Fudgets —
Purely Functional Processes
with applications to

Graphical User Interfaces

Magnus Thomas

Carlsson ~ Hallgren

Department of Computing Science
1998

Doctoral thesis for the degree of Doctor of Philosophy

Fudgets —

Purely Functional Processes
with applications to
Graphical User Interfaces

Magnus Carlsson
Thomas Hallgren

Department of Computing Science
Chalmers University of Technology
Goteborg University
S-412 96 Goteborg, Sweden
Goteborg 1998

ISBN 91-7197-611-6
ISSN 0346-718X

http://www.cs.chalmers.se/~hallgren/Thesis/

Department of Computing Science

Goteborg 1998

Abstract

The main result of this thesis is a method for writing programs with graphical
user interfaces in purely functional languages. The method is based on a new
abstraction called the fudget. The method makes good use of key abstraction
powers of functional languages, such as higher order functions and parametric
polymorphism.

The Fudget concept is defined in terms of the simpler concept of stream
processors, which can be seen as a simple, but practically useful incarnation
of the process concept. Programs based on fudgets and stream processors are
networks of communicating processes that are built hierarchically, using combi-
nators. Communication is type safe. The basic combinators provide serial com-
positions, parallel compositions, and loops. A key difference between previous
work on stream processing functions and our approach is that we deliberately
abstract away from the streams. We obtain a system that can be implemented
deterministically, entirely within a purely functional language, but which also
makes it possible to take advantage of parallel evaluation and indeterminism,
where such is available within the functional language. The purely functional
approach makes processes first class values and makes it easy to express process
cloning and process migration.

The practical viability of the approach is demonstrated by the Fudget li-
brary, which is an implementation of a graphical user interface toolkit in the
purely functional language Haskell, together with a number of small an large
applications that have been implemented on top of the library.

In addition to GUI programming, fudgets are suitable for other forms of
concurrent I/O programming. We demonstrate how client/server based appli-
cations can be we written, with type safe communication between client and
server. We show a web browser as an example where GUI programming and
network communication come together.

We view fudgets as one example of a more general combinator-based ap-
proach to promote the idea that a functional language together with combina-
tor libraries is a good alternative to using less expressive languages propped
by application-specific tools. We describe a set of combinators, reminiscent of
parsing combinators, for building syntax-directed editors.

Preface

This monograph acts as theses for both authors. Most of the work behind has
been carried out in close cooperation between the authors, but some chapters
present work of a more individual nature:

Thomas Hallgren: Chapters 19, 27, and 39. He has also developed the ap-
plications in Part V (some contributions are due to Magnus Carlsson in
Chapters 36 and 37, though).

Magnus Carlsson: Chapters 24, 25, 28, and 29.

Acknowledgements

We wish to thank Thomas Johnsson, Lennart and Jessica Augustsson, Johan
Nordlander, Bengt Nordstrom, Niklas Rojemo, David Sands, Colin Runciman
and Simon Peyton Jones for proofreading and numerous suggestions for im-
provements on drafts of the thesis. A special thanks to Ola Freijd, who has
made all illustrations and the cover page.

Ideas and implementation work by a number of people have increased the
usefulness of the Fudget library. Jan Sparud’s space-leak fix in an early ver-
sion suddenly made it possible to run fudget programs until somebody pulls the
plug. Jan also implemented an initial version of the name layout mechanism.
Lennart Augustsson’s integration of the Xlib interface with HBC’s runtime sys-
tem made fudget programs easier to use and more efficient. John Hughes in-
vented the default parameter simulation, which made fudget programming much
more pleasant.

The department of Computing Science has not only provided a wealth of
academic stimulus, but also technical and administrative support that has shown
a flexibility of unusual quality. Especially, we want to thank Christer Carlsson,
Gorgen Olofsson, Marie Larsson, Per Lundgren, and Hasse Hellstrom.

Part of our work has been supported by NUTEK.

Historical reflections

Once upon a time on a gray autumn day in 1991, three functional programmers
were chatting during a coffee break. They were quite happy that the LML
compiler [AJ93] allowed them to write “real” programs in a pure functional
language. One of these three had implemented a version of the game Tetris in
LML. Another had implemented Worms; an interactive, multi-user, real-time
game [Hal90]. They had no efficiency problems with these kinds of programs,
even though the computers of that time were 20-40 times slower than the ones
we use today.

But at that time, the three functional programmers were beginning to use
graphical workstations instead of simple text terminals. They were unhappy
about the fact that they did not have a way to write programs with graphical
user interfaces in their functional language.

The two younger of the three functional programmers decided to start work-
ing on a solution to this problem. The older of the three was a bit skeptical
and said that it would probably not be possible to obtain a solution that was
efficient enough to write “real” programs with.

The two younger implemented an interface that allowed LML programs to
talk to the X Windows system. They also designed an abstraction to be used
as the basic building block when constructing graphical user interfaces. This
abstraction was later named the Fudget.

The first X Windows interface was implemented as a separate program that
the LML program could talk to via ordinary text I/O. The oldest programmer
later integrated the interface with the run-time system of the LML compiler,
making the interface much more efficient.

Approximately one year later, the two younger functional programmers felt
they had a reasonably efficient system and a fairly nice abstraction. They wrote
a paper about it and it was accepted at a functional programming conference
[CHI3b|. One of the younger functional programmers wrote some more about
it and turned it into a licentiate thesis [CH93a].

The work continued. A number of improvements to make it easer to write
programs were made, and the library was converted into Haskell. Improvements
to the layout system allowed layout and plumbing to be specified separately. A
lot of distracting extra function arguments could be removed after a parameter
passing mechanism with default values was introduced. The resulting version of
the Fudget library was presented at the Spring School on Advanced Functional
Programming in Bastad in 1995 [HC95].

Contents

Preface
Acknowledgementso
Historical reflections

I Introduction
1 Programming by combination
2 Combinator libraries replace tools
3 Declarative programming and input/output
4 1/0 in functional languages?
5 What is a Fudget?
6 Contributions of the thesis
TRoad-map

IT Programming with Fudgets
8 A brief introduction to Haskell
9 Your first 8 Fudget programs
10 Fudget library GUIL elements
11 Specifying layouto oL
12 Abstract fudgets L o L
13 Fudget plumbing oo o
14 Fudgets for non-GUII/O
15 Parameters for customisation

III Stream processors — the essence of Fudgets
16 Stream pProcessors v v v v e e e e e
17 Plumbing: composing stream processors
18 Pragmatic aspects of plumbing,
19 Application programming with plain stream processors

IV Design and implementation
20 Implementing stream processors
21 Fudgets as stream processors.ot ..
22 Fudget I/O: the gory details
23 Automatic layout
24 Filter fudgets L
25 Moving stream processors e e
26 Typed sockets for client/server applications
27 Displaying and manipulating graphical objects

10
10
11
13
16
16

18
19
22
32
38
45
46
o1
93

55
96
62
66
70

CONTENTS 7
28 Combinators for syntax-oriented manipulation 147
29 Type directed GUI generation 161
30 Parameters for customisation 166
31 Gadgets in Fudgets oo 171
V Applications 182
32 WWWBrowser —a WWWclient 183
33 Alfa — a proof editor for type theory 194
34 Humake — a distributed and parallel make tool for Haskell 196
35 Space Invaders — real-time and simulation 198
36 FunGrapho 203
37 A mobile data communication protocol prototyping tool 205
38 Two board games 206
VI Discussion 211
39 Efficiency and program transformations. 212
40 Comments on Haskell and other language design issues 219
41 Related work Lo 222
42 Evaluation and conclusions, 237
43 Future work e e 240
A Online resources 243
A.1 The Fudgets Home Page 243
A.2 Supported platforms, downloading and installation 243
A.3 Compiling Fudget programs 243
B Fudget library quick reference guide 245
B.1 Top level, main program 245
B.2 GUI building blocks (widgets) 245
B.3 Combinators, plumbing L. 245
B.4 Adding application-specific code 246
B.b Layout e e 246
B.6 Graphics e 246
B.7 Alphabetical list 247
Production notes 252
Bibliography 253

I Introduction

1 Programming by combination

This thesis is, to a large extent, oriented around programming by combination.
By this, we mean the important programming method where you make programs
by combining subprograms. The inner details of the subprograms can then be
abstracted from, which makes it possible for the human brain to create and
understand very complex programs. This methodology has, of course, been
practised for many decades in various programming languages. However, it is a
method that sometimes is forgotten, and often only used in parts of a program;
for example, when doing tasks related to the operating system.

For programming by combination to be pervasive, it is important not only
that we have access to a good library of subprograms, but the programming
activity must also deal with forming new subprograms suitable for combination.
Otherwise, the variety of programs we can write becomes limited because they
get too complex. Therefore, programming by combination is also about forming
new levels of subprograms.

One important aspect of programming is, of course, which programming
language one uses. Different programming languages vary strongly in the sup-
port they give us when we want to program by combination. This is especially
true when it comes to forming new subprograms. The authors have found that
programming languages which are based on the declarative style are suitable in
this respect. Declarative programming languages allow us to write programs in
a mathematical style. For example, consider the expression

f((@+b)/2(a+b)/2)

In a declarative programming language, we might identify a subprogram which
Wwe can name average.

let average = (a + b) / 2
in f(average,average)

It is important that the activity of forming subprograms should be as easy as
possible for the programmer. If the programmer is required to write many
more characters than are shown in the previous example, another programming
method might become more attractive, namely programming by copy and paste.
This will soon result in programs which are complex to understand and maintain,
but unfortunately, it is a too widely practised method.

The previous example did not actually introduce a subprogram. It could
simply be seen as declaring a local variable. However, in declarative program-
ming languages, we can use the same style when we want to form subprograms.
The expression

f(a,a+b) + f(a,a+c) + f(a,a+d)

uses a recurring calling pattern to the function f. This pattern is easily captured
by a subprogram that we can call 2.

let 2(x) = f(a,a+x)
in f2(b) + f2(c) + f2(d)

Forming a corresponding subprogram in the popular programming language C,
for example, would be more involved. We would first need to declare a new
top-level function, then make sure that its name did not collide with some other
top-level function in the same source file, and finally, the function would need
an extra parameter for the variable a. All parameters would need some type
declaration.

As a more advanced example of programming by combination in declarative
style, we might consider parsing combinators [Bur75|][Wad85] (from now on,
we will often talk about combinators when we mean subprograms which are
designed for versatile combination). A large number of text parsers can be
formed by four combinators:

e token(c), which accepts the character c.

e p ||| ¢, which forms an alternative: it either accepts whatever the parser
p accepts, or it accepts whatever the parser ¢ accepts.

e p >>> ¢, which forms a sequence: it first accepts whatever p accepts, and
then accepts whatever ¢ accepts when given the rest of the text.

e epsilon, which parses the empty string.

From these combinators, a programmer might build more useful combinators.
Here is a combinator which can be used for parsing things within parentheses:

withinParentheses(p) = token('(’) >>> p >>> token(")")

Or we might declare the combinator many(p), which forms a parser which ac-
cepts whatever p accepts, zero or more times in a sequence (this is often written

p¥):
many(p) = (p >>> many(p)) ||| epsilon
Note that in most of these combinators, we have used the possibility to param-

eterise over subprograms, which is another important feature that declarative
programming languages naturally support.

10 3 Declarative programming and input/output

2 Combinator libraries replace tools

Why would we want to use parsing combinators when we could instead use a
parser generator tool? A parser generator like Yacc [Joh75] comes with a special
programming language suitable for the task of specifying parsers. Although this
is a quite powerful tool, it comes with a price, in that we have to learn this new
programming language. Other tools (for example for specifying graphical user
interfaces), also come with their own, domain-specific programming languages.
Although they are often superb in many cases, they all have in common that
the programmer must learn a quite new syntax, and often, the possibilities for
the programmer to form new abstractions are poor. In the case of Yacc, it is
not possible to express the abstraction withinParentheses, for example. It is also
hard or impossible to share abstractions between the different tool languages
and the programmer’s general programming language, something which adds to
the overall complexity of a software system.

To return to our example, parsing combinators allow us to smoothly integrate
parsers in our software without any additional tools, languages or compilers. We
only need a library for parsing combinators. More generally, combinator libraries
can be seen as defining an embedded language inside our general programming
language. This way, the number of concepts a programmer has to learn decreases
drastically, since the general programming language’s idioms apply directly.

However, it should be noted that combinator libraries often miss features
that specialised tools have (like efficiency). It is a challenge for creators of
combinator libraries to catch up with this.

3 Declarative programming and input/output

In later sections, we will describe how one can use combinators for programming
input/output. But before that, we will discuss how output can be done in a
declarative programming language. Output from a program can also be seen as
an effect that the program has on the outside world. When combining effects,
their order is often highly important (the reader might want to try different
combinations of the effects “Open door”, and “Walk through door”, for exam-
ple). This is an important aspect which we must have in mind when considering
subprograms for defining effects.

There are two widely used styles for dealing with effects in declarative pro-
gramming languages. We either allow all subprograms to directly have effects
on the outer world, or we only allow subprograms to return values that represent
effects.

Consider a subprogram in a programming language using direct effects. If
the subprogram is a function that returns some value, it is often said that the
function can have a side effect while computing its value. The order in which
these side effects happen is made precise by defining a computation order for ex-
pressions. This is most easily done by saying that all arguments to subprograms
should be computed left to right, and then the subprogram is called. Also, an
expression which uses a local definition should compute the definition before the
expression. Such programming languages are called strict.

Side effects can interact with the programmer’s activity of forming new sub-
programs, or naming subexpressions. For example, it is no longer clear that we

11

could write
let average = (a + b) / 2
in f(average,average)
instead of
f((a+0)/2(a+b)/2)

because a potential side effect of the subprogram a would be carried out once
in the first case, but twice in the second.

Another problem with combinator programming in strict programming lan-
guages is that we must be much more careful when defining combinators in
terms of themselves. If we use the definition

many(p) = (p >>> many(p)) ||| epsilon

for many, we end up in an infinite loop, if arguments are computed strictly.

