx, we could have used existential quanti�cationdirectly in the Drawing type,data Drawing lbl= Graphic leaf => AtomicD leaf| ...

40.4 Dependent types 221eliminating the need for the type Gfx. We could also have de�ned the GCSpectype asdata GCSpec= (ColorGen c, FontGen f) => SoftGC [GCAttributes c f]| HardGC GCtxallowing you to write for exampleSoftGC [GCForeground "red"]instead ofSoftGC [GCForeground (colorSpec "red")]40.4 Dependent typesThe Fudget library provides two combinators for tagged parallel composition offudgets: the binary operator >+< and the list combinator listF:>+< :: F a b �> F c d �> F (Either a c) (Either b d)listF :: (Eq a) => [(a, F b c)] �> F (a, b) (a, c)The former allows the composed fudgets to have di�erent types, but composinga large number of fudgets make addressing the individual fudgets clumsy: youuse compositions of the constructors Left and Right.The latter makes it easy to compose many fudgets, but they must all havethe same type.The use of dependent types would allows us to de�ne a combinator thatcombines the advantages of >+< and listF. In type theory [NPS90], there are twoforms of dependent types: dependent products (function types), and dependentsums (pairs). The second form is the one we need here. It allows us to constructpairs, where the type of the second component depends on the value of the �rstcomponent.Using a Haskell-like notation, we write(t::a, b t)for the pair type where the �rst component is of type a and the second compo-nent is of type b t, where t is the value of the �rst component. Note that b is afunction returning a type.By viewing t as a tag, we can form lists of tagged values of di�erent type,and de�ne a variant of listF with the following type:dListF :: Eq a => [(t::a, F (i t) (o t))] �> F (t::a, i t) (t::a, o t)

222 41 Related work41 Related workWe start by giving a brief overview of combinators for sequential I/O in Sec-tion 41.1. Section 41.2 discusses stream processing and combinations of concur-rency with functional programming. Section 41.3 presents other GUI toolkitswritten in functional languages, and Section 41.4 presents some functional GUIlibraries written on top of imperative toolkits. Section 41.5 discusses toolkitswhich are not GUI toolkits in the traditional sense, but can be used to writeinteractive programs with (animated) graphics. Finally, Section 41.6 presentstwo imperative GUI toolkits.41.1 Combinators for sequential I/OAs noted in Chapter 4, the stream I/O model allows us to write interactiveprograms in a pure, lazy functional language. The model does not impose anyspeci�c way of composing subprograms into larger programs.Sequential composition is useful for structuring textual user interfaces, wherethe interaction can be seen as a dialogue between the computer and the user,that is, a linear sequence of input and output actions. In the following wegive a brief overview of combinators for sequential composition of e�ects. Moredeveloped reviews can be found in Noble's and Gordon's theses [Nob95][Gor92].41.1.1 DialoguesThe dialogue combinators by O'Donnell [O'D85] allow stream I/O programsbeing built from components using sequential composition, and were used tobuild a programming environment. Programs are assumed to input a stream ofEvents and output a stream of Commands. The type of the components is:type Dlg state = state �> [Event] �> ([Command], state, [Event])The idea is that a component consumes an initial segment of the input streamand returns some commands to be output and the remainder of the input stream.It may also use and modify some global state information.Sequential composition is de�ned asjoin :: Dlg state �> Dlg state �> Dlg statejoin dlg1 dlg2 state1 events1 = (cmds1++cmds2,state3,events3)where(cmds1,state2,events2) = dlg1 state1 events1(cmds2,state3,events3) = dlg2 state2 events2Input and output operations can be de�ned as:put :: Command �> Dlg stateput cmd state events = ([cmd],state,events)get :: (Event �> Dlg state) �> Dlg stateget edlg state (event:events) = edlg state event events

41.2 Streams and process programming 22341.1.2 InteractionsA re�nement of the dialogue combinators is Thompson's interactions [Tho90].The idea is much the same, but instead of manipulating a global state, interac-tions input a value of some type and output a value of another type:type Interaction a b = a �> [Event] �> ([Command], b, [Event])The type of the sequential composition operator issq :: Interaction a b �> Interaction b c �> Interaction a cand the de�nition is the same as for join above. (Neither the type of join northe type of sq is the most general type of this function.)41.1.3 MonadsMonads provide an even more general approach to I/O, and have also beenused for process programming, something we will see in later sections. Monadswere �rst a vehicle for giving denotational semantics for imperative program-ming languages [Mog91], but the concept was then carried over to practical use[Wad95][PJW93]. The same kind of structure had then already been used inthe KAOS project as a re�nement of Thompson's interactions [Tur87, Cup89],and by Gordon [Gor89].Monads for I/O build on a type IO a�which represents I/O e�ects thatreturn a value of type a, when carried out�and the bind operation >>=, whichis used for sequential composition. The bind operation also binds the returnvalue of the �rst I/O operation to a variable so that it can be used in furtheroperations in the sequence:>>= :: IO a �> (a �> IO b) �> IO bThe bind operation comes with an identity, called return, which simply returnsa value without any I/O.return :: a �> IO aThe IO type can be seen as a function that transforms the world regarded as astate, and also returns a value:type IO a = WorldState �> (a,WorldState)41.2 Streams and process programmingAs noted in the introduction, the idea of stream processors as such is not new.However, in most previous work where stream processors are used, streams areassumed to be represented as lists and stream processors as functions from liststo lists. Moreover, the cons operation is usually strict, or even hyper-strict, inits �rst argument, i.e., values can not be transferred between processes withoutbeing evaluated �rst. This is in contrast to the stream processors de�ned here,which allow unevaluated values to be communicated between stream processors.This makes communication operationally on a par with argument passing andlet binding.

224 41 Related workThe idea of using demand-driven scheduling appears in [KM77], which usesstreams as a lazy data structure in an imperative process language. The lan-guage also permits a functional notation where the output port from one processis connected to the input port of another process, without the need to declarethe intermediate stream.In purely functional languages there is a problem with indeterministic choice,since this is not a pure function. In some work [Tur90a], this is solved bymoving the indeterministic choices to a box (the sorting o�ce [Sto84]) outsidethe functional program. In other work [JS89], a indeterministic merge operatoris added to the languages, which then is not purely functional anymore. Byusing oracles [Bur88], indeterministic choice can be added without breakingthe purely functional nature of a language. This is the solution we suggest forindeterministic stream processors.Concurrent Haskell [FGJ96] is an extension of a lazy functional languagewith primitive monadic operations for creating processes and communicating viavalue carrying semaphores. The implementation is based on a parallel reductionmachinery.There is a number of functional languages with support for concurrent pro-cesses and communication, both in lazy and strict functional languages. Anearly example is PFL [Hol83]. Later examples are Amber [Car86], ConcurrentML (CML) [Rep91b] and Facile [TLP+93]. CML and Facile are both based onStandard ML [Sto97]. Concurrency abstractions on top of lazy functional lan-guages have been implemented by Scholz [Sch95], Achten [Ach96], and Claessen.Most of these systems use side e�ects in the implementations. The exceptionsare PFL and Achten's system, which have purely functional schedulers, whichat some point go outside the type system, just as our Gadgets scheduler doesChapter 31.There are also functional languages aimed at utilising parallel hardware tospeed up computations. Examples of such languages are Id [Nik95], SISAL[Sis96]. This kind of parallelism does not support a concurrent programmingstyle, though.Other work worth mentioning include: the language Omelett [Nor94]�a two-level language with reactive objects on the top level and pure lazy functionalexpression language; H [Tru94]�a concurrent pure lazy functional languagewith support for indeterministic merge of input streams on the top level; CBS[Pra91]�the Calculus of Broadcasting Systems which has an implementation inHaskell.41.3 Functional GUI toolkitsThere are a number of GUI toolkits written in functional languages which im-plement widget sets on top of X Windows. In the following, we review Gadgets,Haggis, BriX and eXene, but �rst we want to mention an early example of func-tional GUI programming by Dwelly, although it was not a presented as a GUItoolkit [Dwe89]. Dwelly's work was based on the dialogue combinators, with theaddition of a recursive type Object, to capture dynamic evolution of dialogues:data Object t s = O t (Cond s) ([Object t s] �> Dlg s)type Cond s = s �> [Event] �> Bool

41.3 Functional GUI toolkits 225The type Object t s represents a potential dialogue. An object value O t c k hasa tag t, and a condition predicate c, which signals if the continuation dialoguek is applicable in the current state of the program. Among other things, theconditions predicates were used to test if the user had clicked within the areathat a button occupied. If the predicate c is true, k is applied to a list of activeobjects to get a dialogue. This is done by the function treeCase, which takes alist of active objects as an argument, and schedules the �rst object with a truecondition predicate:treeCase :: [Object t s] �> Dlg t sThe continuation k can do some I/O, and then again calls treeCase, with amanipulated list of active objects, thus allowing a new set of possible dialogues.In the manipulation, the tags are used as pointers into the list.41.3.1 GadgetsNoble has implemented a GUI library called Gadget Gofer [Nob95], where Gad-get stands for generalised fudget. The motivation for this name is that gadgetsare processes that communicate via typed, asynchronous channels (called wires),thus allowing a gadget to have an arbitrary number of input and output �pins�.As a proof that gadgets are more general than fudgets, Noble implemented thebasic fudget combinators using gadgets. (For an implementation of Gadgets inFudgets, see Chapter 31.)Noble implemented process scheduling and channel communication in theruntime system of Gofer [Jon91], and added primitives for communication withX Windows. A feature of Gadgets is that it only uses the most basic drawingoperations in the Xlib interface in one single X window. On top of this, Noblehas implemented a functional window system, complete with a window manager.The gadget in Figure 106 implements the up/down counter, except that ituses a bar graph to display the value. The counter gadget uses the followinglibrary gadgets:button' :: Change ButtonAttributes �> Out a �> a �> Gadgetbargraph :: [In (Int �> Int)] �> Gadgetwrap' :: Change WrapAttributes �> Gadget �> GadgetGadgets uses the same mechanism for default parameters as described in Chap-ter 15, so button' and wrap' are customisable versions of button and wrap. Thebutton gadget button o a will send the value a on the wire output end o, when-ever it is clicked. The gadget bargraph is waits for input functions on any of thewire input ends in is, and when such a function arrives, it is used to update thelevel of the bar graph. Note how the wire w is used to connect the two buttonsto the bar graph. The layout of the three gadgets is speci�ed to be vertical us-ing the operator <|>. The example shows how the speci�cations of layout (bygadget combinators) and data�ow (by wires) are separated in Gadgets. Finally,the wrap' gadget puts some space around the three gadgets.The button parameter picture is used to specify up and down arrows:uparrow, downarrow :: DrawFunThe type DrawFun roughly corresponds to the FlexibleDrawings in Section 27.3.