It is a very desirable feature of a programming language that subprograms
do not have side effects. This feature is used in the non-strict, purely functional
programming languages that we will use in the rest of this thesis. The term
“purely functional” means that it is guaranteed that a function always return
the same value if its arguments have the same value, and that it does not have
any side effect. More generally, if the same expression occurs in many places (as
a above, for example), it is guaranteed that all those occurrences compute to
the same value. It is only in a purely functional programming language that we
can introduce the variable average in the previous example, regardless of what
a and b are.

In purely functional languages, we use the second way of dealing with ef-
fects, where subprograms may return values that represent effects, instead of
performing them directly. A representation of an effect can then be combined
with other representations of effects, yielding a new representation of an ef-
fect. Finally, the effect that our whole program represents is carried out. This
means that issues of effects and computations are separated. When defining and
combining effects, we do not have to bother about which parts of our program
should be computed, how many times they might be computed, and in which
order.

Having combinators that return representations of effects opens up the pos-
sibility to manipulate these effects before they are carried out. This can be used
to adapt the effects of existing combinators to new situations.

In what follows, we will often speak about combinators having various effects,
or doing various kind of input/output. At times, it will be convenient to think
that the combinators actually perform these effects directly, but it is important
to remember that they only define a representation of an effect.

4 1/0 in functional languages?

A program in a pure functional language is an expression that denotes the
effect that the program should have on the outside world when the program is

12 4 I/0 in functional languages?

Program

Characters Characters

Figure 1. A program and a user interacting via a text terminal.

executed. The question we turn to now is: how are the basic effects specified
and how are effects combined?

Suppose the outside world is a simple text terminal (see Figure 1). Then,
the interesting effects are: outputting characters to the terminal screen, and
inputting characters from the terminal keyboard. The behaviour of a program
could be described by a sequence of the basic effects, so it is natural to use
sequential compositions of effects to build programs with nontrivial behaviour.
This is what is provided in the typical imperative languages. As an example,
consider a program that reads some numbers separated by white space, and
outputs the sum of the numbers. In an imperative language, it would look
something like this:

program = sumNumbers 0

sumNumbers acc =
if end of input
then putNumber acc
else do n <— getNumber
sumNumbers (acc+n)

getNumber = ...
putNumber = ...

We can identify the subprograms getNumber and putNumber as reusable com-
ponents. By taking a step back and reflecting on what a program is, we can
perhaps find ways of composing programs other than the sequential composition
of effects. Having more versatile ways of composing programs is likely to give
us more opportunities to construct reusable subprograms.

We choose to view programs as defining stream processors, that is, a program
describes some kind of process that consumes an input stream and produces an

13

<_©(_

Figure 2. A stream processor.

output stream. This view goes back to Landin [Lan65]. We use the symbol
shown in Figure 2 to denote a stream processor.

A stream processor can be seen as a function on streams. A program that
interacts with a text terminal could be seen as a function from a stream of
characters to a stream of characters. When the program is run, the function is
applied to the stream of characters received from the keyboard and the resulting
stream of characters is output to the screen.

In a lazy functional language, streams can be represented as ordinary lists. A
program that interacts with a text terminal can thus be built using ordinary list
functions. The typical lazy functional solution to the number-summing problem
looks something like this:

program = show . sum . map read . words

The input stream is chopped into words, the words are converted to numbers,
the numbers are summed and converted back into characters that can be output
to the screen.

Let us compare this solution with the imperative one. In both solutions,
subprograms for parsing and printing numbers are reusable. In the functional
solution the number-summing function is reusable as well. And although we
have used a standard function to sum a list of numbers, the above program can
execute in constant space, since in a lazy language, computations are performed
on demand. Likewise, input from the terminal is read on demand, allowing
the computation of the sum to be interleaved with the reading and parsing of
keyboard input. (If we tried to use the sum function in the imperative solution,
we would first have to read all the numbers and store them in a list, and then
call the sum function. The program would thus not run in constant space.)

In the functional solution, the program is no longer expressed as a compo-
sition of basic effects. Instead, we have built the program from a number of
stream processors in a pipe line.

We have now seen two ways of describing stream processors:

e the basic way of using sequential composition of I/O operations,

e the more high-level way of using serial composition of stream processors.

5 What is a Fudget?

Previously, we looked at programs that communicate with a text terminal. We
now refine the view of the outside world and consider graphical user interfaces
(GUIs). In contrast to the typical text terminal program, which interacts with
the user through a dialogue and thus is sequential in nature, programs with

14 5 What is a Fudget?

Counter

DisplaVO Button

Incrementl

Figure 3. The desired program structure of the counter example.

graphical user interfaces interact with the user by showing a window which can
be seen as a control panel providing various control and indicator devices. The
various devices exist in parallel in the window and their respective behaviours are
mostly independent of other devices. This suggest that programs with graphical
user interfaces should be built using some kind of parallel composition rather
than sequential composition.

To illustrate what kind of program structure we are looking for, take a look
at the counter example (pun intended). The user interface should contain two
GUI elements: a button and a numeric display. Each time the button is pressed,
the number in the display is incremented. We would like the program to contain
one stream processor per GUI element, taken from a library (often called GUI
toolkit or widget set), and an application-specific stream processor that counts
the button presses and outputs numbers to the numeric display. The stream
processors should be connected as in Figure 3. The key idea is that stream
processors from the library handle the low-level details of the GUI elements,
and the code that the application programmer writes, communicates with the
GUI elements on a higher level of abstraction.

GUI elements can be seen as a particular kind of I/O device that a program
can communicate with. The idea naturally extends to communication with
other types of I/O devices, such as other computers on the Internet.

Our solution to building programs with this structure in a purely functional
language, is based on a special kind of stream processor, the Fudget (see Fig-
ure 4. “Fudget” is an abbreviation of functional widget, where widget is an
abbreviation of window gadget). A fudget has both low-level streams and high-
level streams. The low-level streams are always connected to the I/O system,
allowing the fudget to control a GUI element by receiving events and sending
commands to the window system. The high-level streams can carry arbitrary
(usually more abstract) values, and they connect the fudgets that make up a
program in an application-specific way.

We will write the type of a fudget as

F hi ho

where hi and ho are the types of the messages in the high-level input and output
streams, respectively.

15

High level messages 7/\{

Low level requests & responses

I/O system

Figure 4. The Fudget.

O-O— LoD

Figure 5. Serial composition, parallel composition, and loop.

The high-level streams between fudgets are connected by the programmer
using combinators. Three basic ways to combine fudgets (and stream processors
in general) are serial composition, parallel composition and loops, see Figure 5.
The types of these combinators are:

>==<iuFab—->Fca—->Fcb --serial composition
>x< 1 Fab—->Fab->Fab -- parallel composition
loopF : Faa—>Faa -- loop

These simple ideas allow programs with graphical user interfaces to be built in
a hierarchical way using a declarative style. For example, the counter example
can be expressed as

displayF >==< counterF >==< buttonF "Increment"

that is, a serial composition of three fudgets, where displayF and buttonF handle
the widgets that the user interacts with, and counterF just counts the button
presses.

Serial composition is closely related to ordinary function composition. With
this in mind, one can see that the program has much the same structure as the
Landin stream I/O number-summing example shown in Chapter 4. Examples
like this one will be explained further in Chapter 9.

16 7 Road-map

6 Contributions of the thesis

The work presented in this thesis started with the desire to write programs
with graphical user interfaces in a purely functional language. We also wanted
to implement the GUI toolkit itself in the functional language. The questions
we asked ourselves were:

e Would the features of functional languages be appropriate for this task?
Functional languages were known to be weak when it came to I/O. Im-
plementations of GUI toolkits had traditionally been done in an object-
oriented style. Lacking features such as subtypes, inheritance and paral-
lelism, would a functional language still suffice?

e Would implementations of functional languages be efficient enough to cope
with the potentially large volume of I/O and high requirements on re-
sponse times?

We believe that the thesis shows that the answer is yes to both of these questions.

The main result of the work behind this thesis is the Fudget library, which is
an implementation of the ideas outlined in the previous section. Among other
things, it provides

e types and combinators for fudgets and stream processors,
e a GUI toolkit, providing the usual widgets, and
e support for network communication.

The Fudget library shows how a concurrent programming paradigm can be
implemented and applied in a purely functional programming language.

We demonstrate the practical usefulness of the Fudget library by presenting
a number of application programs, some of which are quite large. A number
of programming styles and methods are presented which can be used when
programming with Fudgets.

7 Road-map

e Part I deals mainly with what a programmer can do with Fudgets. It
begins with a brief introduction to Haskell (Chapter 8). The next chapter
is a tutorial (Chapter 9), where a number of fudget programs are presented,
ranging from the tiniest “Hello world” fudget to a simple calculator, and
continues with an overview of the most important stuff that a programmer
can use in the Fudget library. This includes an overview of some basic
GUI building blocks (Chapter 10), how to specify layout (Chapter 11), a
description of how to attach application-specific code to the Fudget library
components (Chapter 12), how to combine fudgets (Chapter 13), and how
to customise fudgets (Chapter 15).

e Part IIT distills the fudget concept to get stream processors, which can
be regarded as a simplification of fudgets, that do not necessarily need
I/O. The last chapter in this part (Chapter 19) gives some programming
examples using plain stream processors.

17

e The reader interested in how the Fudget library works can continue with
Part IV, which is devoted to the design and implementation. It also de-
scribes extensions and programming methods, as outlined further in its
introduction. The last chapter (Chapter 31) describes how an existing
functional GUI toolkit was implemented on top of Fudgets.

e Part VI starts with a discussion of the efficiency of Fudget programs
in Chapter 39, and suggests some possible program transformations for
speed-up. In Chapter 40, we comment on the programming language
Haskell itself, describe some problems, and discuss extensions. Chap-
ter 41 discusses related work and presents a number of other functional
GUI toolkits that have emerged. Chapter 42 contains a brief evaluation
and conclusions. Some suggestions for future research, including a more
formal study of stream processors, is given in Chapter 43.

II Programming with
Fudgets

The fudget concept and the Fudget library was first conceived and designed as
an aid in constructing graphical user interfaces in a lazy functional language.
Although the Fudget library now supports other kinds of I/O, the main part of
the library still relates to GUI programming.

In the Fudget library, each GUI element is represented as a fudget. The
library provides fudgets for many common basic building blocks, like buttons,
pop-up menus, text boxes, etc. The library also provides combinators that allow
building blocks to be combined into complete user interfaces.

This section introduces the Fudget library by presenting a number of GUI
programming examples. They illustrate the basic principles of how to create
complete programs from GUI elements and application-specific code. After the
examples follows an overview of the library. We show

e some common GUI fudgets from the library,
e how to specify the layout of GUISs,

o different ways of writing abstract fudgets, and introduce stream proces-
sors,

combinators for building networks of fudgets, and

a scheme for parameter passing with default values.

19

8 A brief introduction to Haskell

The purely functional programming language that we will use in the rest of
the thesis is Haskell [Pet97]. An introduction can be found at [HPF97], and
there are also two reports that define the language and its standard libraries
[PHI7b|[PHITa].

We believe that the program examples will be readable without detailed
knowledge of Haskell—familiarity with some functional language is hopefully
sufficient. However, some recurring patterns are perhaps worth explaining:

e Haskell uses layout (indentation) rather than delimiting character to sep-
arate declarations, branches in case expressions, etc.

e Anonymous functions are written using \ and —>: for example, \ x —> x
is the identity function.

e The operator . is function composition.

e The operator $ is just function application, that is f$ z = fx It is
right associative and has low precedence, so it can be used to avoid nested
parentheses. We often write expressions like

fSgfhd\x—>x+1

instead of

fg (h (\x =>x+1)))

e An ordinary alfanumeric identifier can be used as an infix operator by
enclosing it in back quotes. We sometimes write, for example,

fx'ap'y
instead of

ap (fx)y

e Infix operators are turned into functions that can be passed as arguments
by enclosing parentheses. For example, () is equal to \x y —> x * y.

Operators can be partially applied using sections, again using parentheses.
For example, (2/) is the function \x —> 2 / x, and (/2) is the function \x
—>x/2

e The Haskell syntax for tuples, lists and functions is chosen so that a type
and the values of the type look similar. For example, the type of the tuple
(3,False,"fudget") is (Int,Bool,String), the type of the list [1,2,3] is [Int] and
the type of the function \ x —> xis a —> a.

e In type expressions, names starting with lower case letters are type vari-
ables and names starting with upper case letters are type constructors.

e We often use the Haskell standard type Either for disjoint unions, defined
as

20 8 A brief introduction to Haskell

data Either a b = Left a | Right b
and the type Maybe for optional values, defined as
data Maybe a = Nothing | Just a

e The result of a Haskell program is the value bound to the identifier main.
This value should be a representation of the effect (as discussed in Chap-
ter 3) the execution of the program should have on the outside world. A
program can be as simple as

main = print "Hello, world!"

A unique feature of Haskell is the type class system [WB89], which is a system-
atic treatment of overloading. A type class declaration introduces a number of
functions that will be overloaded. An instance declaration gives definition of the
overloaded functions for a particular type. For example, a standard type class
in Haskell is the class for types that support equality:

class Eq a where
(==)::a—>a—> Bool

To allows boolean values to be tested for equality with the == operator, an
instance declaration like the following can be used:

instance Eq Bool where

True == True = True
False == False = True
== _ = False

For some standard type classes, instance declarations can be generated auto-
matically by adding a deriving clause to the type definition:

data Bool = False | True deriving Eq

When an overloaded function is used in a new function definition, the overload-
ing may be inherited by the new function. For example, consider the function
elem that checks if a value occurs in a list, defined as

x ‘elem’ [| = False
x ‘elem’ (yiys) = x==y || x 'elem" ys

The type of elem is written
elem :: Ega =>a —> [a] —> Bool

where the part Eq a => is called a context. It means that the type variable a is
restricted to range over types that are instance of the Eq class.

In Haskell 1.3, the class system was generalised to allow classes of type
constructors [Jon93] instead of just classes of base types. Type variables were
extended to range over type constructors. This means a that type scheme like
a Int is allowed. The type variable a can be instantiated to, for example, Maybe
and the list type constructor, giving the types Maybe Int and [Int], respectively.

The well known function map,

21

map :: (a—>b) —> [a] —> [b]

which is defined for lists in many functional languages, can now be generalised
by introducing the class Functor,

class Functor f where
map :: (a—>b) —>fa—->fb

Instances for the lists and the Maybe type can be defined as

instance Functor [] where

map f[] =]
map f (x:xs) = fx : map f xs

instance Functor Maybe where
map f Nothing = Nothing
map f (Just x) = Just (f x)

However, the introduction of constructor classes was motivated by the change
to monadic I/O (see Section 41.1.3) and a convenient syntax for monadic pro-
gramming. The class Monad is defined as

class Monad m where
return 1 a —>ma
(>>=):ma—->(@a—->mb)—->mb

and the special do syntax for monadic expressions,

do T <— my
To <— My

mp
is defined to mean the same as

m; >>= (\ T —>
mp >>=(\ 2 —>

1))

22 9 Your first 8 Fudget programs

9 Your first 8 Fudget programs

In the following, we present 8 simple GUI programming examples. For each
example, we show a window snapshot, the program text and explain the major
points of the example. To keep the size of the presentation reasonable, many
unimportant details are deliberately left unexplained. The reader is referred to
the Fudget Library Reference Manual [CH97] for full information. In addition,
the WWW version of this thesis contains hyper links into the Reference Manual
for many combinators and types. The WWW version is located at

http://www.cs.chalmers.se/~hallgren/ Thesis/

The window snapshots were made on a Unix workstation running the X Win-
dows system and a window manager providing Windows-95-like window frames.

For practical details, such as where to get the Fudget library, which platforms
are supported, and how to compile programs, see Appendix A.

9.1 "Hello, world!"

We begin with a simple program that only displays a mes-

ﬂ Hello E sage in a window. This example illustrates what the main

program should look like, as well as some other practical
Hello, word! details. As the window dump shows, the window manager

adds a title bar to the message.
Here is the source code:

import Fudgets

main = fudlogue (shellF "Hello" (labelF "Hello, world!"))
Note:
e To use the Fudget library, the module Fudgets should be imported.

e A fudget program consists of a number of fudgets combined in a hierar-
chical structure that makes up one main fudget. The function fudlogue,

fudlogue :: Fab —> 10 ()

connects the main fudget to Haskell’s I/O system, thus starting a dialogue
between them. It sets up the communication with the window system,
gathers commands sent from all fudgets in the program and sends them
to the window system, and distributes events coming from the window
system to the appropriate fudgets.

e A fudget program with a graphical user interface needs one or more shell
windows (top-level windows). These can be created with the function
shellF,

shellF :: String —>Fab—->Fab

which given a window title and a fudget, creates a shell window containing
the graphical user interface defined by the argument fudget. The fudgets
for GUI elements, like labelF, can not be used directly on the top level in
a program, but must appear inside a shell window.

9.2 The factorial function 23

e In this simple program, the contents of the shell window are merely a
simple string label, that is created with the function labelF,

labelF :: (Graphica) =>a —>Fbc

The argument is the label to be displayed. The label can be a value of any
type that is an instance of the Graphic class. The Fudget library provides
instances for many predefined types, including strings. The Graphic class
is discussed in Section 27.1.

Both the input and output types of labelF are type variables that do not
occur anywhere else. This indicates that none of the high-level streams
are used by labelF.

labelF has only one parameter: the label to be displayed. Most GUI fud-
gets come in two versions: a standard version, like labelF, and a customis-
able version, for example labelF’, which allows you to change parameters
like fonts and colors, for which the standard version provides default val-
ues. See Chapter 15 for more details.

e The size and placement of the GUI elements need not be specified. The
fudget system automatically picks a suitable size for the label and the size
of the shell is adapted to that.

Useful programs of course contain more than one GUI element. The next ex-
ample will contain two GUI elements!

9.2 The factorial function

This program illustrates how data is communicated between

different parts of a Fudget program. It illustrates a simple ﬂ Fﬂ.f_'.‘tl'.'.E j

way to combine application-specific code (in this case the fac-

torial function) with GUI elements from the Fudget library. 120
The program shows a numeric entry field at the bottom

and a number display at the top. Whenever the user enters

a number in the entry field and presses the Return key, the

(]

factorial of that number is computed and displayed in the
number display.
Here is the source code:

import Fudgets
main = fudlogue (shellF "Factorial" facF)
facF = intDispF >==< mapF fac >==< intlnputF

fac0 =1
fac n = n x fac (n—1)

Note:

e The program facF is structured as a serial composition of three parts, using
the operator >==<. Notice that, as with ordinary function composition,
data flows from right to left. The parts are:

24 9 Your first 8 Fudget programs

— the numeric entry field intlnputF,

— mapF fac, an abstract fudget (a fudget without a corresponding GUI
element) that applies fac, the factorial function, to integers received
from the entry field, and

— the number display intDispF, which displays the computed factorials.

e We have used fudlogue and shellF on the top level as in the previous ex-
amples (Section 9.1).

The types of the new library components used in this example are:

>==<:tFab->Fca—->Fcb
intlnputF :: F Int Int

mapF :: (a =>b) —>Fab
intDispF :: F Int a

Although this program does something useful (at least compared to the two
previous examples), it could be made more user friendly, e.g., by adding some
explanatory text to the user interface. The next example shows how to do this.

9.3 The factorial function, with improved layout

This program shows how to use layout combinators to

ﬂ Ff!-ﬂtﬂ?‘iﬂ-ﬂ improve the visual appearance of a Fudget program.

We have made the factorial function example from
H= | Section 9.2 more self documenting by adding labels to
the entry field and the output display. We have also
¥l = 120 changed the order of the two parts: the entry field is
now above the display.

Here is the source code:

import Fudgets
main = fudlogue (shellF "Factorial" facF)

facF = placerF (revP verticalP) (
("x! =" ‘labLeftOfF" intDispF) >==
mapF fac >==
("x =" ‘labLeftOfF" intInputF))

fac0 =1
fac n = n x fac (n—1)

Note:

e We have used the function labLeftOfF to put labels to the left of the entry
field and the display. (In Haskell, back quotes can be used to turn any
function into an infix operator, as we have done with labLeftOfF here).

9.4 An up counter 25

e The function placerF can be applied to a composition of fudgets to specify
the relative placement of the parts. (The layout system automatically
picks some placement if layout is left unspecified.) The first argument to
placerF is a placer, in our case revP verticalP, where verticalP causes the
parts to be stacked vertically, with the leftmost fudget in the composition
at the top, and revP reverses the order of the parts.

e Everything else is as in the previous examples.

The types of the new library components used in this example are:

labLeftOfF :: (Graphica) =>a —>Fbc—->Fbc
placerF :: Placer —>Fab —>Fab

revP :: Placer —> Placer

verticalP :: Placer

9.4 An up counter

This program illustrates a more general way to com-
bine application-specific code with GUI elements from I:i Up Eﬂuﬂ-tﬂ
the Fudget library. It illustrates that state information
can be encapsulated. State information is often consid-] upl
ered as difficult to handle in pure functional languages;

hopefully, this counter example shows how easy it is!

This program has a button and a numeric display.
Pressing the button increments the number in the display.

The application-specific code in this example sits between the button and
the display. It maintains an internal counter which is incremented and output
to the display whenever a click is received from the button.

Here is the source code:

import Fudgets
main = fudlogue (shellF "Up Counter" counterF)
counterF = intDispF >==< mapstateF count 0 >==< buttonF "Up"

count n Click = (n+1,[n+1])
Note:

e As with the factorial example (Section 9.2), the central part of the program
(counterF) is a serial composition of three parts. At the output end we see
the familiar intDispF. At the input end of the pipe line is a button created
with buttonF. It outputs a Click when pressed. The middle component
maintains an internal counter. The counter is incremented and output to
the display when a Click is received from the button.

e mapstateF, like mapF, allows messages sent between fudgets to be pro-
cessed in an application-specific way. With mapstateF, an arbitrary num-
ber of messages can be output as response to an input message. In ad-
dition, the output can depend not only on the current input, but also on

26 9 Your first 8 Fudget programs

0
-
T

Figure 6. The up/down counter.

an internal state. mapstateF has two arguments: a state transition func-
tion and an initial state. When applied to the current state and an input
message, the state transition function should produce a new internal state
and a list of output messages.

The function count is the state transition function in this program.

e There is a small pitfall in this program: intDispF automatically displays 0
when the program starts. The initial value of the counter happens to be
0 as well. If the 0 is changed in the definition of counterF, the display will
still show 0 when the program starts. One way to fix this is to use the
customisable version of intDispF to specify the initial value to display.

The types of the new library components used in this example are:

buttonF :: (Graphic a) => a —> F Click Click
data Click = Click
mapstateF :: (a —>b —>(a, [c])) —>a —>Fbc

This and the previous examples show how serial composition creates a commu-
nication channel from one fudget to another. But what if a fudget needs input
from more than one source? The next example shows one possible solution.

9.5 An up/down counter

This example illustrates how to handle input from more than one source (Fig-
ure 6). The two buttons affect the same counter.
Here is the source code:

import Fudgets
main = fudlogue (shellF "Up/Down Counter" counterF)
counterF = intDispF >==< mapstateF count 0 >==

(buttonF filledTriangleUp >+<
buttonF filled TriangleDown)

count n (Left Click) = (n+1,[n+1])
count n (Right Click) = (n—1,[n—1])

9.6 An up/down/reset counter 27

Note:

The up/down counter is a small extension of the Up Counter (Section 9.4).
We have added a button by replacing

buttonF ...
with
(buttonF ... >+< buttonF ...)
using the operator >+< for parallel composition.

The output from a parallel composition is the merged output from the two
components. Output from the left component is tagged Left and output
from the right component is tagged Right. The constructors Left and Right
are constructors in the datatype Either.

The count function will now receive Left Click or Right Click, depending on
which button was pressed. It has been adjusted accordingly. (Note that
Left Click and Right Click have nothing to do with the left and right mouse
buttons!)

Just to illustrate that buttons can display arbitrary graphics and not just
text, we have used two suitable shapes that happen to be provided by the
library.

Everything else is as in the previous example (Section 9.4).

The types of the new library components used in this example are:

>+< :: Fab —>F cd —> F (Either a ¢) (Either b d)
filledTriangleUp :: FlexibleDrawing
filled TriangleDown :: FlexibleDrawing

9.6 An up/down/reset counter

This example shows how to cre-
ate parallel compositions of many ﬂ UPJ'IDUIUH..I'IR.ESE!? Eﬂuﬂ.tﬂ

fudgets of the same type.

This program extends the] Upl DDWI’Il HESEtl

counter example with yet another
button. The counter can now

be incremented, decremented and

reset.

Here is the source code:

28 9 Your first 8 Fudget programs
U LoadER
1
Figure 7. The loadable up/down counter.
import Fudgets
main = fudlogue (shellF "Up/Down/Reset Counter" counterF)
counterF = intDispF >==< mapstateF count 0 >==< buttonsF
data Buttons = Up | Down | Reset deriving Eq
buttonsF = listF [(Up, buttonF "Up"),
(Down, buttonF "Down"),
(Reset, buttonF "Reset")]
count n (Up, Click) = (n+1, [n+1])
count n (Down, Click) = (n—1, [n—1])
count n (Reset, Click) = (0, [0])
Note:

When putting more than two fudgets of the same type in parallel, it is
more convenient to use listF than >+<. The argument to listF is a list of
pairs of addresses and fudgets. The addresses are used when messages are
sent and received from the components in the composition.

In this program there is a user defined enumeration type Buttons, the
elements of which are used as the addresses of the buttons. The messages
received by the count function are pairs of Buttons values and Clicks.

Everything else is as in the previous example (Section 9.5).

The type of the new library component used in this example is:

listF :: (Eqa) => [(a, Fbc)] —> F (a, b) (a, ¢)

9.7 A loadable up/down counter

This example illustrates the use of loops to handle user-interface elements that
are used for both input and output (Figure 7). The program extends the

9.8 A simple calculator 29

up/down counter in Section 9.5 by allowing the user to set the counter to any

value

by entering it in the display field.

Here is the source code:

Note:

import Fudgets
main = fudlogue (shellF "Loadable Up/Down Counter" counterF)

counterF = loopThroughRightF (mapstateF count 0) intlnputF >==<
(buttonF filledTriangleUp >+< buttonF filledTriangleDown)

count n (Left n") =", [
count n (Right (Left Click)) = (n+1, [Left (n+1)])
count n (Right (Right Click)) = (n—1, [Left (n—1)])

Instead of intDispF we have used intlnputF, which not only displays num-
bers, but also allows the user to enter numbers.

We have used the combinator loopThroughRightF to allow the count func-
tion to both receive input from and send output to intDispF. In the compo-
sition loopThroughRightF fud; fuds, fud; handles the communication with
the outside world (the buttons in this example), while fudy can commu-
nicate only with fud;, and is in this sense encapsulated by fud;. In fud,
messages to/from fuds are tagged Left and messages to/from the outside
world are tagged Right.

The type of the new library component used in this example is:

loopThroughRightF :: F (Either a b) (Eithercd) —> Fca—->Fbd

9.8 A simple calculator

As a final example, we show how a slightly larger program, a simple calculcator,
can be built using the ideas illustrated by the previous examples (Figure 8). For
simplicity, postfix notation is used, i.e., to compute 3+4 you enter 3 Ent 4 +.
The source code can be found in Figure 9.

Note:

The program structure is much the same as in the up/down/reset counter
(Section 9.6).

To specify the placement of the buttons we have used placerF (as in Sec-
tion 9.3) and the placer matrixP which has the number of columns as an
argument.

The state maintained by the application-specific code (the function calc)
is a stack (represented as a list) of numbers. The function calc pushes
and pops numbers from the stacks as appropriate. The last clause in the
definition means that nothing happens if there are too few values on the
stack for an operation.

30 9 Your first 8 Fudget programs

O Caleulator E

0| Ent] +

Figure 8. The calculator.

e As it stands, the calculator can be controlled with the mouse only. The
customisable version of buttonF allows you to specify a keyboard shortcut
for the button. It would thus be relatively easy to make the calculator
controllable from the keyboard.