226 41 Related work
main = go [(counter,"Up/Down")]counter :: Gadgetcounter =wire $ \w �>let b1 = button' (picture uparrow) (op w) (+1)b2 = button' (picture downarrow) (op w) (+(�1))g = bargraph [ip w] inwrap' (border 20) (b1 <|> g <|> b2)

Figure 106. The Gadget up/down counter.41.3.2 HaggisJust like Gadgets, Haggis [FP96] is based on a process extension of a functionallanguage, namely Concurrent Haskell.The separation between user interface and application code can be explainedby studying the type of a couple of common GUI element, namely push buttonsand labels:button :: Picture �> a �> DC �> IO (Button a, DisplayHandle)label :: String �> DC �> IO (Label, DisplayHandle)The monadic expression button p v d creates a button which will show thepicture p. The button's value is v, and d is an environment, or display contextwhich carries default values (Haggis uses this for customisation, instead of thedefault parameter mechanism in Fudgets and Gadgets). The monadic expressionreturns an application handle of type Button, and a display handle. The GUIelement label does also return a display handle, but its application handle has adi�erent type. The display handles are pointers to the GUI elements, and canbe combined with other display handles with layout combinators, for examplehbox: hbox :: [DisplayHandle] �> DisplayHandleThe application handles can be used to modify various aspects of the GUIelements, depending on their type:setButtonLabel :: Button a �> Picture �> IO ()disableButton :: Button a �> IO ()enableButton :: Button a �> IO ()setLabel :: Label �> String �> IO ()The most important feature of the button handle is the possibility to wait forit to be clicked:

41.3 Functional GUI toolkits 227counter :: DC �> IO ((Label, Button (Int�>Int)), DisplayHandle)counter env =label (show start) env >>= \(lab,ldh) �>button (text "Up") (+1) env >>= \(inc,idh) �>button (text "Down") (+(�1)) env >>= \(dec,ddh) �>combineButtons [inc,dec] >>= \btn �>return ((lab,btn), hbox [ldh, idh, ddh])start = 0main =wopen ["*name: Counter"] counter >>= \((lab,btn),_) �>let count n = getButtonClick btn >>= \f �>let n' = f n insetLabel lab (show n') >>count n'incount startFigure 107. The Haggis up/down counter.getButtonClick :: Button a �> IO aWhen getButtonClick b is called in a process, it will be suspended until theuser clicks b, and then the button's value is returned. Internally, this uses atrigger (which can be seen as value carrying condition variable), one of severalsynchronisation abstractions that Haggis provides on top of Concurrent Haskell'svalue carrying semaphore type MVar.The type Picture corresponds somewhat to the Drawing type in Section 27.4,and permits advanced structured graphics to be de�ned. Haggis pictures aredescribed further in [FJ95].In Figure 107, we see a version of the the up/down counter in Haggis. Thefunction counter de�nes the user interface. It returns a display handle, andhandles to the label and a combination of the two buttons, created bycombineButtons :: [Button a] �> IO (Button a)This combination has the desirable property that a call to getButtonClick waitsfor any of the push buttons to be clicked.In main, the counter function is passed to wopen,wopen :: [String] �> (DC �> IO (a,DisplayHandle))�> IO (a,Window)which creates the user interface in a shell window. The �rst argument to wopencan contain default values for the display context. The example indicates thatthe format for these values are similar to the resource data base in X [SG86].In the example, it is used to set the window title. The application handles

228 41 Related workin counter are returned as they are from wopen, which also returns a windowhandle which can be used to manipulate the shell window.The rest of main de�nes the application behaviour of the program by de�ninga loop which waits for button clicks, and then updates the label. In this example,the loop comes right after the initialisation of the interface in the main process,but in general, control loops are spawned as separate processes.41.3.3 BriXThe toolkit BriX [Ser95] is built on top of X11 as part of the Bristol HaskellSystem [HDD95], which aims at building concurrent and distributed systemsin a strictly deterministic manner. BriX inherits this deterministic view of theworld, and indeterministic merge is avoided by propagating information aboutevents through parallel compositions. This has similarities with the syntheticoracles used in an early version of the stream processors (Section 20.4.1).41.3.4 eXeneThe toolkit eXene, by Reppy and Gansner [RG91, GR91], is an X Windowstoolkit written in a strict functional language, namely Standard ML of NewJersey [SML]. It is written on top of Concurrent ML (CML) [Rep91a], and isthus multi-threaded. eXene pushes the functional border further: even Xlib isthrown out, and the communication with X is written in ML.Events from the X server and control messages between widgets are dis-tributed in streams (coded as CML event values) through the window hierar-chy, where each window has at least one CML thread taking care of the events.Drawing is done by calling imperative drawing procedures. High-level events arereported either imperatively or by message passing: when a button is pressed,a callback routine is called, or a message is output on a CML channel.41.4 Interfaces to existing toolkitsA number of interfaces for functional languages have been built on top of exist-ing imperative toolkits. Early examples include Lazy Wafe by Sinclair [Sin92],XView/Miranda by Singh [Sin91] and MIRAX by Tebbs [Teb91]. More recentexamples are Taylor's Embracing Windows (using Hugs and Windows 95), andTkGofer [VTS95]. The latter o�ers a monadic interface in Gofer to the populartoolkit Tk [Ous94]. Application programs are written using a combination offunctional abstractions and a traditional imperative style with callbacks thatmutate variables or modify widgets.TkGofer was further developed and improved in [CVM97], by using Gofer'sexpressive class system to provide a typed means of specifying parameters forthe widgets, similar to the dynamically customisable fudgets in Section 30.3.The result is that most dynamic aspects of the Tk widgets can be controlled ina type-safe way. For example, the button widget has typebutton :: [Conf Button] �> Window �> GUI Buttonand since the type Button is instance of both HasText and HasCommand, itslabel and callback function can be con�gured with the following members:

41.4 Interfaces to existing toolkits 229counter :: IO ()counter = start $do w <� window [title "Up/Down Counter"]e <� entry [initValue 0, readOnly True] wlet my_button t f = button [text t,command (modifyEntry e f)] wu <� my_button "Up" (+1)d <� my_button "Down" (+(�1))pack (u ^�^ e ^�^ d)modifyEntry :: Entry Int �> (Int �> Int) �> GUI ()modifyEntry e f =do x <� getValue esetValue e (f x)Figure 108. The TkGofer counter.text :: HasText a => String �> Conf acommand :: HasCommand a => GUI () �> Conf aAn up/down counter written with Gofer's do-notation (syntactic sugar for mon-ads) is found in Figure 108.41.4.1 Concurrent CleanConcurrent Clean is an e�cient implementation of a lazy functional language,which was originally developed for Macintosh [Pv96]. It comes with an I/Olibrary which permits portable development of GUI programs that interface tothe GUI toolkits on Macintosh, Windows'95/NT and XView or OpenLook.I/O in Clean is carried out using the world-as-value paradigm [Ach96], whichmeans that an abstract value, representing the state of the world (or parts ofit), is passed around as an extra parameter in the program. The type system isextended with a mechanism to guarantee that the world parameters are passedin a single-threaded way throughout the program. It is this parameter thread-ing that speci�es the order in which I/O operations are performed; no explicitsequencing combinator is used in the world-as-value style. However, Clean pro-grams have a syntactic abbreviation for nested let expressions, which is usedwhen specifying sequences statements. Using this style, the monadic de�nitionf =do x1 <� c1x2 <� c2...return eis written (roughly)

230 41 Related workf # (x1,s) = c1 s(x2,s) = c2 s...= (e,s)The world-as-value paradigm can be seen as programming in an unfolded vari-ant of the IO monad in Section 41.1.3. A disadvantage is that state and er-ror handling becomes explicit, something which clutters the programs. Onthe other hand, di�erent kinds of state parameters can be handled�possiblysimultaneously�without the need of de�ning new combinators.A Clean version of the up/down counter is shown in Figure 109. The �rstlines in initcounter show the use of the nested-let sugar, and allocate uniqueidenti�ers to be used in the data structure dialog, which speci�es the GUI. Thisdata structure also relates the callback function upd to the push buttons, andthe initial local state.41.5 Functional interactive graphics41.5.1 PidgetsThe idea behind Pidgets, by Enno Scholz [Sch96], is to combine pictures withwidgets, to allow arbitrarily shaped objects to be sensitive to input and tochange dynamically. De�nitions of pictures and some auxiliary types of values,for example, numbers, vectors and colors, can refer to mutable variables. Whena variable is changed, and a picture that depends on it is visible in a window,the window is automatically updated.Pictures are described in the PostScript model [Ado90] for graphics. Apicture can made sensitive to input by associating it with a handler. The handleris called if an input event, such as a mouse button press, occurs while the mousepointer is over the screen area covered by the picture. The handler returns avalue of type IO () and can thus have arbitrary I/O e�ects, including changinga mutable variable that the picture depends on.Pidgets is based on an imperative approach to dynamically changing graph-ical objects. Monads are used to provide a purely functional interface to theimperative machinery. Mutable variables are made part of the I/O monad. Anew monad Expr is de�ned for expressions (that is, values whose interdependen-cies are described by a directed acyclic graph) that can depend on the values ofmutable variables.In part, the purpose of Pidgets is similar to that of the fudget graphicsFdiscussed in Chapter 27. An interesting experiment would be to see how Pidgetscould be used to implement combinators for syntax directed editors.41.5.2 FranFran (Functional Reactive Animation) by Elliott and Hudak [Ell97] is a Haskelllibrary which supports a declarative speci�cation of 2D and 3D animation, aswell as sound. The basic datatypes in Fran are behaviours and events. Be-haviours can be viewed as values that vary with time, which is continuous.A behaviour value that speci�es a picture is the basic animation mechanism.

41.5 Functional interactive graphics 231
:: NoState = NoStateStart :: *World �> *WorldStart world = startIO NoState NoState [initcounter] [] worldwhereinitcounter ps# (windowid, ps) = accPIO openId ps(displayid, ps) = accPIO openId ps(_,ps) = openDialog NoState (dialog windowid displayid) ps= pswheredialog windowId displayId= Dialog "Counter"{ newLS = init, newDef = EditControl (toString init) dwidth dheight[ControlPos (Center,zero), ControlId displayId, ControlSelectState Unable]:+: ButtonControl "�"[ControlPos (Center,zero), ControlFunction (upd (�1))]:+: ButtonControl "+"[ControlFunction (upd 1)]}[WindowClose (noLS closeProcess), WindowId windowId]wheredwidth = 200dheight = 1init = 0upd :: Int (Int,PSt .l .p) �> (Int,PSt .l .p)upd dx (n,ps) =(n1,appPIO (setWindowwindowId[setControlTexts [(displayId,toString n1)]]) ps)where n1 = n+dxFigure 109. Up/down counter in Clean.

232 41 Related workEvents can be external (for example, a button press), or calculated (for example,two objects that collide), and are associated with the time at which they occur.The reactivity is achieved by combinators that allow a behaviour to be re-placed by another at the occurrence of an event. There are also combinatorsfor building complex behaviours and events from simpler ones. The behaviourcombinators can be seen as parallel composition of processes, allowing a numberof behaviours to act concurrently.The primary goal for Fran is to specify multimedia and animation, whichit does in an elegant and declarative way. It might be possible to use Fran forbuilding complete GUI toolkits as well.41.6 Imperative toolkits41.6.1 JavaIn the object-oriented programming language Java [GJS96], graphical user in-terfaces can be programmed using the class library AWT (Abstract WindowToolkit) [AWT]. Figure 110 shows how the up/down counter is de�ned as asubclass of the Frame, which is used to construct top-level windows. The con-structor method UpDown creates two button objects and a label object, andadds so called action listeners (high-level event handlers) to the buttons, asanonymous classes. These play the role of callbacks, and modify the countervariable and the display.The last lines in the constructor method de�nes the layout and adds thebuttons to the frame.41.6.2 PizzaThe Java extension Pizza [OW97] allows the programmer to write polymorphiccode and use �rst-class functions. Of course, the AWT library can be useddirectly in Pizza, but the Pizza programmer may also use a style which moreresembles functional/imperative toolkits like TkGofer, using callback functionsinstead of classes. We exemplify this by de�ning a PizzaButton and a PizzaLabel.The PizzaButton is a Button where we de�ne the action as a callback functiondirectly in the constructor:class PizzaButton extends Button {public PizzaButton(String s, �nal () �> void action) {super(s);addActionListener(new ActionListener() {public void actionPerformed(ActionEvent e) {action();}});}}The PizzaLabel is a polymorphic Label with methods for getting or setting thevalue, and applying a function to it.

41.6 Imperative toolkits 233
public class UpDown extends Frame {public UpDown() {int count = 0;Label display = new Label();display.setText(""+count);Button up = new Button("Up");up.addActionListener(new ActionListener() {public void actionPerformed(ActionEvent e) {display.setText(""+ ++count);}});Button down = new Button("Down");down.addActionListener(new ActionListener() {public void actionPerformed(ActionEvent e) {display.setText(""+ ��count);}});setLayout(new FlowLayout());add(up);add(display);add(down);}public static void main(String args[]) {UpDown a = new UpDown();a.setTitle("Up/Down Counter");a.pack();a.show();}} Figure 110. Up/down counter in Java.

234 41 Related workclass PizzaLabel<T> extends Label {private T value;public PizzaLabel(T i) { super("" + i);value = i; }public T get() { return value; }public void set(T i) { value = i;setText("" + i); }public void modify((T) �> T f) { set(f(value)); }}The Pizza up/down counter in Figure 111 is almost the same as the Java counter,except that it does not use a local variable, and uses callbacks instead of actionlisteners for the buttons.41.6.3 C and MotifFor C-programmers, the toolkit Motif [You90] has been a popular choice. Animplementation of the counter example in C using Motif is shown in Figure 112.The program starts with creating a shell widget called top, which will be theroot of the widget tree. The rest of the tree is created with repeated calls ofXtCreateManagedWidget, where the arguments specify what kind of widget tocreate, and where to put it in the tree. The widgets are:� row, a layout widget which put all its children in a row or in a column.� display, which shows a string which will be the count.� button, a button that the user can press. Whenever this happens, anassociated callback routine is called.When the widget tree is created, the display is reset to show zero, and theC-function increment is registered as a callback routine for the button widget.increment increments the counter and updates the display widget.

41.6 Imperative toolkits 235
public class UpDown extends Frame {public UpDown() {PizzaLabel<int> display = new PizzaLabel(0);Button up =new PizzaButton("Up",fun() �> void {display.modify(fun(int x)�>int {return x+1;});});Button down =new PizzaButton("Down",fun() �> void {display.modify(fun(int x)�>int {return x�1;});});setLayout(new FlowLayout());add(up);add(display);add(down);}public static void main(String args[]) {UpDown a = new UpDown();a.setTitle("Up/Down Counter");a.pack();a.show();}} Figure 111. The Pizza up/down counter.

236 41 Related work#include <stdio.h>#include <X11/Intrinsic.h>#include <X11/StringDefs.h>#include <Xm/Xm.h>#include <Xm/Label.h>#include <Xm/PushB.h>#include <Xm/RowColumn.h>static int count = 0;static void SetDisplay(Widget display, int i){ char s[10];Arg wargs[1];int n = 0;sprintf(s, "%d", i);XtSetArg(wargs[n], XmNlabelString,XmStringCreate(s, XmSTRING_DEFAULT_CHARSET)); n++;XtSetValues(display, wargs, n);}static void increment(Widget b, Widget display, XtPointer call_data){ count++;SetDisplay(display, count);}int main(int argc, char *argv[]){ Widget top, row, display, button;top = XtInitialize("counter", "Counter", NULL, 0, &argc, argv);row = XtCreateManagedWidget("row", xmRowColumnWidgetClass,top, NULL, 0);display= XtCreateManagedWidget("display", xmLabelWidgetClass,row, NULL, 0);button = XtCreateManagedWidget("button", xmPushButtonWidgetClass,row, NULL, 0);SetDisplay(display, count);XtAddCallback(button, XmNactivateCallback,(XtCallbackProc)increment, (XtPointer)display);XtRealizeWidget(top);XtMainLoop(); /* does not return */} Figure 112. The up/down counter in C and Motif.