The type of the new library component used in this example is:

matrixP :: Int —> Placer

9.8 A simple calculator

import Fudgets

main = fudlogue (shellF "Calculator" calcF)

calcF = intDispF >==< mapstateF calc [0] >==< buttonsF

data Buttons = Plus | Minus | Times | Div | Enter | Digit Int deriving Eq

buttonsF = placerF (matrixP 4) (
listF [d 7, d8,d9, op Div,
d4, d5,d6, op Times,
d1l, d2,d3, op Minus,
hole, d 0, ent, op Plus])
where
d n = (Digit n,buttonF (show n))
ent = op Enter
hole = (Enter,holeF)
op o = (o,buttonF (opLabel 0))
where opLabel Plus = "+"
oplLabel Minus = "-"
oplLabel Times = "x"
oplLabel Div. = "/"
oplLabel Enter = "Ent"

calc (n:s) (Digit d,) = new (nx10+d) s
calc s (Enter,) = (0:s,]])

calc (y:x:s) (Plus,) = new (x+y) s
calc (y:x:s) (Minus,) = new (x—y) s
calc (y:x:s) (Times,) = new (xxy) s

calc (y:x:s) (Div,) = new (x 'div'y) s
calc s . = (s,[])

new n s = (n:s,[n])

Figure 9. Source code for the calculator.

32 10 Fudget library GUI elements

10 Fudget library GUI elements

In this chapter, we present some common GUI elements provided by the Fudget
library. For more information, consult the reference manual, which is available
via WWW [HC97].

Before we introduce the GUI elements, we discuss briefly how fudget pro-
grams are formed using the function fudlogue.

10.1 Functions used on the top level of programs

As we have seen in the examples in Chapter 9, a fudget program consists of
a number of fudgets, combined in a hierarchical structure that makes up one
main fudget of type F a b, for some types a and b. The main program in Haskell
should have type 10 (), so we need a glue function to be able to plug in the
main fudget. The function fudlogue is provided for this purpose:

fudlogue :: Fab —> 10 ()

The main program of a fudget program usually consists just of a call to fudlogue
with an argument fudget. like

main :: 10 ()
main = fudlogue the main_ fudget

However, it is possible to combine fudlogue with other monadic I/O operations.
For example, to create a program that starts by reading some configuration file,
you could write

main = do config <— readFile config_filename
fudlogue (main_ fudget config)

Programs with graphical user interfaces need at least one shell (top-level) win-
dow. These are created with the function shellF:

shellF :: String —>Fab—->Fab

The typical GUI program has only one shell window, and the main program
thus looks something like

main = fudlogue (shellF window __title main_ gui_ fudget)

A program with more than one shell window could for example look something
like

main = fudlogue (shellF title; fud; >==< shellF titles fuds)

The fudget shellF is not restricted to the top level. You could write the above
example as

main = fudlogue (shellF title; (fudy >==< shellF title; fudz))

and achieve the same result.

10.2 Displaying values 33

__l Run toggleButtonF "Run"

P
_| P2

~IP3 radioGroupF [(1,"P1"),(2,"P2"),(3,"P3"),(0,"Off")] 0

“uf Off

Figure 10. Toggle buttons and radio groups.

10.2 Displaying values

We have already seen labelF, which displays static labels, and intDispF, which
displays numbers that can change dynamically. There is also displayF,

displayF :: (Graphica) =>Fab

a more general display for dynamically changing values. It can display values of
any type in the Graphic class. It could in fact also display numbers, but intDispF
has the advantage that the numbers are displayed right adjusted.

10.3 Buttons

We have already seen buttonF,
buttonF :: (Graphic a) => a —> F Click Click

in the examples above. It provides command buttons, i.e., buttons trigger some
action when pressed. The Fudget library also provides toggle buttons and radio
groups (Figure 10). Pressing these buttons causes a change that has a lasting
visual effect (and probably also some other lasting effect). A toggle button
changes between two states (on and off) each time you press it. A radio group
allows you to activate one of several mutually exclusive alternatives. The types
of these fudgets are

toggleButtonF :: (Graphic a) => a —> F Bool Bool
radioGroupF :: (Graphic b, Eq a) =>[(a,b)] —>a —>Faa

The input messages can be used to change the setting under program control.

10.4 Menus and scrollable lists

Menus serve much the same purpose as buttons, but they save screen space by
appearing only when activated. The fudget menuF name alts, where

menuF :: (Graphic a, Graphicc) =>a —> [(b,c)] => F b b

34 10 Fudget library GUI elements

i3 Compdd
|_ Up 2

| Down
Reset

import Fudgets
main = fudlogue (shellF "Compact Up/Down/Reset Counter" counterF)
counterF =

serCompLeftToRightF
(popupMenuF menu (intDispF >==< mapstateF count 0))

data Buttons = Up | Down | Reset deriving Eq
menu = [(Up, "Up"), (Down, "Down"), (Reset, "Reset")]
count n Up = (n+1, [n+1])

count n Down = (n—1, [n—1])
count n Reset = (0, [0])

Figure 11. A compact version of the up/down/reset counter presented in Sec-
tion 9.6.

provides pull-down menus. mname is the constantly visible name you press to
activate the menu and alts is the list of menu alternatives.
The fudget

popupMenuF :: (Graphic b, Eq b) =>
[(a, b)] => (F ¢ d) —> F (Either [(a, b)] c) (Either a d)

provides pop-up menus, i.e., menus that are activated when a certain mouse
button (the third by default) is pressed over some screen area. The fudget
popupMenuF initial _menu fud creates a fudget which behaves like the fudget fud
with the addition that the menu initial _menu pops up when the user presses the
third menu button. You communicate with the fudget as with a tagged parallel
composition of the menu and the fudget fud. Messages to/from the menu are
tagged Left and messages to/from fud are tagged Right. You can replace the
initial_menu by sending Left new_menu to the fudget.

As an example, suppose we wanted a compact version of the counter in
Section 9.6. We could then replace the three buttons with a pop-up menu
attached to the display. The source code for this and the resulting user interface
is shown Figure 11. We have used the combinator serCompLeft ToRightF, which
turns a parallel composition into a serial composition (see Section 13.1). When
the number of alternatives is large, or when they change dynamically, you can
use a scrollable list instead of a menu. The function

10.4 Menus and scrollable lists 35

Fick a color

afguamanne
green
chartreuse
khaki
yellow
jold

Figure 12. pickListF

Enter the name of a color

aquang

Figure 13. stringlnputF

pickListF :: (a —> String) —> F (PickListRequest a)
(InputMsg (Int, a))

(shown in Figure 12) takes a show function and returns a fudget that displays
lists of alternatives received on the high-level input. When an alternative is
selected, by clicking on it, it will appear in the output stream. Actually, the
output from pickListF is of type InputMsg, which is explained in Section 10.5.1
below.

The values in the input stream are of type PickListRequest to allow the list
of alternatives to be modified in various ways. To replace the entire list, you
can use

replaceAll :: [a] —> PickListRequest a

but there are other functions that let you insert new alternatives at some position
in the list,

insertText :: Int —> [a] —> PickListRequest a
or, more generally, replace part of the list with new alternatives,
replaceText :: Int —> Int —> [a] —> PickListRequest a

and so on. The screen will be updated in an efficient way when you do modifi-
cations of this kind.

36 10 Fudget library GUI elements

10.5 Entering values

Choosing an alternative from a list is usually easier than typing something, e.g.,
the name of a colour, on the keyboard. But when there is no predefined set of
alternatives, you can use fudgets that allow the user to enter values from the
keyboard. The library provides

stringlnputF :: F String String
intlnputF :: F Int Int

for entering strings and integers (see Figure 13). For entering other types of
values, you can use stringlnputF and attach the appropriate printer and parser
functions.

10.5.1 More detailed information on user input

The fudgets stringlnputF and intlnputF do not produce any output until the user
presses the Enter (or Return) key to indicate that the input is complete. This
is often a reasonable behaviour, but there are versions of these fudgets that
provide more detailed information:

stringF :: F String (InputMsg String)
intF :: F Int (InputMsg Int)

These fudgets output messages of type InputMsg, which contain the current
contents of the entry field and an indication of whether the value is intermediate
or complete.

There are some stream processors that are useful when post processing mes-
sages from entry fields:

striplnputSP :: SP (InputMsg a) a
inputLeaveDoneSP :: SP (InputMsg a) a
inputDoneSP :: SP (InputMsg a) a

The first one passes through all messages, so that you will know about all
changes to the contents of the entry field. The second one outputs a message
when the user indicates that the input is complete and when the input focus
leaves the entry field. The last one outputs a message only when the input is
indicated as complete.

The fudget stringInputF is defined as

stringlnputF = absF inputDoneSP >==< stringF

As we saw above, the fudget pickListF also produces output of type InputMsg.
In this case, input is considered to be complete when the user double clicks on
an alternative. Hence you use striplnputSP if a single click should be enough to
make a choice, and inputDoneSP if a double click should be required.

10.6 Displaying and editing text
The library provides the fudgets

10.7 Scroll bars 37

Jan Banan

safttien gran.

Granen bérjar brinna,
Jan béirjar springal

Figure 14. The text editor fudget editorF.

moreF :: F [String] (InputMsg (Int, String))
moreFileF :: F String (InputMsg (Int, String))
moreFileShellF :: F String (InputMsg (Int, String))

which can display longer text.! The input to moreF is a list of lines of text to
be displayed. The other two fudgets display the contents of file names received
on the input. In addition, moreFileShellF appears in its own shell window with
a title reflecting the name of the file being displayed.

There also is a text editor fudget (Figure 14), which supports cut/paste
editing with the mouse, as well as a small subset of the keystrokes used in GNU
emacs. It also has an undo/redo mechanism.

10.7 Scroll bars

GUI elements that can potentially become very large, like pickListF, moreF and
editorF, have scroll bars attached by default. There are also combinators to
explicitly add scroll bars:

scrollF, vScrollF, hScrollF :: Fab —->Fab

The v and h versions give only vertical and horizontal scroll bars, respectively.
The argument fudget can be any combination of GUI elements.

IThe names come from the fact that they serve the same purpose as the UNIX program
more.

38 11 Specifying layout

| Butons
A Butl:un| Another Button

Figure 15. When no layout is specified in the program, the automatic layout
system chooses one.

11 Specifying layout
When combining fudgets for GUI elements, there are two considerations:

e The data flow aspect: how should they communicate, i.e., should one use
a serial, parallel, or some other combinator?

o The visual aspect: how should the GUI elements be placed on the screen?

When developing fudget programs, it is not necessary to be concerned with the
actual layout of the GUI fudgets. For example, the fudget

shellF "Buttons"
(buttonF "A Button" >+< buttonF "Another Button")

will get some default layout which might look like Figure 15. But sooner or
later, we will want to have control over the layout. The GUI library lets us do
this two different ways:

o Combinator-based layout. This method is based on the combinator placerF
that has appeared in some of the previous examples. It allows you to at-
tach layout information to an arbitrary fudget. Usually, you first combine
some fudgets using combinators like >+<, >==<, and listF, and then
apply placerF to the combination to specify a layout. This is a fairly easy
method for adding layout information to a program. However, the layout
possibilities are somewhat limited by the structure of the program.

e Name layout. Here, the layout is specified separately from the fudget
structure. GUI fudgets are assigned names, which are later referred to in
layout specifications placed inside each shellF.

Before describing these, we will present the layout combinators that both of
them use.

11.1 Boxes, placers and spacers

Layout is done hierarchically. Each GUI fudget will reside in a box, which will
have a certain size and position when the layout is complete. A list of boxes can
be put inside a single box by a placer. A placer defines how the boxes should be
placed in relation to each other inside the larger box. This enclosing box can be
subject to further placement, but the enclosed boxes are hidden by the placer in

11.1 Boxes, placers and spacers 39

X

IEEEEEEEER

horizontalP

~

Blele = o= e |~ |=

TEECEEREER

revP horizontalP

2] 3]
24| 5] 8]
7| 8] 8]
1o
matrixP 3
verticalP

Figure 16. Different placers.

the sense that they cannot be manipulated individually any more. The effects
of some placers are illustrated in Figure 16. The parameter to matrixP specifies
the number of columns the matrix should have. The types of the placers are

horizontalP :: Placer
verticalP :: Placer
matrixP :: Int —> Placer
revP :: Placer —> Placer

The placer revP reverses the list of boxes it is applied to. Another higher order
placer is flipP, which transforms a placer into a mirror symmetric placer, with
respect to the line x = y (that is, it flips the x and y coordinates):

flipP :: Placer —> Placer

Hence, we can define verticalP as
verticalP = flipP horizontalP

Placers can be applied to fudgets by means of placerF:
placerF :: Placer —> Fab —>Fab

It applies the placer to all boxes in the argument fudget. The order of the boxes
is left to right, with respect to the combinators listF, >==< and >+<, etc.

As an example, suppose we want to specify that the two buttons in Figure 15
should have vertical layout. We could then write

shellF "Buttons" (placerF verticalP (buttonF "A Button" >+<
buttonF "Another Button"))

The result can be seen in Figure 17. In a similar way, the first button could
be placed below, to the right of, or to the left of the second button, by using

40 11 Specifying layout

| Butons ‘
A Button

Another Button

Figure 17. The same GUI elements as in Figure 15, but the program explicitly
specifies vertical layout.

verticalCounterF = placerF verticalP counterF

counterF = intDispF >==< mapstateF count 0 >==
(buttonF "Up" >+< buttonF "Down")

Up

Down

Figure 18. An up/down counter with vertical layout. Abstract fudgets do not
have a corresponding box in the layout.

the placers revP verticalP, horizontalP or revP horizontalP, respectively. Abstract
fudgets do not have a corresponding box in the layout. This means that the
presence of mapstateF in the definition of counterF in Figure 18, does not leave
a hole in the layout of verticalCounterF. What if we want the display to appear
between the two buttons? With the placers we have seen, the two buttons
will appear together in the layout, since they appear together in the program
structure. One solution is to use a placer operator that allows the order of the
boxes to be permuted:

permuteP :: [Int] —> Placer —> Placer
We can then replace verticalP with
permuteP [2,1,3] verticalP
to get the display in the middle. This kind of solution works, but it will soon

become quite complicated to write and understand. A more general solution is
to use name layout (Section 11.2).