23742 Evaluation and conclusionsIn this thesis, we have presented stream processors to support a concurrent pro-gramming style in pure functional languages. Stream processors allow programsto be built in a hierarchical structure of concurrent processes with internal state.They thus support modular design of large programs.With the stream processors de�ned here, we abstract away from the streams.We de�ne a number of combinators for stream processors, but no operations onthe streams themselves. We have considered a number of di�erent implementa-tions of stream processors, some of which are deterministic and work in a pure,sequential functional language without any extensions, and some of which takeadvantage of parallel evaluation and indeterministic choice (Chapter 20).We have also presented a library of combinators for constructing applica-tions with graphical user interfaces (Part II) and typed network communication(Chapter 26). Together with a range of applications, the library has demon-strated that the stream-processor/fudget concept is scalable; it can be used toprogram not only toy examples, but more complex applications, like WWW-browsers (Chapter 32) and syntax-oriented proof editors (Chapter 33). A keycombinator here is loopThroughRightSP (Section 18.2), which allows existingstream processors/fudgets to be reused in a style that resembles inheritance inobject-oriented programming.The library also demonstrates that pure functional programming languagesare suitable for these tasks, something which was not clear when this workstarted. Although GUI fudget programs do a fair amount of I/O, responsetimes can be kept su�ciently low (Section 27.5.3).Since we represent I/O e�ects by data constructors sent as messages, wehave been able to write higher order functions that manipulate I/O e�ects offudgets (Chapter 24), which provide a possibility for modifying the behaviour ofexisting fudgets. A caching mechanism (Section 24.1) and a click-to-type inputmodel (Section 24.2) has been implemented with this method.The default parameter mechanism (Chapter 15 and 30) demonstrates howHaskell's class system and higher order functions can be combined to simu-late a missing language feature. Later, two other GUI libraries, Gadgets (Sec-tion 41.3.1) and TkGofer (Section 41.4), have adopted this mechanism.The fudget graphicsF in Chapter 27 shows that the task of displaying andmanipulating graphics can be handled e�ciently in a purely functional way.It has been used both in the web browser in Chapter 32, and in the proofeditor Alfa in Chapter 33. On top of graphicsF, we have also implemented aset of combinators that allow syntax-oriented editors to be built in a high-levelstyle, resembling combinator parsers (Chapter 28). Our experience with thesecombinators is limited sofar, but we believe that they can be employed in afuture version of Alfa.Although most stream processors we have shown are programmed in a CPSstyle, other styles can be used. Simple stream processors can be programmedby using concatMapAccumlSP and a state transition function. A monadic stylecan also be used, as is demonstrated in Chapter 31.As the related work shows in Chapter 41, a number of elegant librariesand interfaces have emerged for GUI programming in pure functional languagesduring the last years. Is it possible to evaluate and compare all these librariesand the Fudget library? This has been done to some extent in the review in

238 42 Evaluation and conclusions[Nob95]. We will not give any further comparison here, but simply point outsome distinguishing features of fudgets and stream processors in general:� Stream processors o�er a simple concurrency concept which can be imple-mented in any pure functional language. Of the other toolkits, ConcurrentClean also provides a purely functional process concept, but it has a rathercomplex implementation [Ach96].The fudget concept has been implemented on top of a number of GUItoolkits [Nob95][Tay96][RS93][CVM97], something which also gives evi-dence that fudgets are easy to implement.� Stream processors come with a special programming style. Since no ex-plicit streams, channels, or wires are used, the routing of information be-tween processes must be speci�ed by using combinators. This can be seenas a limitation of the paradigm, and some people indeed �nd it di�cult toadopt. On USENET, this has been formulated as: �...you could use some-thing like Fudgets to build a GUI, but that's less fun than having teethpulled� [O'S96]. An example of the typical amount of routing necessary isshown in the implementation of somF in (Section 28.4, Figure 81), whichhas a stream processor handling three output and three input streams.An extreme example is the top-level fudget of Alfa (Chapter 33), whosecontrolling stream processor de�nes 15 routing functions, to handle �velevels deep messages of Either type. By using routing functions de�nedin one place, adding new subfudgets to the top-level fudget has become amanageable task. It still requires a bit too much of mechanical work andthere is a need for some new set of combinators or some other solution tosimplify this programming task further.One could argue that the combinator plumbing of messages imposes adegree of structure on programs which could be healthy. Having explicitidenti�ers for streams spread over a program results easily in a goto-likespaghetti. The functional language FP by John Backus [Bac78] is entirelybased on the use of combinators instead of named variables.� The stream processor concept also o�ers support the manipulation of mi-grating processes, with the special feature that when a process is moved,it is completely detached from all streams in its old context (Chapter 25).We are not aware of anything similar in any other toolkit or process cal-culus. In addition, since stream processors are pure values (in particular,they do not use imperative variables), they can readily be cloned at anytime.As shown in the Chapter 25, the migration mechanism can be applied tofudgets and used to implement drag-and-drop of GUI fudgets.42.1 Frequently Asked QuestionsHow important was lazy evaluation in Fudgets library and program-ming? Could Fudgets be implemented in ML?When the work on Fudgets started, Haskell used the stream-based I/O modeland stream processes were represented as list functions. Nowadays, the

42.1 Frequently Asked Questions 239continuation-based representation of stream processors is used and Haskell hasswitched to a monadic I/O system, both of which would work in a strict lan-guage. So, lazy evaluation is no longer essential.A problem with stream-based I/O is the danger of getting �out ofsynch� and reading one result too many or too few. Did this happento you in practice?For a while, when we used the list based representation and that representa-tion was visible to the programmer, the programmer had to be aware of the�fudget law�, that is, the one-to-one correspondence between input and outputmessages (see Section 20.4.1). We sometimes made mistakes. When the streamprocessor type was made abstract, the fudget law became built-in and the pro-grammer was relieved from thinking of it. Also, we started doing low level I/Othrough functions like doStreamIOK (Section 21.4), which e�ectively removedall problems of this kind.Haskell has moved from stream-style I/O to monad-style I/O. Youroperations are CPS-style, but they could equally be monad style.Did you make that choice consciously? Why?The monadic programming style had not become popular when we introducedthe CPS style combinators, so we did not make a conscious choice between CPSstyle and monadic style.Did you come across any situations where Haskell's type systemprevented you doing the Right Thing?Yes. For example, the type XCommand is supposed be an interface to X Win-dows, but we have added various �pseudo commands� that are handled withinthe Haskell program and never output to the window system. It would havebeen nice to de�ne the proper commands as a subtype of all commands. Makingthis distinction in Haskell would require an extra level of tagging, which we feltwas not justi�ed. Analogously, the type XEvent contains some �pseudo events�.

240 43 Future work43 Future work43.1 Towards a calculus for stream processorsCertainly, the implementation of stream processors used in the Fudget librarycould serve as a semantic base for formal reasoning about stream processorand fudget programs. But we might want to use a more abstract semanticsof stream processors, which would also capture truly parallel-evaluating andindeterministic stream processors. Suppose that we have an implementationfor indeterministic stream processors. Would the Fudget library still work?Or are we relying on some subtle ordering of messages that today's sequentialimplementation gives us, thus avoiding tricky race problems? The answer isprobably that most of the library would still work, but at some points, weimplicitly rely on implementation details. As one example, consider two identitystream processors in parallel:p :: SP (Either a b) (Either a b)p = idSP �+� idSPWhen using the implementation from the Fudget library, p is nothing but theidentity stream processor for type Either a b. But if we were to use indeter-ministic stream processors, we cannot be sure that message order would bemaintained through p. If we �rst send Left a immediately followed by Right bto p, why should there be a guarantee that it will output these messages in thesame order?Naturally, the Fudget library does not have a lot of identity stream processorsin parallel. Fudgets, on the other side, are abundant in the library, and theyvery often sit in parallel. One example where implicit assumptions exist aboutmessage order output from parallel fudgets is in the radio group fudget radioF.Another, more explicit, assumption was made in the implementation of theExplode game in Section 38.1.1. In Explode, it is crucial that the internalcommunication after a explosion has priority over external communication. Thisis what the continuation-based implementation of stream processors gives.In order to reason formally about indeterministic stream processors, wepresent the stream-processor calculus (SP-calculus).43.1.1 Basic stream processorsThere are seven basic ways of forming a stream processor. We let the letter xdenote a variable, and s, t, ... stream processors.x (Variable)s ! t (Put)x ? s (Get)s <� t (Feed)s << t (Serial composition)s + t (Parallel composition)` s (Loop)For the reader who has used stream processors in the Fudget library, theseoperators should be familiar. The operator ! correspond to putSP, and ? canbe seen as a combination of abstraction and getSP: x ? s is the same as getSP (\x

43.1 Towards a calculus for stream processors 241�> s). The feed operator in s <� t feeds the message t to the stream processors (similar to startupSP, which feeds a list of messages to a stream processor).Serial composition corresponds to �==�, and parallel composition and loopare untagged, corresponding to �*� and loopSP.43.1.2 Congruence rulesFollowing the style of [BB90], we de�ne a bunch of congruence rules which canbe used freely to �nd reaction rules to apply.s + t � t + s (Commutativity of +)(s + t) + u � s + (t + u) (Associativity of +)(s << t) << u � s << (t << u) (Associativity of <<)s << (t ! u) � (s <� t) << u (Internal communication in <<)(s + t) <� u � (s <� u) + (t <� u) (Distributivity of <� over +)(s ! t) <� u � s ! (t <� u) (Output from <�)(s ! t) << u � s ! (t << u) (Output from <<)(x ? s) <� t � s[t/x] (Substitution)43.1.3 Reaction rulesWhereas the congruence rules in the last section can be freely used in any direc-tion without changing the behaviour of a stream processor, the reaction rulesare irreversible, and introduce indeterminism. The reason is that by applying arule, we make a choice of how message streams should be merged. There are twoplaces where merging occur, in the output from a parallel composition, and inthe input to a loop.(s ! t) + u �! s ! (t + u) ((Output from +))We can derive a symmetric rule by using the commutativity of +, but when itcomes to the loop, we need two rules.` (s ! t) �! s ! ` (t <� s) (Internal input to `)(` s) <� t �! ` (s <� t) (External input to `)As an example of these rules, consider the stream processor (s ! t)+ (u ! v), whichcan react to s ! (t + (u ! v)), but also to u ! ((s ! t) + v), using commutativity.Similarly, the loop (` (s ! t)) <� u can react to both s ! ` (t <� s) <� u and` (s ! t <� u).43.1.4 The �-calculus embeddedThe SP-calculus is more expressive than the �-calculus, and we can de�ne atranslation from the �-calculus into the SP-calculus.JxK = x (Variable)J�x.MK = x ? JMK (Abstraction)JM NK = JMK <� JNK (Application)The substitution rule for the SP-calculus correspond to the beta-rule of �-calculus. However the eta-rule, which would correspond to x ? (s <� x) � s,does not hold in general, something that we will see after having de�ned equiv-alence of stream processors.

242 43 Future workHaving the power of �-calculus, we can de�ne some familiar stream proces-sors, such as the identity stream processor and the null stream processor.�x = f ? (x ? f <� (x <� x)) <� (x ? f <� (x <� x))id = �x <� (f ? x ? x ! f)0 = �x <� (f ? x ? f)43.1.5 Equivalent stream processorsWe can de�ne an equivalence ' as the greatest equivalence relation satisfying:s1 ' s2 if and only if:� For all o1 and s'1 that s1 can output and become, there must exist ano2 and s'2 that s2 can output and become. Furthermore, o1 ' o2 ands'1 ' s'2 must hold.� For all input t, s1 <� t ' s2 <� t must hold.From this de�nition, we can see that x ? (s <� x) ' s does not hold if s canoutput something. The left-hand side is blocked, waiting for input, and couldnot match the output from s.43.1.6 Future workMore investigation is needed to turn the SP-calculus into an operational seman-tics for stream processors:� Check that we have exactly the congruence/reaction rules we need.� Check that the congruence rules form a decidable relation. It must bepossible to �nd all possible reactions in a stream processor.� The equivalence relation is good, but we really want to �nd a congruencerelation.� Relate the SP-calculus to other calculi so that we can reuse their theory.43.2 Stream processors as Internet agentsThe interest in the Internet has resulted in a focus on new features in program-ming languages. The information exchange over Internet has exploded, andthere is a need to exchange not only text, graphics and sound in a smooth way,but programs. For program exchange to be smooth, the receiver of a programmust be certain that it does not do nasty things with his computer. This canbe achieved by accepting programs in a typed language, where the type shouldgive information about everything that the program can do, including all kindsof side e�ects and communication. This is a property that stream processorshave, they can do nothing but outputting messages in a known type.There is also an interest in having programs running for a while at one site,then moving on to other sites, while gathering information etc. Such programsare often calledmobile agents. As we have seen in Chapter 25, the necessary ma-chinery for mobile agent programming is already there in the stream-processorconcept. However, we need support in the underlying language implementationso that values that are closures can be exchanged between computers.

A Online resourcesA.1 The Fudgets Home PageThe address of the Fudgets Home Page ishttp://www.cs.chalmers.se/FudgetsOn the home page you can �nd out how to download fudgets and install them,what Haskell compiler to use and where to get it, what platforms are supported.You can also browse and search the Fudget Library Reference Manual.A.2 Supported platforms, downloading and in-stallationAt the time of this writing, fudgets run under the X Windows system on anumber of Unix platforms, such as NetBSD, FreeBSD, Linux, SunOS 4.1, SunOS5.x (Solaris 2.x), Digital Unix, IRIX, ...The Fudget library is available in precompiled form for some of the abovementioned platforms. The library is also available in source form.To compile the Fudget library (in case you can not use a precompiled dis-tribution) and fudget applications, you need a Haskell compiler. The currentversion of the library works only with HBC [Aug97], since the library makes useof existential types, which is an extension of Haskell currently supported onlyby HBC, as far as we know. Earlier versions of the library work with NHC andGHC as well.The Fudget library and HBC are available for download fromftp://ftp.cs.chalmers.se/pub/haskell/chalmersRead the README �les and, if you get the precompiled version of the Fudgetlibrary, make sure that you get matching versions of the compiler and the library.A.3 Compiling Fudget programsFudget programs are easy to compile. Assuming the program is stored in a �lecalled Hello.hs, the command line to compile the program ishbcxmake Hello

244 A.3 Compiling Fudget programsEven if the program consists of several modules, invoking hbcxmake with thename of the main module is enough to compile it. hbcxmake calls hbcmake, anautomatic make utility supplied with HBC.

B Fudget library quickreference guideThis is an brief index of the Fudget library, listing the things that have appearedin the examples throughout the text.A more complete description of the contents of the Fudget library is providedin the reference manual, which is available on-line viahttp://www.cs.chalmers.se/Fudgets/Manual/B.1 Top level, main programfudlogue :: F a b �> IO (), used on the top level to connect the main fudgetto the Haskell I/O system.shellF :: String �> F a b �> F a b, creates shell (top-level) windows. All GUIprograms need at least one of these.These functions are discussed further in Section 10.1.B.2 GUI building blocks (widgets)labelF :: (Graphic a) => a �> F b c, creates static labels.quitButtonF :: F Click a, creates quit buttons.intInputF :: F Int Int, creates integer-entry �elds.intDispF :: F Int a, creates integer displays.buttonF :: (Graphic a) => a �> F Click Click, creates command buttons.More GUI elements are presented in Chapter 10, which also explains theabove fudgets in more detail.B.3 Combinators, plumbing>==< :: F a b �> F c a �> F c b, serial composition.>+< :: F a b �> F c d �> F (Either a c) (Either b d), parallel composition oftwo fudgets, which can be of di�erent type.

246 B.6 GraphicslistF :: (Eq a) => [(a, F b c)] �> F (a, b) (a, c), parallel composition of a listof fudgets. All parts must have the same type.loopThroughRightF :: F (Either a b) (Either c d) �> F c a �> F b d, a loopcombinator for encapsulation.More combinators for plumbing are presented in Chapter 17 and 18.B.4 Adding application-speci�c codemapF :: (a �> b) �> F a b, constructs stateless abstract fudgets.mapstateF :: (a �> b �> (a, [c])) �> a �> F b c, constructs stateful ab-stract fudgets.Abstract fudgets are discussed further in Chapter 12.B.5 LayoutlabLeftOfF :: (Graphic a) => a �> F b c �> F b c, puts a label to the left ofa fudget.placerF :: Placer �> F a b �> F a b, is used to specify explicitly the relativeplacement of the parts of a composite fudget. The �rst argument is aplacer.verticalP :: Placer, speci�es vertical placement, top to bottom.revP :: Placer �> Placer, used to place parts in the reverse order.matrixP :: Int �> Placer, creates a matrix with the given number of columns.holeF :: F a b, creates holes, which can be used to �ll unused slots in a matrixof fudgets, for example.Layout is discussed further in Chapter 11.B.6 Graphics�lledTriangleUp :: FlexibleDrawing, a triangle pointing up.�lledTriangleDown :: FlexibleDrawing, a triangle pointing down.Graphics is discussed further in Chapter 27.

247B.7 Alphabetical listRoughly 200 of 720 identi�ers de�ned in the Fudget library reference manualhave been used in the examples throughout the text. Here is an alphabeticallist of them:�*� :: SP a b �> SP a b �> SP a b�+� :: SP a b �> SP c d �> SP (Either a c) (Either b d)�==� :: SP a b �> SP c a �> SP c b>+< :: F a b �> F c d �> F (Either a c) (Either b d)>==< :: F a b �> F c a �> F c b>=^< :: F a b �> (c �> a) �> F c b>=^^< :: F a b �> SP c a �> F c b>^=< :: (a �> b) �> F c a �> F c b>^^=< :: SP a b �> F c a �> F c baLeft :: AlignmentaTop :: AlignmentabsF :: SP a b �> F a bargKey :: [Char] �> [Char] �> [Char]argReadKey :: (Read a, Show a) => [Char] �> a �> aargs :: [[Char]]atomicD :: a �> Drawing b abgColor :: [Char]bindSPm :: SPm a b c �> (c �> SPm a b d) �> SPm a b dborder3dF :: Bool �> Int �> F a b �> F (Either Bool a) bbottomS :: SpacerboxD :: [Drawing a b] �> Drawing a bbuttonBorderF :: Int �> F a b �> F (Either Bool a) bbuttonF :: (Graphic a) => a �> F Click ClickbuttonF' :: (Graphic a) => Customiser (ButtonF a) �> a �> F Click ClickbuttonF� :: (Graphic a) => Customiser (ButtonF a) �> a �> PF (ButtonF a)Click ClickbuttonGroupF :: [(ModState, KeySym)] �> F (Either BMevents a) b �> F a bbypassF :: F a a �> F a acenterS :: SpacercolorSpec :: (Show a, ColorGen a) => a �> ColorSpeccompS :: Spacer �> Spacer �> SpacerconcatMapAccumlSP :: (a �> b �> (a, [c])) �> a �> SP b cconcatMapF :: (a �> [b]) �> F a bconcatMapSP :: (a �> [b]) �> SP a bconcatSP :: SP [a] adefaultFont :: FontNamedeletePart :: Drawing a b �> [Int] �> Drawing a bdisplayF :: (Graphic a) => F a bdisplayF' :: (Graphic a) => Customiser (DisplayF a) �> F a bdrawingPart :: Drawing a b �> DPath �> Drawing a bdynF :: F a b �> F (Either (F a b) a) b