11.1 Boxes, placers and spacers 41

(none) |] 2u] S|
leftS 1 2| 3

hCenterS 1 2| 3
rightS j ﬂ j

Figure 19. Spacers for alignment.

Placers are used to specify the layout of a group of boxes. In contrast,
spacers are used to wrap a box around a single box. Spacers can be used to
determine how a box should be aligned if it is given too much space, or to add
extra space around a box. Examples of spacers that deal with alignment can
be seen in Figure 19. The topmost box (placed with horizontalP) must fill up
all the available space. The lower three boxes have been placed inside a box
which consumes the extra space. The spacers used are derived from the spacer
hAlignS, whose argument states the ratio between the space to the left of the
box and the total available extra space:

hAlignS :: Alignment —> Spacer
leftS = hAlignS 0

hCenterS = hAlignS 0.5

rightS = hAlignS 1

There is a corresponding spacer to flipP, namely flipS. It too flips the z and y
coordinates, and lets us define some useful vertical spacers:

flipS :: Spacer —> Spacer
vAlignS a = flipS (hAlignS a)
topS = flipS leftS

vCenterS = flipS hCenterS
bottomS = flipS right$S

With compS, we can compose spacers, and define a spacer that centers both
horizontally and vertically:

compS :: Spacer —> Spacer —> Spacer
centerS = vCenterS ‘compS* hCenterS

To add extra space to the left and right of a box, we use hMarginS left right,
where

hMarginS :: Distance —> Distance —> Spacer
type Distance = Int

Distances are given in number of pixels.?> From hMarginS, we can derive margin$,
which adds an equal amount of space on all sides of a box:

2This is easy to implement, but makes programs somewhat device dependent.

42 11 Specifying layout

vMarginS above below = flipS (hMarginS above below)
marginS s = vMarginS s s ‘compS*' hMarginS s s

Spacers can be applied to fudgets by means of spacerF:
spacerF :: Spacer —>Fab —->Fab

The fudget spacerF s f will apply the spacer s to all boxes in f which are not
enclosed in other boxes. We can also modify a placer by wrapping a spacer
around the box that the placer assembles:

spacerP :: Spacer —> Placer —> Placer

For example, spacerP leftS horizontalP gives a horizontal placer which will left
adjust its boxes.

11.2 Name layout

To separate layout from fudget structure, we put unique names on each box
(usually corresponding to a simple GUI fudget) whose layout we want to control,
by using nameF:

type LName = String
nameF :: LName —>Fab —>Fab

The layout of the boxes that have been named in this way, is specified using
the type Namelayout. Here are the basic functions for constructing NamelLayout
values:

leafNL :: LName —> NameLayout
placeNL :: Placer —> [NameLayout] —> NameLayout
spaceNL :: Spacer —> Namelayout —> Namelayout

To apply the layout to named boxes, we use namelLayoutF:
namelayoutF :: NamelLayout —> Fab —>Fab

As an application of name layout, we show how the vertical counter in Figure 18
can be changed, so that the display appears between the up and down buttons
(Figure 20):

nlCounterF = namelayoutF layout counterF

counterF = nameF dispN intDispF
>==< mapstateF count 0
>==< (nameF upN (buttonF filledTriangleUp) >+<
nameF downN (buttonF filledTriangleDown))

-- only layout below

layout = placeNL verticalP (map leafNL [upN, dispN, downN])
upN = ||up||

downN = "down"

dispN = "disp"

11.3 Pros and cons of the different layout methods. 43

()

Figure 20. With name layout, the order of the GUI elements in the window
does not have to correspond to their order in the program text.

Now, we can control the layout of the two buttons and the display, without
changing the rest of the program.

The actual strings used for names are unimportant, as long as they are
unique within the part of the fudget structure where they are in scope. So
instead we can write

(upN:downN:dispN:) = map show [1..]

11.3 Pros and cons of the different layout methods.

When it comes to specifying the layout of user interfaces, the Fudget library
provides at least three solutions that differ in expressiveness and safety:

1. The don’t care solution: ignore the problem. The programmer can com-
pose a number of GUI fudgets using plumbing combinators, without spec-
ifying the layout. The system will automatically pick some layout. This is
perfectly safe, but it obviously does not give the programmer any control
over layout.

2. The combinator-based approach: the programmer inserts placerF applied
to some placer at some selected points in the fudget hierarchy. This gives
the programmer more control over layout and is still perfectly safe, but
there is a coupling between how the fudgets have been composed and how
they appear on the screen. This is not necessarily bad, but it limits the
freedom in the choice of layout.

3. Name layout: the boxes of the GUI elements are labelled with unique
names. On the top level of the program, the programmer inserts nameF
applied to a layout specification which, by referring to the names, can
achieve a layout of the GUI elements completely unrelated to how they
were composed.

In this solution it is possible to make mistakes, however. For the layout
specification to work properly, the name of every named box should occur
exactly once in the layout specification. If you forget to mention a box,
or if you mention it twice, or if you name a box that does not exist, the
layout will not work properly. These mistakes are not detected at compile
time, but give rise run-time errors or a weird layout.

44 11 Specifying layout

The Fudget library thus offers safe solutions with limited freedom, and unsafe
solutions with full freedom. With respect to safety and expressiveness, the
solutions used in some other functional GUI toolkits, for example Haggis [FP96]
and Gadgets [Nob95], are equivalent to name layout.

The problem with the name layout solution is that it requires a certain consis-
tency between two different parts of the program. Maintaining this consistency
during program development is of course an extra burden on the programmer.

Can a type system be used to make name layout safe? It would perhaps be
possible to include layout information in some form in the types of GUI fudgets
and catch some mistakes with the ordinary Haskell type system. However,
the requirement that each name occurs exactly once in the layout specification
suggests that you would need a type system with linear types [Hol88] to catch
all mistakes.

45

O

Figure 21. Turning a stream processor into an abstract fudget.

12 Abstract fudgets

When using the Fudget library in a program, fudgets from the library are usually
combined with some application-specific code, that is typically attached to the
program in serial compositions. In the examples, we have seen the use of mapF
and mapstateF for this:

facF = intDispF >==< mapF fac >==< intlnputF
counterF = intDispF >==< mapstateF count 0 >==< buttonF "Up"

The functions mapF and mapstateF create abstract fudgets, that is, fudgets that
do not perform any I/0O. They communicate only via their high-level streams.

A more general way to construct abstract fudgets is provided by the function
absF,

absF : SPab—->Fab

where SP is the type constructor for plain stream processors. These have a single
input stream and a single output stream. The function absF creates a fudget
by connecting the streams of a stream processor to the high-level streams of the
fudgets, while leaving the low-level streams disconnected, as shown in Figure 21.

The functions mapF and mapstateF are in fact defined in terms of absF:

mapF = absF mapSP
mapstateF = absF mapstateSP

where mapSP and mapstateSP,

mapSP :: (a =>b) —>SPab
mapstateSP :: (a => b —>(a,[c])) —=>a —>SPbc

are discussed in Section 16.2 and Section 16.3, respectively.

Although high-level combinators like mapF and mapstateF are adequate for
most fudget application programming, some programmers may prefer the flexi-
bility of the more basic ways of creating stream processors. Two examples where
abstract fudgets are defined in terms of absF can be found in Section 32.4. An
extensive discussion of stream processors can be found in Part III.

46 13 Fudget plumbing

Figure 22. Serial and parallel composition of fudgets.

13 Fudget plumbing

We have already seen examples of how to use the fudget plumbing combina-
tors. There are three basic forms of compositions: serial composition, parallel
composition and loops.

-- Serial composition:
>==<u:Fbc—>Fab->Fac

-- Parallel composition:

>+< :: Filol —> F i2 02 —> F (Either i1 i2) (Either ol 02)
>x< 1 Fio—>Fio—>Fio

listF :: (Eq t) => [(t, Fio)] —> F (t, i) (t, o)

-- Loops:
loopF : Faa—>Faa
loopLeftF :: F (Either loop input) (Either loop output) —> F input output
loopThroughRightF :: F (Either oldo newi) (Either oldi newo) —>
F oldi oldo —>
F newi newo

The different fudget combinators treat the high-level streams in different ways,
while the low-level streams are treated in the same way in all combinators. Fig-
ure 22 illustrates serial and parallel composition of fudgets. Apart from the
plumbing combinators listed above, the Fudget library contains further combi-
nators that capture common patterns. Some of these combinators are described
in the following sections.

The fudget combinators have corresponding combinators for plain stream
processors, which are discussed in more detail in Chapter 17. Their names are
obtained by replacing the F suffix with an SP, or substituting —...— for >...<
in the operators.

13.1 Serial compositions 47

13.1 Serial compositions

Serial composition connects the output of one fudget to the input of another
fudget. As with function composition, data flow from right to left, so that in
the composition fuds >==< fud;, the output of fud; is connected to the input
of fud,.

Many of the examples in Chapter 9 contain serial compositions of the form

mapF f>==< fud
fud >==< mapF f

The library provides the following combinators to capture these cases:

>="<uFab->(c—>a)->Fcb
fud >="< f = fud >==< mapF f

>"=<::(a->b)—>Fca—->Fchb
f >~=< fud = mapF f >==< fud

(The library versions of >"=< and >="< have more involved definitions to be
more efficient.)
Compositions of the form

absF sp >==< fud
fud >==< absF sp

are also common. The library provides two operators for these special cases:

>""=<:2SPbc—>Fab->Fac
sp >""=< fud = absF sp >==< fud

>=""<::Fbc—>SPab—->Fac
fud >=""< sp = fud >==< absF sp

Some combinators, like popupMenuF (see Section 10.4), create parallel compo-
sitions of fudgets, but sometimes a serial composition is instead required. This

could be accomplished by using a loop and an abstract fudget to do the necessary
routing, but the library contains two combinators that do this:

serCompLeftToRightF :: F (Either a b) (Eitherbc) —> Fac
serCompRightToLeftF :: F (Either a b) (Eitherca) —> F b ¢

The following equations hold:

serCompRightToLeftF (I >+< r) = I >==<r

serCompleftToRightF (I >+< 1) = r >==<1

48 13 Fudget plumbing

13.2 Parallel compositions

When combining more than two or three fudgets, the tagging obtained by using
>+4< can become a bit clumsy. It may then be more convenient to use listF,

listF :: (Eq a) => [(a, Fbc)] => F (a, b) (a, ¢)

which allows any type in the Eq class to be used as addresses of the fudgets to
be combined. The restriction is that the fudgets combined must have the same
type. (See Section 40.4 for a discussion of how a language with dependent types
could eliminate this kind of restriction.)

There is also a combinator for untagged parallel composition:

>x< o Fio—>Fio—>Fio

Input to an untagged parallel composition is sent to both argument fudgets.
There is a list version of untagged parallel composition as well,

untaggedListF :: [Fab] —>Fab
which can easily be defined using >%<:

untaggedListF = foldr (>*<) nullF
where nullF,

nullF :: Fab

is the fudget that ignores all input and never produces any output.

The untagged parallel compositions are not as widely used as the tagged
ones. The reason is probably that you usually do not want input to be broadcast
to all fudgets in a composition.

There are some further combinators that tend to be useful every once in a
while. These are various parallel compositions with the identity fudget:

idRightF :: F a b —> F (Either a c) (Either b c)
idLeftF :: F a b —> F (Either c a) (Either c b)
bypassF .: Faa —>Faa

throughF :: F a b —> F a (Either b a)

idRightF fud = fud >+< idF
idLeftF fud = idF >+< fud
bypassF fud = idF >x< fud
throughF fud = idRightF fud >==< toBothF

toBothF :: F a (Either a a)
toBothF = concatMapF (\ x —> [Left x,Right x])

idF :: Faa
idF = mapF id

13.3 Loops 49

13.3 Loops

The simplest loop combinator is loopF,
loopF : Faa—>Faa

In the composition loopF fud, the output from fud is not only output from the
composition, but also sent back to the input of fud.
The most useful loop combinator is probably loopThroughRightF. An exam-
ple use was shown in Section 9.7 and it is discussed further in Section 18.2.
Some loop combinators that have been useful are:

loopCompThroughRightF :: F (Either (Either a b) c)
(Either (Either cd) a) —> F b d

loopCompThroughLeftF :: F (Either a (Either b c))
(Either b (Either a d)) —> F c d

These turn parallel compositions into loops. The following equations hold:

loopCompThroughRightF (I >+< r) = loopThroughRightF [r

loopCompThroughLeftF (I >+< r) = loopThroughRightF r {

13.4 Dynamic fudget creation

The combinators described in the previous sections can be used to build static
networks of fudgets. The Fudget library also provides combinators that can be
used to add or remove fudgets dynamically (for example, to create new windows
dynamically).

To create dynamically changing parallel compositions of fudgets, the library
provides

dynListF :: F (Int, DynFMsg a b) (Int, b)
where
data DynFMsg i o = DynCreate (F i 0) | DynDestroy | DynMsg i

Above we saw listF that creates tagged parallel compositions that are static.
The combinator dynListF can be seen as a variant of listF with a more elaborate
input message type. When the program starts, dynListF is an empty parallel
composition. A new fudget fud with address ¢ can be added to the parallel
composition by passing the message

(#,DynCreate fud)

to dynListF. The fudget with address ¢ can be removed from the parallel com-
position by passing the message

(#,DynDestroy)

Finally, one can send a message z to an existing fudget with address i by passing
the message

50 13 Fudget plumbing

(#,DynMsg z)

to dynListF.

(The addresses used by dynListF have been restricted to the type Int for effi-
ciency reasons, but in principle, more general address types could be supported,
as for listF.)

A simpler combinator that allows fudgets to change dynamically is dynF:

dynF :: Fab —> F (Either (Fab)a)b

The fudget dynF fud starts out behaving like fud, except that messages to fud
should be tagged with Right. The fudget fud can be replaced by another fudget
fud’ by passing in the message Left fud’.