248 B.7 Alphabetical listdynListF :: F (Int, DynFMsg a b) (Int, b)editorF :: F EditCmd EditEvtfgD :: (Show a, ColorGen a) => a �> Drawing b c �> Drawing b c�ller :: Bool �> Bool �> Int �> FlexibleDrawing�lterLeftSP :: SP (Either a b) a�lterRightSP :: SP (Either a b) b�lterSP :: (a �> Bool) �> SP a a�ipP :: Placer �> Placer�ipS :: Spacer �> SpacerfontD :: (Show a, FontGen a) => a �> Drawing b c �> Drawing b cfontSpec :: (Show a, FontGen a) => a �> FontSpecfont_ascent :: FontStruct �> Intfont_descent :: FontStruct �> Intframe' :: Size �> FlexibleDrawingfudlogue :: F a b �> IO ()g :: (Graphic a) => a �> Drawing b GfxgetSP :: Cont (SP a b) agetSPm :: SPm a b agetSPms :: SPms a b c agroupF :: [XCommand] �> K a b �> F c d �> F (Either a c) (Either b d)hAlignS :: Alignment �> SpacerhCenterS :: SpacerhFiller :: Int �> FlexibleDrawinghMarginS :: Distance �> Distance �> SpacerhScrollF :: F a b �> F a bhboxD :: [Drawing a b] �> Drawing a bhboxD' :: Distance �> [Drawing a b] �> Drawing a bholeF :: F a bhorizontalP :: PlacerhyperGraphicsF :: (Eq a, Graphic b) => Drawing a b �> F (Either (Drawing a b)(a, Drawing a b)) aidF :: F a aidLeftF :: F a b �> F (Either c a) (Either c b)idRightF :: F a b �> F (Either a c) (Either b c)idSP :: SP a ainputDoneSP :: SP (InputMsg a) ainputLeaveDoneSP :: SP (InputMsg a) ainputLinesSP :: SP [Char] [Char]intDispF :: F Int aintF :: F Int (InputMsg Int)intInputF :: F Int IntisLeft :: Either a b �> Boolissubset :: (Eq a) => [a] �> [a] �> BoollabAboveF :: (Graphic a) => a �> F b c �> F b c

249labLeftOfF :: (Graphic a) => a �> F b c �> F b clabelD :: a �> Drawing a b �> Drawing a blabelF :: (Graphic a) => a �> F b cleftS :: SpacerlinesSP :: SP Char [Char]listF :: (Eq a) => [(a, F b c)] �> F (a, b) (a, c)loadSPms :: SPms a b c cloop :: (a �> a) �> aloopCompF :: F (Either (Either a b) (Either c d)) (Either (Either c e) (Either a f))�> F (Either b d) (Either e f)loopCompThroughLeftF :: F (Either a (Either b c)) (Either b (Either a d)) �> Fc dloopCompThroughRightF :: F (Either (Either a b) c) (Either (Either c d) a) �> Fb dloopF :: F a a �> F a aloopLeftF :: F (Either a b) (Either a c) �> F b cloopLeftSP :: SP (Either a b) (Either a c) �> SP b cloopSP :: SP a a �> SP a aloopThroughRightF :: F (Either a b) (Either c d) �> F c a �> F b dloopThroughRightSP :: SP (Either a b) (Either c d) �> SP c a �> SP b dmapAccumlSP :: (a �> b �> (a, c)) �> a �> SP b cmapF :: (a �> b) �> F a bmapFilterSP :: (a �> Maybe b) �> SP a bmapLabelDrawing :: (a �> b) �> Drawing a c �> Drawing b cmapPair :: (a �> b, c �> d) �> (a, c) �> (b, d)mapSP :: (a �> b) �> SP a bmapstateF :: (a �> b �> (a, [c])) �> a �> F b cmapstateSP :: (a �> b �> (a, [c])) �> a �> SP b cmarginS :: Distance �> SpacermatrixP :: Int �> PlacermaybeDrawingPart :: Drawing a b �> DPath �> Maybe (Drawing a b)menuF :: (Graphic a, Graphic c) => a �> [(b, c)] �> F b bmoreF :: F [String] (InputMsg (Int, String))moreFileF :: F String (InputMsg (Int, String))moreFileShellF :: F String (InputMsg (Int, String))moveDrawCommands :: (Functor a) => aDrawCommand �> Point �> aDraw-CommandnullF :: F a bnullK :: K a bnullSP :: SP a bnullSPm :: SPm a b ()nullSPms :: SPms a b c ()origin :: PointoverlayP :: Placerpart :: (a �> Bool) �> [a] �> ([a], [a])path :: Path �> (Direction, Path)

250 B.7 Alphabetical listpickListF :: (a �> String) �> F (PickListRequest a) (InputMsg (Int, a))placedD :: Placer �> Drawing a b �> Drawing a bplacerF :: Placer �> F a b �> F a bpopupMenuF :: (Graphic b, Eq b) => [(a, b)] �> F c d �> F (Either [(a, b)] c)(Either a d)putSP :: a �> SP b a �> SP b aputSPm :: a �> SPm b a ()putSPms :: a �> SPms b a c ()quitButtonF :: F Click aradioGroupF :: (Graphic b, Eq a) => [(a, b)] �> a �> F a aradioGroupF' :: (Graphic b, Eq a) => Customiser RadioGroupF �> [(a, b)] �> a�> F a areadDirF :: F String (String, Either D_IOError [String])readFileF :: F String (String, Either D_IOError String)rectpos :: Rect �> Pointrectsize :: Rect �> Sizeremove :: (Eq a) => a �> [a] �> [a]replace :: (Eq a) => (a, b) �> [(a, b)] �> [(a, b)]replaceAll :: [a] �> TextRequest arevP :: Placer �> PlacerrightS :: SpacerrootGCtx :: GCtxrunSP :: SP a b �> [a] �> [b]scrollF :: F a b �> F a bserCompLeftToRightF :: F (Either a b) (Either b c) �> F a cserCompRightToLeftF :: F (Either a b) (Either c a) �> F b cserCompSP :: SP a b �> SP c a �> SP c bsetBgColor :: (HasBgColorSpec b, Show a, ColorGen a) => a �> Customiser bsetLabel :: a �> Customiser (ButtonF a)setPlacer :: Placer �> Customiser RadioGroupFshellF :: String �> F a b �> F a bsimpleGroupF :: [WindowAttributes] �> F a b �> F a bsplitSP :: SP (a, b) (Either a b)standard :: Customiser astartupF :: [a] �> F a b �> F a bstartupSP :: [a] �> SP a b �> SP a bstderrF :: F String astdinF :: F a StringstdoutF :: F String astoreSPms :: a �> SPms b c a ()stringF :: F String (InputMsg String)stringInputF :: F String Stringstring_rect :: FontStruct �> [Char] �> RectstripEither :: Either a a �> astripInputSP :: SP (InputMsg a) astripLeft :: Either a b �> Maybe astripLow :: Message a b �> Maybe a

251stripRight :: Either a b �> Maybe bthroughF :: F a b �> F a (Either b a)timerF :: F (Maybe (Int, Int)) TicktoBothF :: F a (Either a a)toggleButtonF :: (Graphic a) => a �> F Bool BooltopS :: SpacerunitSPm :: a �> SPm b c aup :: DPath �> DPathupdatePart :: Drawing a b �> DPath �> (Drawing a b �> Drawing a b) �>Drawing a bvAlignS :: Alignment �> SpacervCenterS :: SpacervFiller :: Int �> FlexibleDrawingvMarginS :: Distance �> Distance �> SpacervScrollF :: F a b �> F a bverticalP :: PlacerwCreateGCtx :: (Show b, FontGen b, FudgetIO e, Show a, ColorGen a) =>GCtx �> [GCAttributes a b] �> (GCtx �> ecd) �> ecdwaitForSP :: (a �> Maybe b) �> (b �> SP a c) �> SP a cwriteFileF :: F (String, String) (String, Either D_IOError ())xcoord :: Point �> Intycoord :: Point �> Int

Production notesThis thesis was written in an extended version of Haskell, called HacWrite,developed by the authors. The extension consists of a new string type, thatcan wrap over many lines, and that can contain embedded Haskell code forspeci�cation of mark-up. HacWrite consists of a preprocessor that convertsHacWrite source into Haskell, and a library of mark-up combinators, written inHacWrite. The library also has back-ends for generating LaTeX and HTML.

Bibliography[Ach96] Peter Achten. Interactive Functional Programs. PhD thesis,Katholieke Universiteit Nijmegen, Feb 1996.[Ado90] Adobe Inc. PostScript Language Reference Manual, second edition,1990. Addison-Wesley.[AGNvS94] Thorsten Altenkirch, Veronica Gaspes, Bengt Nordström, andBjörn von Sydow. A User's Guide to ALF. Chalmers Univer-sity of Technology, Sweden, May 1994. Available on the WWWftp://ftp.cs.chalmers.se/pub/users/alti/alf.ps.Z.[AJ93] L. Augustsson and T. Johnsson. Lazy ML User's Manual. Pro-gramming Methodology Group, Department of Computer Sciences,Chalmers, S�412 96 Göteborg, Sweden, 1993. Distributed with theLML compiler.[Ary94] Kavy Arya. A functional animation starter-kit. Journal of Func-tional Programming, 4(1):1�18, January 1994.[Aug97] Lennart Augustsson. The hbc compiler.http://www.cs.chalmers.se/~augustss/hbc/hbc.html, 1997.[AWT] The Abstract Window Toolkit. http://java.sun.com/products/jdk/awt/.[Bac78] J. Backus. Can Programming be Liberated from the von NeumannStyle? A functional style and its algebra of programs. Communi-cations of the ACM, 21:280�294, August 1978.[BB90] G. Berry and G. Boudol. The Chemical Abstract Machine. In ACMPrinciples of Programming Languages, pages 81�94, San Francisco,CA, January 1990.[Bur75] W. H. Burge. Recursive Programming Techniques. Addison-WesleyPublishing Company, Reading, Mass., 1975.[Bur88] W. Burton. Non-determinism with Referential Transparency inFunctional Programming Languages. The Computer Journal, 31(3),1988.[Car86] Luca Cardelli. Amber. In Combinator and Functional ProgrammingLanguages, number 242 in LNCS, pages 21�47. Springer Verlag,1986.

254 Bibliography[Car95] Magnus Carlsson. The Glasgow GUI Fest 1995.http://www.cs.chalmers.se/~magnus/GuiFest-95, July 1995.[CH93a] M. Carlsson and T. Hallgren. Fudgets - GraphicalUser Interfaces and I/O in Lazy Functional Languages.Chalmers University. Anon. FTP: ftp.cs.chalmers.se:/pub/cs-reports/papers/fudget-report/*, May 1993.[CH93b] M. Carlsson and T. Hallgren. Fudgets - A Graphical User In-terface in a Lazy Functional Language. In FPCA '93 - Conferenceon Functional Programming Languages and Computer Architecture,pages 321�330. ACM Press, June 1993.[CH97] Magnus Carlsson and Thomas Hallgren. Fudget library referencemanual. http://www.cs.chalmers.se/Fudgets/Manual/, 1997.[Cup89] J. Cupitt. A Brief Walk Through KAOS. Technical Report 58,Computing Laboratory, University of Kent, Canterbury, UK, 1989.[CVM97] Koen Claessen, Ton Vullinghs, and Erik Meijer. Structuring graph-ical paradigms in TkGofer. In International Conference on Func-tional Programming. ACM, June 1997.[CW85] Luca Cardelli and Peter Wegner. On Understanding Types, DataAbstraction, and Polymorphism. Computing Surveys, 17(4):471�522, December 1985.[Dwe89] A. Dwelly. Functions and Dynamic User Interfaces. In Proceedingsof ACM, pages 371�381, 1989.[Ell97] Conal Elliott. Functional reactive animation. In Proc. InternationalConference on Functional Programming 1997 (ICFP'97), Amster-dam, The Netherlands, June 1997.[Eng97] Arnoud Engelfriet. Wilbur - HTML 3.2.http://www.htmlhelp.com/reference/wilbur/, 1997.[FGJ96] Sigbjörn Finne, Andrew Gordon, and Simon Peyton Jones. Concur-rent Haskell. In 23'rd Conference on The Principles of Program-ming Languages, pages 295�308, St Petersburg, Florida, January1996.[FJ95] Sigbjorn Finne and Simon Peyton Jones. Pictures: A simple struc-tured graphics model. In Glasgow Workshop on Functional Pro-gramming, Ullapool, 1995.[FP96] S. Finne and S. Peyton Jones. Composing the user interface withHaggis. Lecture Notes in Computer Science, 1129, 1996.[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Spec-i�cation. Addison-Wesley, 1996.[Gor89] Andrew Gordon. PFL+ : A kernel scheme for functional I/O.Technical Report Technical Report 160, University of CambridgeComputer Laboratory, February 1989.

255[Gor92] Andrew D. Gordon. Functional Programming and Input/Output.PhD thesis, King's College, University of Cambridge, August 1992.[GR91] E.R. Gansner and J. Reppy. The eXene widgets man-ual. Cornell University. Anon. FTP: ramses.cs.cornell.edu:/pub/eXene-doc.tar.Z, June 1991.[Hal90] T. Hallgren. Introduction to Real-time Multi-user Games Program-ming in LML. Technical Report Memo 89, Department of ComputerSciences, Chalmers, S�412 96 Göteborg, Sweden, January 1990.[Hal97] Thomas Hallgren. Alfa home page.http://www.cs.chalmers.se/~hallgren/Alfa/, 1997.[HC95] Thomas Hallgren and Magnus Carlsson. Programming with Fud-gets. In J. Jeuring and E. Meijer, editors, Advanced FunctionalProgramming, pages 137�182. Springer Verlag, LNCS 925, 1995.[HC97] Thomas Hallgren and Magnus Carlsson. The Fudgets Home Page.http://www.cs.chalmers.se/Fudgets/, 1997.[HDD95] Ian Holyer, Neil Davies, and Chris Dornan. The Brisk Project:Concurrent and Distributed Functional Systems. Technical ReportCSTR-95-015, Department of Computer Science, University of Bris-tol, June 1995.[Hen82] P. Henderson. Functional geometry. In Conference Record of the1982 Symposium on LISP and Functional Programming, Pittsburgh,PA, New York, NY, 1982. ACM.[Hol83] Sören Holmström. pfl: A Parallel Functional Language and Its Im-plementation. PMG Memo 7, Programming Methodology Group,Chalmers University of Technology, Göteborg, 1983.[Hol88] Sören Holmström. A Linear Functional Language. In Proceedingsof the 1988 Workshop on Implementation of Lazy Functional Lan-guages, 1988.[HPF97] Paul Hudak, John Peterson, and Joseph Fasel. A gentle intro-duction to Haskell, version 1.4. http://haskell.org/tutorial,March 1997.[HPJWe92] Paul Hudak, Simon L. Peyton Jones, and Philip Wadler (editors).Report on the programming language haskell, a non-strict purelyfunctional language (version 1.2). SIGPLAN Notices, Mar, 1992.[J+97] Simon Peyton Jones et al. The Glasgow Haskell Compiler.http://www.dcs.gla.ac.uk/fp/software/ghc/, 1997.[JJ97] P. Jansson and J. Jeuring. PolyP - a polytypic programming lan-guage extension. In POPL '97: The 24th ACM SIGPLAN-SIGACTSymposium on Principles of Programming Languages, pages 470�482. ACM Press, 1997.

256 Bibliography[JJM97] Simon Peyton Jones, Mark Jones, and Erik Meijer. Type Classes:an exploration of the design space. In Proceedings of Haskell Work-shop, Amsterdam, Holland, 1997.[JNR97] Simon Peyton Jones, Thomas Nordin, and Alastair Reid. GreenCard: a foreign language interface for Haskell. In Proceedings ofHaskell Workshop, Amsterdam, Holland, 1997.[Joh75] S. C. Johnson. Yacc�Yet Another Compiler Compiler. TechnicalReport 32, Bell labs, 1975. Also in unix Programmer's Manual,Volume 2B.[Jon91] Mark P. Jones. Release notes for Gofer 2.21. Technical report,Department of Computer Science, Yale University, November 1991.Included as part of the standard Gofer distribution.[Jon93] Mark P. Jones. A system of constructor classes: overloading andimplicit higher-order polymorphism. In Functional Programmingand Computer Architecture, Copenhagen, Denmark, June 1993.[JS89] S.B. Jones and F. Sinclair. Functional programming and operatingsystems. The Computer journal, 32(2):162�174, 1989.[Kar92] Kent Karlsson. Another Look at Full Laziness. In Demand Analysisand Compilation of Lazy Functional Programs. Göteborg, Sweden,September 1992.[KM77] Gilles Kahn and David B. MacQueen. Coroutines and networksof parallel processes. Information Processing 77, pages 993�998.North-Holland, 1977.[Kre96] Charles Kreitzberg. Managing for usability. In Antone F. Alber, ed-itor, Multimedia: a management perspective. Wadsworth, Belmont,CA, 1996.[Lan65] P. J. Landin. A Correspondence between Algol 60 and Church'sLambda Notation: part 1. Communications of the ACM, 8(2):89�100, 1965.[LO92] Konstantin Läufer and Martin Odersky. An Extension of ML withFirst-Class Abstract Types. In Proc. Workshop on ML and itsApplications, San Francisco, June 1992. ACM SIGPLAN.[LPJ94] J. Launchbury and S. Peyton Jones. Lazy functional state threads.In Programming Languages Design and Implementation, Orlando,1994. ACM Press.[Läu94] Konstantin Läufer. Combining Type Classes and Existential Types.In Proc. Latin American Informatics Conference (PANEL), Mex-ico, September 1994. ITESM-SEM.[McC67] J. McCarthy. A basis for a mathematical theory of computations.In P. Bra�ort and D. Hirschberg, editors, Computer Programmingand Formal Systems, pages 33�70. North-Holland, 1967.

257[Mil80] Robin Milner. A Calculcus of Communicating Systems, volume 92of Lecture Notes in Computer Science. Springer-Verlag, 1980.[Mog91] Eugenio Moggi. Notions of computation and monads. Informationand Computation, 93(1):55�92, 1991.[Mor94] A. Moran. Natural Semantics for Non-Determinism. LicentiateThesis, Chalmers University of Technology and University of Göte-borg, Sweden, May 1994.[Neta] The NetBSD Project. http://www.netbsd.org[Netb] Netscape. http://home.netscape.com[Nik95] R.S. Nikhil. The pHluid System.www.research.digital.com/CRL/personal/nikhil/pHluid/home.htm,June 1995.[Nob95] Rob Noble. Lazy Functional Components for Graphical User Inter-faces. PhD thesis, Dept. of Computer Science, University of York,Heslington, York, Y01 55D, England, November 1995.[Nor94] Johan Nordlander. OMELETT � A Languagefor Reactive Programming. Licentiate Thesis,Chalmers University of Technology, May 1994.URL: http://www.cs.chalmers.se/~nordland/lic.ps.Z.[NPS90] Bengt Nordström, Kent Petersson, and JanM. Smith. Programmingin Martin-Löf 's Type Theory. An Introduction. Oxford UniversityPress, 1990.[NR94] R. Noble and C. Runciman. Functional languages and graphicaluser interfaces - a review and a case study. Technical Report YCS-94-223, Dept. of Comp. Sci., Univ. of York, Heslington, York, Y0155D, England, 1994.[NR95] Rob Noble and Colin Runciman. Gadgets: Lazy functional compo-nents for graphical user interfaces. In Manuel Hermenegildo andS. Doaitse Swierstra, editors, PLILP'95: Seventh InternationalSymposium on Programming Languages, Implementations, Logicsand Programs, volume 982 of Lecture Notes in Computer Science,pages 321�340. Springer-Verlag, Sept 95.[Nye90] A. Nye. Xlib reference manual, volume 2. O'Reilly & Associates,Inc., 1990.[O'D85] John T. O'Donnell. Dialogues: A Basis for Constructing Program-ming Environments. SIGPLAN Notices, 20(7):19�27, 1985. Pro-ceedings of the 1985 Symposium on Language Issues in Program-ming Environments.[Oka95] C. Okasaki. Simple and E�cient Purely Functional Queues andDequeues. Journal of Functional Programming, 5(4):583�592, 1995.