51

14 Fudgets for non-GUI I/0

14.1 Standard I/O fudgets

To read the standard input (usually the keyboard) and write to the standard
output or standard error stream (the screen), you can use the fudgets:

stdinF :: F a String
stdoutF :: F String a
stderrF :: F String a

The output from stdinF is the characters received from the program’s standard
input channel. For efficiency reasons, you do not get one character at a time,
but larger chunks of characters. If you want the input as a stream of lines, you
can use

inputLinesSP :: SP String String

which puts together the chunks and splits them at the newlines.
A simple example is a fudget that copies text from the keyboard to the
screen with all letters converted to upper case:

stdoutF >==< (map toUpper >"=< stdinF)

It applies toUpper to all characters in the strings output by stdinF and then
feeds the result to stdoutF.
Here is a fudget that reverses lines:

(stdoutF>="<((++"\n").reverse))>==<(inputLinesSP> " ~=<stdinF)

The precedences and associativities of the combinators are such that these fud-
gets can be written as:

stdoutF >==< map toUpper >"=< stdinF
stdoutF >="< (++"\n").reverse >==< inputLinesSP >~ "=< stdinF

14.2 Accessing the file system

The following fudgets allow you to read files, write files and get directory con-
tents:

readFileF :: F FilePath (FilePath,Either IOError String)
writeFileF :: F (FilePath,String) (FilePath,Either IOError ())
readDirF :: F FilePath (FilePath,Either IOError [FilePath])

These can be seen as servers, with a one-to-one correspondence between requests
and responses. For convenience, the responses are paired with the file path
from the request. The responses contain either an error message or the result
of the request. The result is the contents of a file (readFile), a directory listing
(readDirF), or () (writeFileF).

52 14 Fudgets for non-GUI I/O

14.3 The timer fudget

The timer fudget generates output after a certain delay and/or at regular time
intervals. Its type is

data Tick = Tick
timerF :: F (Maybe (Int, Int)) Tick

The timer is initially idle. When it receives Just (7,d) on its input, it begins
ticking. The first tick will be output after d milliseconds. Then, ticks will
appear regularly at i millisecond intervals, unless ¢ is 0, in which case only one
tick will be output. Sending Nothing to the timer resets it to the idle state.

As a simple example, here is a fudget that outputs,once a second, the number
of seconds that have elapsed since it was activated:

countSP >""~=< timerF >=""< putSP (Just (1000,1000)) nullSP
where countSP = mapAccumlISP inc 0
inc n Tick = (n+1,n+1)

53

15 Parameters for customisation

When constructing software libraries, there may be a tension between simplicity
and generality. Generality can be achieved by providing many parameters for
adapting library components to different needs. But it ruins simplicity if the
programmer has to specify a large number of parameters each time a library
component is used. To solve this, some programming languages allow some of
the arguments in a function call to be omitted, provided that default values are
specified for them in the function definition. Haskell does not allow this, but by
using one of the powers of functional languages, higher order functions, and the
Haskell class system, something very similar can be achieved. The solution used
in the Fudget library is presented below. Design and implementation issues are
discussed in more detail in Chapter 30.

15.1 Customisers

In order to make fudgets easy to use in the common case and still flexible,
they often come in two versions: a standard version, for example buttonF, and
a customisable version, for example buttonF’. The name of the customisable
version is obtained by appending a ' to the name of the standard version.

Customisable fudgets have a number of parameters that allow things like
fonts, colors, border width, etc., to be specified. All these parameters have
default values which are used in the standard version of the fudget.

Rather than having one extra argument for each such parameter, customis-
able versions of fudgets (or other functions) have one extra argument which is
a customiser. The customiser is always the first argument. A customiser is a
function that modifies a data structure containing the values of all parameters.

type Customiser a =a —> a

The type of the data structure is abstract. Its name is usually the name of the
fudget, with the first letter change to upper case—for example, ButtonF in the
case of buttonF’.

buttonF' :: (Graphic a) =>
(Customiser (ButtonF a)) —> a —> F Click Click

So, customisers are obtained by composing a number of modifying functions
using ordinary function composition. The function standard,

standard :: Customiser a

acts as the identity customiser and does not change any parameters. The stan-
dard versions of the fudgets are simply the customisable versions applied to
standard, for example:

buttonF = buttonF' standard

15.2 Sample customisers

There are customisable versions of most fudgets presented earlier in this chapter.
The customisers that are common to many fudgets are overloaded. Some
customiser classes are shown in Figure 23. The table in Figure 24 shows what

54 15 Parameters for customisation

class HasBgColorSpec a where setBgColorSpec :: ColorSpec —> Customiser a
class HasFgColorSpec a where setFgColorSpec :: ColorSpec —> Customiser a
class HasFont a where setFont = FontName —> Customiser a
class HasMargin a where setMargin : Int —> Customiser a

class HasAlign a where setAlign = Alignment —> Customiser a
class HasKeys a where setKeys o [(ModState, KeySym)]

—> Customiser a

Figure 23. Some customiser classes.

BgColorSpec FgColorSpec Font Margin Align Keys

TextF y y y y y n
DisplayF y y y y y n
StringF y y y n n n
ButtonF y y y n n y
ToggleButtonF n n y n n y
RadioGroupF n n y n n n
ShellF n n n y n n

Figure 24. Some customiser instances.

customisers are supported by the different customisable fudgets in the current
version of the Fudget library.
Some fudgets also have non-overloaded customisers, for example:

setInitDisp :: a —> Customiser (DisplayF a)
-- changes what is displayed initially

setAllowedChar :: (Char —> Bool) —> Customiser StringF
-- changes what characters are allowed

setPlacer :: Placer —> Customiser RadioGroupF
-- changes the placements of the buttons

As an example of the use of customisation, Figure 25 shows a variation of the
radio group shown in Figure 10.

I P1 I pa radioGroupF’ (setFont "fixed" .
setPlacer (matrixP 2))
I P3 .I |:|‘F'F [(1,“P]."),(2,"P2“),(3,“P3"),(0,"Off“)] 0

Figure 25. Custom version of the radio group in Figure 10.

II1 Stream processors —
the essence of Fudgets

The starting point of the work described in this thesis was the idea of the
fudget as a process that communicates with other fudgets through the high-level
streams and with the I/O system through the low-level streams. A fudget thus
has two input streams and it is not known in advance in which order the elements
in the two streams will become available. Fudgets should be able to listen to
either the high-level input or the low-level input, but also choose to react to the
first input to become available, irrespective of what stream it becomes available
on. We expected that the former case would be the exception and the latter case
would be the rule, so rather than providing some operator for indeterministic
choice that the programmer could use in the definition of fudgets, we choose to
merge the high- and low-level streams before feeding them to the fudget, thus
moving the indeterministic choice outside the fudget.

So, we started out thinking of fudgets as the primitive concept, but soon saw
them as being derived from a simpler concept, the stream processor, which is a
process that communicates with its surroundings through a single input stream
and a single output stream.

This part of the thesis is devoted to stream processors.

56 16 Stream processors

16 Stream processors

We have not used stream processors extensively in the examples presented so
far, but plain stream processors are interesting for at least these reasons:

e As suggested in Chapter 12, the application programmer can write the
application-specific code in the form of stream processors.

e As an application programmer, you usually abstract away from the low-
level streams, and in fact handle fudgets as if they were plain stream pro-
cessors with a single input and a single output stream. Hence, a lot of the
discussion of stream processors applies to fudget application programming
as well.

e They are simpler than fudgets, but fudgets can be represented as stream
processors. (We show how in Section 21.2.)

e Stream processors can be used to structure an ordinary sequential Haskell
program as a set of concurrent processes. Examples of this are shown in
Chapter 19.

Viewed in a more general context, the stream processor can be seen as a sim-
ple but practical incarnation of the process concept, and has connections with
process algebras such as CCS [Mil80]. An advantage with stream processors is
that they admit a simple implementation within a purely functional language.
We can define a set of combinators for building networks of stream processors,
and the stream processors are first class values, which can be passed around as
messages.
We use the following informal definitions:

e A stream is a potentially infinite sequence of values occurring at different
points in time. A stream can be seen as a communication channel, trans-
ferring information from one place (a producer) to another (a consumer).

e A stream processor is a process which consumes some input streams and
produces some output streams. A stream processor may have an internal
state, i.e., output produced at a certain point in time can depend on all
input consumed before that point in time.

These definitions allow stream processors to have many input and output
streams, but in the following we will only consider stream processors with a
single input stream and a single output stream (see Figure 26). The restric-
tion may seem severe, but the chosen set of combinators allows streams to be
merged and split, so a stream processor with many input/output streams can be
represented as one with a single input stream and a single output stream. The
advantage is that we can take a combinator-based approach to building networks
of communicating stream processors. The combinators are discussed further in
Chapter 17. Below we discuss how to write atomic stream processors, that is,
stream processors that do not consist of several concurrently running stream
processors. Their behaviour is defined by a linear sequence of I/O actions.

16.1 The stream-processor type 57

2L O~

Figure 26. A general stream processor and a stream processor with a single
input stream and a single output stream.

O

Figure 27. A stream processor of type SP i o.

16.1 The stream-processor type

The Fudget library provides an abstract type for stream processors,
data SP input output

where input and output are the types of the elements in the input and output
streams, respectively (Figure 27). (The implementation of stream processors
in a lazy functional language are discussed in Chapter 20.) The library also
provides the function

runSP :: SPio —> [i] —> [o]

which can be used on the top level of a program built with stream processors
(see Chapter 19). The function absF discussed in Chapter 12 can be used to
combine stream processors with fudgets.

16.2 Atomic stream processors in continuation style

The behaviour of an atomic stream processor is described by a sequential pro-
gram. There are three basic actions a stream processor can take:

e it can put a value in its output stream,
e it can get a value from its input stream,
e it can terminate.

The Fudget library provides the following continuation style operations for these
actions:

putSP :: output —> SP input output —> SP input output
getSP :: (input —> SP input output) —> SP input output
nullSP :: SP input output

58 16 Stream processors

As an example of how to use these in recursive definitions of stream processors,
consider the identity stream processor

-- The identity stream processor
idSP :: SP a a
idSP = getSP $ \ x —> putSP x idSP

the busy stream processor

-- A stream processor that is forever busy computing.
busySP :: SP a b
busySP = busySP

and the following stream-processor equivalents of the well known list functions:

mapSP :: (a =>b) —>SPab
mapSP f = getSP $ \ x —> putSP (f x) $ mapSP f

filterSP :: (a —> Bool) —> SP a a

filterSP p = getSP $ \ x —> if p x
then putSP x $ filterSP p
else filterSP p

The stream processor nullSP need actually not be considered as a primitive. It
can be defined as

nullSP = getSP $ \ x —> nulISP

i.e., it is a stream processor that ignores all input and never produces any
output. A practical advantage with an explicitly represented nullSP is that it
allows stream processors that terminate to be “garbage collected”.

Example: Implement concatMapSP :: (i—>[o]) —> SP i o.

Solution: First we define putListSP that outputs the elements of a list, one
at a time:

putListSP :: [o] —> SPio —>SPio
putListSP [] = id
putListSP (x:xs) = putSP x . putListSP xs

And concatMapSP itself:

concatMapSP f =
getSP $ \ x —>
putListSP (f x) $
concatMapSP f

Example: Implement mapFilterSP :: (i—>Maybe 0) —> SP i o.

Solution: mapFilterSP f =
getSP $ \ x —>
case f x of
Nothing —> mapFilterSP f
Justy —>putSPy$
mapFilterSP f

16.3 Stream processors with encapsulated state 59

16.3 Stream processors with encapsulated state

A stream processor can maintain an internal state. In practice, this can be
accomplished by using an accumulating argument in a recursively defined stream
processor. As a concrete example, consider sumSP, a stream processor that
computes the accumulated sum of its input stream:

sumSP :: Int —> SP Int Int
sumSP acc = getSP $ \ n —> putSP (acc+n) $ sumSP (acc+n)

In this case, the internal state is a value of the type Int, which also happens to
be the type of the input and output streams. In general, the type of the input
and output streams can be different from the type of the internal state, which
can then be completely hidden.

The Fudget library provides two general functions for construction of stream
processors with internal state:

mapAccumlISP 2 (s=>i—->(s,0)—->s-—>SPio
concatMapAccumlSP :: (s —=> i —> (s, [0])) =>s —>SP io

(concatMapAccumlSP is also known as mapstateSP.) The first argument to these
functions is a state transition function which given the current state and an
input message should produce a new state and an output message (zero or more
outputs in the case of concatMapAccumlSP). Using mapAccumISP we can define
sumSP without using explicit recursion:

sumSP :: Int —> SP Int Int
sumSP = mapAccumlSP (\ acc n —> (acc+n,acc+n))

Representing state information as one or more accumulating arguments is useful
when the behaviour of the stream processor is uniform with respect to the state.
If a stream processor reacts differently to input depending on its current state,
it can be more convenient to use a set of mutually recursive stream processors
where each stream processor corresponds to a state in a finite state automaton.
As a simple example, consider a stream processor that outputs every other
element in its input stream:

passOnSP = getSP $ \ x —> putSP x $ skipSP
skipSP = getSP $ \ x —> passOnSP

It has two states: the “pass on” state, where the next input is passed on to the
output; and the “skip” state, where the next input is skipped.

The two ways of representing state illustrated above, can of course be com-
bined.

Example: Implement mapAccumISP and concatMapAccumISP using putSP and
getSP.

60 16 Stream processors

Solution: concatMapAccumlSP :: (s —> i —> (s, [0])) —>s —>SPio
concatMapAccumlSP f s0 =
getSP $ \x —>

let (s, ys) = fsO x
in putListSP ys $
concatMapAccuml|SP f s

mapAccumlISP :: (s —> i —> (5,0)) =>s—->SPio
mapAccumlISP f s0 =
getSP § \x —>
let (s, y) = fs0 x
in putSP y $
mapAccuml|SP f s

16.4 Sequential composition of stream processors

Unlike CCS style process algebras [Mil80]—where nontrivial sequential be-
haviours can be constructed only by prefixing an existing behaviour with an
I/0 operation—the stream processors can be combined sequentially:

seqSP :: SPab —>SPab—->SPab

The stream processor sp; ‘seqSP* sp» behaves like sp; until sp; becomes nullSP,
and then behaves like spy. However, the same can also be achieved by making
all procedures end with a call to a continuation stream processor instead of
nullSP; so seqSP does not add any new power.

We should also note that if this is to work properly, the operation nullSP
must be explicitly represented, and not just defined as a stream processor that
ignores all input and never produces any output; contrary to what was suggested
in Section 16.2.

16.5 Stream-processor monads

The presentation thus far suggests that atomic stream processors should be
programmed in continuation style. This is often natural, but for complex stream
processors it can be beneficial to use a monadic style instead [Wad92, Wad95].
The two styles are compatible. The operations of the stream processor monad
are shown in Figure 28. Thanks to runSPm you can use the combinators for
“plain” stream processors to construct networks of stream-processor monads.
For writing complex stream processors, it is of course possible to combine the
stream-processor monad with other monads, e.g., a state monad. The Fudget
library defines the type SPms for stream processor-monads with state. A closer
presentation and an example of its use can be found as part of Chapter 31.

16.5 Stream-processor monads

61

-- The type:
type SPm input output answer

-- Standard monad operations:
unitSPm :: a —=> SPmioa
bindSPm :: SPmioa —>(a —>SPmiob) —>SPmiob

-- Monadic versions of nullSP, putSP and getSP:
nullSPm :: SPmio ()

putSPm :: 0 —> SPmio ()

getSPm :: SPmioi

-- A glue function:
runSPm :: SPmio () —=>SPio

Figure 28. The stream-processor monad.

62 17 Plumbing: composing stream processors

mOmO

Figure 29. Serial composition of stream processors.

(#)
-

Figure 30. Parallel composition of stream processors.

17 Plumbing: composing stream processors

This section describes the combinators used to combine atomic stream pro-
cessors into networks of communicating stream processors. We first describe
combinators for the three basic compositions: serial composition, parallel com-
position and loops.

17.1 Serial composition

The simplest combinator is the one for serial composition,
(-—==—-)2:SPbc—>SPab—->SPac

It connects the output stream of one stream processor to the input stream of
another, as illustrated in Figure 29. Streams flow from right to left, just like
values in function compositions, f. g. Serial composition of stream processors
is very close to function composition. For example, it obeys the following law:

mapSP f —==— mapSP g = mapSP (f. g)

17.2 Parallel compositions

The combinator for parallel composition in Figure 30 is indeed the key combi-
nator for stream processors. It allows us to write reactive programs composed
by more or less independent, parallel processes. The output streams should be
merged in chronological order. We will not be able to achieve exactly this in
a functional language, but for stream processors whose behaviour is dominated
by I/O operations rather than internal computations, we will get close enough
for practical purposes. There is however, more than one possible definition of
parallel composition. How should values in the input stream be distributed to
the two stream processors? How should the output streams be merged? We
define two versions:

17.2 Parallel compositions 63

o Let spy —*— sp2 denote parallel composition where input values are prop-
agated to both sp; and sp2, and output is merged in chronological order.
We will call this version untagged, or broadcasting parallel composition.

e Let sp; —+— sps denote parallel composition where the values of the input
and output streams are elements of a disjoint union. Values in the input
stream tagged Left or Right are untagged and sent to either sp; or spo,
respectively. Likewise, the tag of a value in the output stream indicates
which component it came from. We will call this version tagged parallel
composition.

The types of the two combinators are:

(=%—=) = SPio—>SPio—>SPio
(=+-=) :: SP il o1 —> SP i2 02 —> SP (Either i1 i2) (Either ol 02)

Note that only one of these needs to be considered as primitive. The other can
be defined in terms of the primitive one, with the help of serial composition and
some simple stream processors like mapSP and filterSP.

Example: Define —x— in terms of —+—, and vice versa.

Solution:

(=x—) :SPio—>SPio—->SPio
spl —x— sp2 =
mapSP stripEither —==—
(spl —+— sp2) —==—
toBothSP

stripEither :: Eitheraa —> a
stripEither (Lefta) = a
stripEither (Right a) = a

toBothSP :: SP a (Either a a)
toBothSP = concatMapSP (\x —> [Left x, Right x])

(=+-=) :: SP il 01 —> SP i2 02 —> SP (Either i1 i2) (Either o1 02)
spl —+— sp2 = spl’ —%— sp2’

where
Spl’ = mapSP Left —_—==— Sp]_ —_—==— fllterLeftSP
sp2' = mapSP Right —==—5p2 —==— fiIterRightSP

filterLeftSP = mapFilterSP stripLeft
filterRightSP = mapFilterSP stripRight

stripLeft :: Either a b —> Maybe a
stripLeft (Left x) = Just x
stripLeft (Right) = Nothing
stripRight :: Either a b —> Maybe b
stripRight (Left) = Nothing
stripRight (Right y) = Just y

64 17 Plumbing: composing stream processors

()

Figure 31. A simple loop constructor.

()=

Figure 32. Using a loop to obtain bidirectional communication.

17.3 Circular connections

Serial composition creates a unidirectional communication channel between two
stream processors. Parallel composition splits and merges streams but does not
allow the composed stream processors to exchange information. So, with these
two operators we cannot obtain bidirectional communication between stream
processors. Therefore, we introduce combinators that construct loops.

The simplest possible loop combinator connects the output of a stream pro-
cessor to its input, as illustrated in Figure 31. As with parallel composition, we
define two versions of the loop combinator:

loopSP sp, output from sp is both looped to the input of sp and propagated to
the output, outside the loop.

loopLeftSP sp, output from sp is required to be in a disjoint union. Values
tagged Left are looped and values tagged Right are output. At the input,
values from the loop are tagged Left and values from the outside are tagged
Right.

The types of these combinators are:

loopSP :: SPaa —>SPaa
loopLeftSP :: SP (Either | i) (Either | 0) —> SP i o

Each of the two loop combinators can be defined in terms of the other, so only
one of them needs to be considered primitive.

Using one of the loop combinators, one can now obtain bidirectional com-
munication between two stream processors as shown in Figure 32.

Another example shows that we can use loops and parallel composition to
create fully connected networks of stream processors. With an expression like

loopSP (spy —*— spy —x— ... —%— spy,)

17.3 Circular connections 65

we get a broadcasting network. By replacing —%— with —+— and some tag-
ging/untagging, we get a network with point-to-point communication.

Example: Define loopSP in terms of loopLeftSP and vice versa.

Solution: Defining loopSP in terms of loopLeftSP is relatively easy:

loopSP :: SPaa —>SPaa
loopSP sp =
loopLeftSP
(toBothSP —==— sp —==— mapSP stripEither)

Vice versa is a bit trickier:

loopLeftSP :: SP (Either | i) (Either | 0) —> SPio
loopLeftSP sp =
mapFilterSP post —==—
loopSP sp” —==—
mapSP Right
where
post (Left (Right x)) = Just x
post _ = Nothing
sp’ = mapSP Left —==— sp —==— mapFilterSP pre
where
pre (Right x) = Just (Right x)
pre (Left (Left x)) = Just (Left x)
pre _ = Nothing

66 18 Pragmatic aspects of plumbing

<_
O Vo

Figure 33. Handling multiple input streams.

18 Pragmatic aspects of plumbing

Having seen a basic set of stream-processor combinators—which we can consider
as a complete set of primitives on top of which further combinators can be
built—we now take a look at how the combinators can be used to achieve some
common connection patterns and introduces some further combinators we have
found useful.

Fudgets are composed in the same way as plain stream processors. There-
fore, the description of the stream-processor combinators also holds true for the
corresponding fudget combinators. The fudget combinators are presented by
name, together with some further combinators, in Chapter 13.

18.1 Handling multiple input and output streams

Although stream processors have only one input stream, it is easy to construct
programs where one stream processor receives input from two or more other
stream processors. (The case with several outputs is analogous.) For example,
the expression

sp1 —==— (sp2 —+— sp3)

allows sp; to receive input from both sps and sps3. For most practical purposes,
sp1 can be regarded as having two input streams, as illustrated in Figure 33.
When you use getSP in sp; to read from the input streams, messages from
sp2 and sp3 will appear tagged with Left and Right, respectively. You can not
directly read selectively from one of the two input streams, but the Fudget
library provides the combinator

waitForSP :: (i —> Maybe i') —> (i" => SPio) —>SPio

which you can use to wait for a selected input. Other input is queued and can
be consumed after the selected input has been received. Using waitForSP you
can define combinators to read from one of two input streams:

getLeftSP :: (i1 —> SP (Either i1 i2) o) —> SP (Either il i2) o
getLeftSP = waitForSP stripLeft

getRightSP :: (i2 —> SP (Either il i2) o) —> SP (Either i1 i2) o
getRightSP = waitForSP stripRight

Example: Implement startupSP :: [i] —> SP i o —> SP i o that prepends some
elements to the input stream of a stream processor.

18.2 Stream processors and software reuse 67

Qo

Figure 34. Encapsulation.

Solution: startupSP xs sp = sp —==— putListSP xs idSP

Note: this implementation leaves a serial composition with idSP behind
after the messages xs have been fed to sp. An efficient implementation
that does not leave any overhead behind can be obtained by making use
of the actual representation of stream processors.

Example: Implement waitForSP described above.

Solution: waitForSP :: (i —> Maybei') —> (i' => SPio) —>SPio
waitForSP expected isp =
let contSP pending =
getSP $ \ msg —>
case expected msg of
Just answer —> startupSP (reverse pending) (isp answer)
Nothing ~ —> contSP (msg : pending)

in contSP []

18.2 Stream processors and software reuse

For serious applications programming, it is useful to have libraries of reusable
software components. But in many cases when a useful component is found in
a library, it still needs modification before it can be used.

A variation of the loop combinators that has turned out to be very use-
ful when reusing stream processors is loopThroughRightSP, illustrated in Fig-
ure 34. The key difference from loopSP and loopLeftSP is that the loop does
not go directly back from the output to the input of a single stream processor.
Instead it goes through another stream processor. A typical situation where
loopThroughRightSP is useful is when you have a stream processor, spoiq, that
does almost what you want it to do, but you need it to handle some new kind
of messages. A new stream processor, $ppew, can then be defined. This new
stream processor can pass on old messages directly to sp,q and handle the new
messages in the appropriate way; on its own, or by translating them to messages
that spo;g understands. (See also Section 3.1.1 in [NR94].)

In the composition loopThroughRightSP sp,ew $poid, all communication with
the outside world is handled by sppew. S$pora is connected only to $pnew, and is
in this sense encapsulated inside sppew -

The type of loopThroughRightSP is:

68 18 Pragmatic aspects of plumbing

loopThroughRightSP :: SP (Either oldo newi) (Either oldi newo) —>
SP oldi oldo —>
SP newi newo

Programming with loopThroughRightSP corresponds to inheritance in object-
oriented programming. The encapsulated stream processor corresponds to the
inherited class. Overridden methods correspond to message constructors that
the encapsulating stream processor handles itself.

Example: Implement loopThroughRightSP using loopLeftSP together with par-
allel and serial compositions as appropriate.

Solution: loopThroughRightSP ::
SP (Either oldo i) (Either oldi 0) —> SP oldi oldo —>SP i o

loopThroughRightSP spnew spold =

loopLeftSP
(mapSP post —==— (spold —+— spnew)
—==— mapSP pre)
where

pre (Right input) = Right (Right input)

pre (Left (Left newToOld)) = Left newToOld

pre (Left (Right oldToNew)) = Right (Left oldToNew)
post (Right (Right output)) = Right output

post (Right (Left newToOld)) = Left (Left newToOld)
post (Left oldToNew) = Left (Right oldToNew)

Example: Implement serial composition using a tagged parallel composition

and a loop.
Solution: (-—===):SPbc—->SPab—->SPac
spl —==—sp2 =
loopThroughRightSP (mapSP route) (spl —+— sp2)
where

route (Right a) = Left (Right a)
route (Left (Left c)) = Right ¢
route (Left (Right b)) = Left (Left b)

The combinator loopThroughBothSP,

loopThroughBothSP :: SP (Either 112 i1) (Either 121 o1)
—> SP (Either 121 i2) (Either 112 02)
—> SP (Either i1 i2) (Either ol 02)

is a symmetric version of loopThroughRightSP. A composition loopThrough-
BothSP sp; sps allows both sp; and sps to communicate with the outside world
and with each other (see Figure 35).

An interesting property of loopThroughBothSP is that the circuit diagrams
of the more basic combinators, —==—, —+— and loopSP, can be obtained
from the circuit diagram of loopThroughBothSP by just removing wires. Other
combinators are thus easy to define in terms of loopThroughBothSP.

18.3 Dynamic process creation 69

Figure 35. Circuit diagram for loopThroughBothSP.

T

18.3 Dynamic process creation

We implicitly made a distinction between the operators that define the dynamic
behaviour of an atomic stream processors (nullSP, putSP and getSP) and the
operators that are used to build static networks of stream processors (—==—,
—x*—, loopSP, etc.). But there is in fact no reason why networks must be static.
By using combinators like —==— and —x— in a dynamic way, the number
of stream processors can be made to increase dynamically. The number of
stream processors can also decrease, for example if a component of a parallel
composition dies (since nullSP —x— sp is equivalent to sp).
A practical application of these ideas is discussed in Section 35.4.

70 19 Application programming with plain stream processors

19 Application programming with plain stream
processors

Although plain stream processors are mostly used in conjunction with fudgets,
they can be used independently. In this chapter, we take a look at some examples
of interactive Haskell programs written using stream processors.

19.1 An adding machine
In Section 16.3 we defined

sumSP :: Int —> SP Int Int

that computes the accumulating sum of a stream of integers. Let us write
a complete Haskell program that uses sumSP to implement a simple adding
machine.

Haskell provides the function interact, which allows functions of type [Char]
—> [Char] to be used as programs (as in Landin’s stream I/O model outlined
in Chapter 4). By combining this with the function runSP,

runSP :: SPio —> [i] —> [o]
(from Section 16.1) we can run stream processors of type SP Char Char:

main = interact (runSP mainSP)
mainSP :: SP Char Char
mainSP = ...