258 Bibliography[O'S96] Bryan O'Sullivan. Re: Functional languages in softwareengineering. Posted to comp.lang.functional. Message-ID:<876822nvgd.fsf@serpentine.com>, Dec 1996.[Ous94] J.K. Ousterhout. Tcl and the Tk toolkit. Addison Wesley, 1994.[OW97] Martin Odersky and Philip Wadler. Pizza into Java: Translatingtheory into practice. In Proc. 24th ACM Symposium on Principlesof Programming Languages, January 1997.[Pet97] John Peterson. The Haskell Home Page. http://haskell.org,1997.[PH96] J. Peterson and K. Hammond. The Haskell 1.3 Report. TechnicalReport YALEU/DCS/RR-1106, Yale University, 1996.[PH97a] J. Peterson and K. Hammond. The Haskell Library Report, Version1.4. Technical report, Yale University, 1997.[PH97b] J. Peterson and K. Hammond. The Haskell Report, Version 1.4.Technical report, Yale University, 1997.[PJW93] S.L Peyton Jones and P. Wadler. Imperative Functional program-ming. In Proceedings 1993 Symposium Principles of ProgrammingLanguages, Charleston, N.Carolina, 1993.[Pra91] K. V. S. Prasad. A calculus of broadcasting systems. In Volume 1:CAAP '91, volume 493 of LNCS. Springer Verlag, April 1991.[Pv96] Rinus Plasmeijer and Marko van Eekelen. Concurrent Clean Lan-guage Report, 1996. Avalible from the Concurrent Clean HomePage: www.cs.kun.nl/~clean[Rep91a] J. Reppy. CML: A Higher-order Concurrent Language. In Pro-ceedings of the SIGPLAN'91 Conference on Programming LanguageDesign and Implementation, pages 293�305, June 1991.[Rep91b] J. Reppy. Cml: A higher-order concurrent languages. In Proceedingsof the SIGPLAN'91 Conference on Programming Language Designand Implementation, pages 293�305, 1991.[RG91] J. Reppy and E.R. Gansner. The eXene library man-ual. Cornell University. Anon. FTP: ramses.cs.cornell.edu:/pub/eXene-doc.tar.Z, June 1991.[Röj95a] Niklas Röjemo. Garbage collection, and memory e�ciency, in lazyfunctional languages. PhD thesis, Chalmers Tekniska Högskola,1995.[Röj95b] Niklas Röjemo. Highlights from nhc � a space-e�cient Haskell com-piler. In Proc. 7th Int'l Conf. on Functional Programming Lan-guages and Computer Architecture (FPCA'95). ACM Press, June1995.

259[RR96a] Niklas Röjemo and Colin Runciman. Lag, drag, void and use - heappro�ling and space-e�cient compilation revisited. In Proc. Inter-national Conference on Functional Programming 1996 (ICFP'96),1996.[RR96b] Colin Runciman and Niklas Röjemo. Two-pass heap pro�ling: amatter of life and death. In Proceedings of the workshop on theImplementation of Functional Languages 1996, 1996.[RS93] A. Reid and S. Singh. Implementing fudgets with standard widgetsets. In Glasgow functional programming workshop, pages 222�235.Springer-Verlag, 93.[Sch95] E. Scholz. Four Concurrency Primitives for Haskell. In Proc. HaskellWorkshop, pages 1�12, La Jolla, CA, 1995. Available as Yale Uni-versity Research Report YALEU/DCS/RR-1075.[Sch96] Enno Scholz. PIDGETS: Unifying Pictures and Widgets in aConstraint-Based Framework for Concurrent Functional GUI Pro-gramming. In Herbert Kuchen and S. Doaitse Swierstra, editors,PLILP'96: Eighth International Symposium on Programming Lan-guages, Implementations, Logics and Programs, number 1140 inLNCS, pages 363�377, September 1996.[SD96] S.D. Swierstra and Luc Duponcheel. Deterministic, error-correctingcombinator parsers. In John Launchbury, Erik Meijer, and TimSheard, editors, Advanced Functional Programming, volume 1129of LNCS-Tutorial, pages 184�207. Springer-Verlag, 1996.[Ser95] Pascal Serrarens. BriX - A Deterministic Concurrent FunctionalX Windows System. Technical report, Department of ComputerScience, University of Bristol� June 1995.[SG86] R.W. Schei�er and J. Gettys. The X Window System. ACM Trans-actions on Graphics, 5(2), April 1986.[Shn98] Ben Shneiderman. Designing the user interface: strategies for e�ec-tive human-computer interaction. Addison Wesley, 3 edition, 1998.[Sin91] S. Singh. Using XView/X11 from Miranda. In Heldal et al., editors,Glasgow Workshop on Functional Programming, 1991.[Sin92] D.C. Sinclair. Lazy Wafe - Graphical Interfaces for Functional Lan-guages. Departement of Computing Science, University of Glasgow,1992. Draft.[Sis96] Sisal language project. http://www.llnl.gov/sisal/, 1996.[SML] Standard ML of New Jersey. http://cm.bell-labs.com/cm/cs/what/smlnj/.[Sol97] Solaris user's guide. In Solaris 2.6 User Collection. Also athttp://docs.sun.com/ab2/coll.8.39/SSUG/@Ab2PageView/1621?,1997.

260 Bibliography[Spa93] Jan Sparud. Fixing Some Space Leaks without a Garbage Collector.In Proc. 6th Int'l Conf. on Functional Programming Languages andComputer Architecture (FPCA'93), pages 117�122. ACM Press,June 1993.[Sto84] W.R. Stoy. A new scheme for writing functional operating systems.Technical Report 56, Computer Laboratory, Cambridge University,1984.[Sto97] Chris Stone. On-line information about Standard ML.http://foxnet.cs.cmu.edu/sml.html, 1997.[Tay96] Colin J. Taylor. Embracing windows. Technical Report NOTTCS-TR-96-1, Department of Computer Science, University of Notting-ham, Nottingham, UK, October 1996.[Teb91] M. Tebbs. MIRAX - An X-window Interface for the FunctionalProgramming Language Miranda. Technical report, School of En-gineering and Applied Science, University of Durham, April 1991.[Tho90] S. Thompson. Interactive Functional Programming. In Turner[Tur90b].[TLP+93] B. Thomsen, L. Leth, S. Prasad, T.-S. Kuo, F. Kabe, and A. Gi-acalone. Facile Antigua Release � Programming Guide. TechnicalReport ECRC-93-20, European Computer-Industry Reserach Cen-ter GmbH, 1993.[Tru94] Sta�an Truvé. An introduction to the functional programming lan-guage H. www.cs.chalmers.se/~truve/hintro.ps, 1994.[Tur87] David Turner. Functional Programming and Communicating Pro-cesses. In J. W. de Bakker, A. J. Nijman, and P. C. Treleaven,editors, PARLE '87 Parallel Architectures and Languages Europe,Volume 2: Parallel Languages, volume 259 of Lecture Notes in Com-puter Science, pages 54�74, Eindhoven, The Netherlands, June 15�19, 1987. Springer, Berlin.[Tur90a] D.A. Turner. An approach to functional operating systems. InResearch topics in Functional Programming [Tur90b].[Tur90b] D.A. Turner, editor. Research topics in Functional Programming.Addison-Wesley Publishing Company, 1990.[VTS95] T. Vullinghs, D. Tuijnman, and W. Schulte. Lightweight GUIs forfunctional programming. In Proceedings 7th International Sympo-sium PLILP95, volume 982 of LNCS. Springer Verlag, September1995.[Wad85] P. Wadler. How to Replace Failure by a List of Successes. In Pro-ceedings 1985 Conference on Functional Programming Languagesand Computer Architecture, pages 113�128, Nancy, France, 1985.[Wad90] Philip Wadler. Deforestation: transforming programs to eliminatetrees. Theoretical Computer Science, 73:231�248, 1990.

261[Wad92] P. Wadler. The essence of functional programming. In Proceedings1992 Symposium on Principles of Programming Languages, pages1�14, Albuquerque, New Mexico, 1992.[Wad95] Philip Wadler. Monads for functional programming. In J. Jeuringand E. Meijer, editors, Advanced Functional Programming, number925 in LNCS, pages 24�52. Springer Verlag, May 1995.[WB89] P. Wadler and S. Blott. How to make ad hoc polymorphism lessad hoc. In Proceedings 1989 Symposium Principles of ProgrammingLanguages, pages 60�76, Austin, Texas, 1989.[You90] D.A. Young. The X Window System : Programming and Applica-tions with Xt. OSF/Motif Edition. Prentice Hall, 1990.