To be able to use sumSP we need only add some glue functions that convert the
input stream of characters to a stream of numbers and conversely for the output
stream. This is done in two stages. First, the stream-processor equivalents of
the standard list functions lines and unlines are used to process input and output
line by line, instead of character by character:

mainSP = unlinesSP —==— adderSP —==— linesSP
adderSP :: SP String String
adderSP = ...

Now the standard functions show and read are used to convert between strings
and numbers,

adderSP = mapSP show —==— sumSP 0 —==— mapSP read

and the program is complete.
Example: Implement unlinesSP :: SP String Char.

Solution: unlinesSP = concatMapSP (\s —> s++"\n")

Example: Implement linesSP :: SP Char String

19.2 A stream processor for input line editing 71

One line at a time One character at a time

Screen Program System Keyboard

Figure 36. Line buffered input.

One character at a time

Screen Program Keyboard

Figure 37. Unbuffered input.

Solution: linesSP = InSP]
where
InSP acc =
getSP $ \msg —>
case msg of
"\n" —> putSP (reverse acc) (InSP [])
¢ —>InSP (c: acc)

19.2 A stream processor for input line editing

In the example above, it was assumed that input is line buffered (cooked termi-
nal mode in Unix), i.e., the system allows the user to enter a line of text and edit
it by using the backspace key, (and possibly other cursor motion keys) and send
it to the program by pressing the Return key. The system is thus responsible for
echoing characters typed on the keyboard, to the screen (Figure 36). Assuming
a simpler system, where keyboard input is fed directly to the program, and the
only characters shown on the screen are those output by the program (raw ter-
minal mode in Unix) (Figure 37), the stream-processor combinator lineBufferSP
is now defined to do the job:

lineBufferSP :: SP String Char —> SP Char Char

It takes a stream processor that expects the input to be line buffered, and returns
a stream processor that does the necessary processing of the input: buffering,
echoing, etc., so that it can work in an unbuffered environment.

We implement lineBufferSP using loopThroughRightSP:

72 19 Application programming with plain stream processors

bufSP

Screen progsp Keyboard

Figure 38. Circuit diagram for lineBufferSP.

lineBufferSP progsp = loopThroughRightSP bufSP progsp
where
bufSP :: SP (Either Char Char) (Either String Char)
bufSP = ...

We get the connectivity shown in Figure 38, i.e., bufSP will receive program
output and keyboard input on its input stream and should produce input lines
and screen output on its output stream. The implementation of bufSP is shown
in Figure 39.

Using lineBufferSP, the adding machine in the previous section can be
adapted to run in raw terminal mode by change mainSP to:

mainSP = lineBufferSP (unlinesSP —==— adderSP)

19.3 Running two programs in parallel on a split screen

This last example is a combinator that splits the terminal screen into two win-
dows and runs two programs in parallel, one in each window:

splitViewSP :: SP Char Char —> SP Char Char —> SP Char Char
A simple implementation of splitViewSP can be structured as follows:

splitViewSP spl sp2 =

mergeSP —==— (spl —+— sp2) —==— distrSP
where

distrSP :: SP Char (Either Char Char)

distrSP = ...

mergeSP :: SP (Either Char Char) Char

mergeSP = ...

distrSP takes the keyboard input and sends it to one of the two windows. The
user can switch windows by pressing a designated key.

mergeSP takes the two output streams from the windows and produces a
merged stream, which contains the appropriate cursor control sequences to make
the text appear in the right places on the screen. This can be done in different
ways depending on the terminal characteristics. A simple solution, if scrolling
is not required, is to split the processing into two steps: the first being to

19.3 Running two programs in parallel on a split screen

73

bufSP = inputSP ""

inputSP line = getSP $ either fromProgsp fromKeyboard
where
fromProgsp ¢ = putSP (toScreen c) (inputSP line)

fromKeyboard ¢ =
case c of
-- The Enter key:
"\n" —> putSP (toScreen "\n’) $
putSP (toProgsp (reverse line)) $
bufSP
-- The backspace key:
"\b" —> if null line
then inputSP line
else putsSP (map toScreen "\b \b") $
inputSP (tail line)
-- Printable characters:
_ —> putSP (toScreen ¢) $
inputSP (c:line)

toScreen = Right
toProgsp = Left

Figure 39. bufSP - the core of lineBufferSP.

74 19 Application programming with plain stream processors

((Int,Int),Char)

mergeSP

Figure 40. Circuit diagram for splitViewSP sp; sps.

interpret the output streams from the two windows individually to keep track
of the current cursor position using a stream processor like

trackCursorSP :: SP Char ((Int,Int),Char)

It takes a character stream containing a mixture of printable characters and cur-
sor control characters, and produces a stream with pairs of cursor positions and
printable characters. The next step is to merge the two streams and feed them
into a stream processor that generates the appropriate cursor motion commands
for the terminal:

encodeCursorMotionSP :: SP ((Int,Int),Char) Char
Thus we have

mergeSP =
encodeCursorMotionSP —==—
mapSP stripEither —==—
(trackCursorSP —+— trackCursorSP)

Using the above outlined implementation of mergeSP, we get the circuit diagram
shown in Figure 40 for splitViewSP sp; sps:

Filling in some details we ignored in the above description, we get the im-
plementation shown in Figure 41.

19.3 Running two programs in parallel on a split screen 75

splitViewSP :: (Int,Int) —> SP Char Char —> SP Char Char —> SP Char Char
splitViewSP (w,h) spl sp2 =
mergeSP —==— (spl —+— sp2) —==— distrSP Left Right
where
mergeSP = encodeCursorMotionSP —==—
mapSP stripEither —==—
(trackCursorSP (w,h1l) —+—
(mapSP movey —==— trackCursorSP (w,h2)))

hl = (h—1) ‘div' 2
h2 = h—1—hl

movey ((x,y).c) = ((x,y+hl+1),c)

distrSP dstl dst2 =
getSP $ \ ¢ —>
case c of
\t" —> distrSP dst2 dstl
_ —> putSP (dstl c) $ distrSP dstl dst2

ackCursorSP :: (Int,Int) —> SP Char ((Int,Int),Char)
ackCursorSP size = mapstateSP winpos (0,0)
where winpos p ¢ = (nextpos p c,[(p.c)])

codeCursorMotionSP :: SP ((Int,Int),Char) Char
codeCursorMotionSP = mapstateSP term (—1,—1)
where
term cur@(curx,cury) (p@(x,y),c) =
(nextpos p c,move++][c])
where
move = if p==cur
then nn
else moveTo p

xtpos :: (Int,Int) —> Char —> (Int,Int)
xtpos p ¢ = ... -- cursor position after ¢ has been printed

veTo :: (Int,Int) —> String
veTo (x,y) = ... -- generate the appropriate cursor control sequence

Figure 41. An implementation of splitViewSP.

IV Design and
implementation

In this part, we will describe the design and implementation of the Fudget
library itself, as well as some extensions we have done. The organisation of
the first chapters can be summarised in the words the library, extensions and
programming methods:

The library. These chapters describe the fundamental principles behind the
Fudget library. Chapter 20 discusses different implementations of stream
processors. The implementation of the fudget combinators is based on
stream processors, and allows them to communicate with different kind
of I/O systems (Chapter 21). Chapter 22 describes the mechanism be-
hind the GUI fudgets, asynchronous I/O and the low-level interfaces to
X Windows.

The automatic layout system in Chapter 23 can be seen as a sub-library
of combinators, which is used not only for placing the GUI fudgets, but
also to compose graphics.

Two examples of filter fudgets (combinators that modify the effect of fud-
gets) are presented in Chapter 24. The cache filter makes fudget programs
run faster using less memory, and the focus filter modifies the input model
of GUI fudgets that use the keyboard.

Extensions. The next chapters describe extensions that we do not consider
absolutely essential for the library, although some of them reside in the
library itself, and others have at least prompted modification of the library
in order to work.

A distinguishing feature of stream processors and fudgets is that they
can be detached from their original position in the program, passed as
messages, and attached at another position. Chapter 25 describes how this
can be used to program drag-and-drop applications, where GUI fudgets
actually move inside the program when dragged.

Chapter 26 shows how the fudget concept can be used for programming
client/server applications. Server programs do usually not have any graph-
ical interface, but it is can be advantageous to program servers in a con-
current style so that they can serve many clients simultaneously.

The library contains a class of types that has a graphical appearance, which
can be manipulated by the user. Chapter 27 presents the Graphic class
and its implementation.

77

Programming methods. These chapters describe our experiments in pro-
gramming methods using Fudgets. Chapter 28 describes combinators for
creating syntax-oriented editors in a style similar to parsing combinators,
and Chapter 29 shows how Haskell’s class system can be used to auto-
matically generate simple GUIs. As we have already seen in the previous
part, the class system has also been used to program functions that use
named parameters with default values. The implementation is described
in Chapter 30.

Finally, Chapter 31 describes an implementation of the functional toolkit
Gadgets on top of the Fudget library. This includes a functional implemen-
tation of the process concept in Gadgets, and allows Gadget programs to be
incorporated in Fudgets. As a bonus, a profiling utility was added which pro-
vides a graphical monitor of the message queues.

78 20 Implementing stream processors

20 Implementing stream processors

In this chapter we present different implementations of stream processors, in-
cluding a indeterministic solution that requires a language extension for parallel
evaluation, and two purely functional ones: the first is based on streams as
lazy lists, and the other uses a datatype with constructors corresponding to the
operations of atomic stream processors We also discuss how suitable different
representations are for parallel and sequential implementations. We start by
discussing some design goals that we had in mind.

20.1 Design goals for stream processors

The design of the stream processors was already from the start influenced by
the intended application as building blocks in a GUI library. In this context,
we found the following properties important:

Hierarchical structure. The result of a composition of stream processors
should also be a stream processor, thus allowing complex process networks
to be built in an hierarchical structure. There should be no difference in
principle between an atomic stream processor and one composed from
several smaller stream processors.

Encapsulated state. We should permit each stream processor to have an in-
ternal state which is invisible from the outside, and which does not inter-
fere with the state of other stream processors.

I/O connectedness. It should be possible to connect stream processors to the
I/O system in an abstract way, so that the I/O effects can be hidden by
an abstract type with associated combinators for their combination.

Reactive behaviour. The intended use of stream processors is in the imple-
mentation of interactive (reactive) programs. This means that programs
are dominated by communication rather than computation: a program
waits idly for some input to arrive, computes and outputs a response to
the input, and then goes back to the idle state.

Demand-driven evaluation. The intention is to use stream processors in a
lazy functional language, where expressions are evaluated on demand.
Stream processors should also behave lazily—they should not do any work
until a value is demanded from their output stream, and they should not
demand anything from their input stream unless the input can be used to
produce a demanded output.

Typed, and higher order. There should be no restriction on the element
type of streams. It should be possible to transfer anything, from num-
bers and booleans to functions and stream processors. Communication
should be type safe.

Parallel and sequential implementations. Stream processors should be
implementable in a sequential language, but we still want to keep the
definitions general enough to be able to take advantage of constructions
for indeterministic choices and parallel evaluation.

20.2 Intuitive ideas—what is the problem? 79

Especially in the light of the last property, it seems desirable to have an
abstract, formal semantics which can be used to reason about different imple-
mentations of stream processors, and programs using them. So far, we have not
elaborated such a semantics, but instead we have concentrated on more practi-
cal work by developing the Fudget library and application programs. Moreover,
the implementation of the basic stream-processor combinators is quite simple,
and can therefore be viewed as being a semantics on its own—although not the
most concise and abstract one could imagine. Nevertheless, we have outlined a
simple stream-processor calculus with an accompanying operational semantics
in the future work chapter (see Section 43.1).

20.2 Intuitive ideas—what is the problem?

In a lazy functional language, a natural choice is to represent streams as lists.
Thanks to laziness, the elements of the list can be computed on demand, one
element at a time. The elements can thus form a sequence in time rather than
a sequence in space, which would be the case in a strict language.

So a stream with elements of type a can be represented as a list with elements
of type a. A stream processor can be represented as function from the input
stream to the output stream:

type Stream a = [a]
type SP i o = Stream i —> Stream o

We call this the list-based representation. An obvious advantage with this ap-
proach is that the list type is a standard type and all operations provided for
lists can be reused when defining stream processors.

Another advantage with this representation is that it clearly shows the close
relationship between functions and stream processors. For example, serial com-
position is simply function composition:

(—==-):SPmo->SPim->SPio
spl —==— sp2 = spl . sp2

The basic stream processor actions also have very simple definitions:

nullSP =\ xs —>[]
x ‘putSP' sp =\ xs —> x : sp xs
getSP isp =\ xs —> case xs of

0 —>1

Xixs' —> isp x xs’

A problem with this representation however, is that parallel composition is
impossible to implement. A reasonable definition would have to look something
like this:

spl —x— sp2 = \ xs —> merge (spl xs) (sp2 xs)
where merge ys zs = 227

But what should 222 be replaced with, so that the first output from the compo-
sition is the first output to become available from one of the components? For
example, suppose that

80 20 Implementing stream processors

spp L =L
spp L =1:1

that is, sp; needs some input before it can produce some output, but sps can
output 1 immediately. Then, the composition should immediately output 1,

(sp1 —%— sp2) L =1:1L

But (sp2 —x— sp1) L should also be 1: L | so #2¢ must be an expression that
chooses the one of ys and zs which happens to be non-bottom. This can clearly
not be done in an ordinary purely functional language.

As a more concrete example, consider what should happen if we apply the
stream processor

map (*100) —x— filter even

to [1, 2, 3, 4, ...]. If the input elements appear at a slower rate than they can be
processed by either map or filter, the desired output stream would be something
like [100, 200, 2, 300, 4, 400, ...], i.e., in this particular case there should be two
elements from the left stream processor for every element from the right stream
Processor.

The elements in the two output streams should be merged in the order they
become computable as more elements of the input stream become available.
However, there is no way of telling in a sequential language which of the two
stream processors will be the first one to be able to produce an output. Is seems
that the two streams need to be evaluated in parallel, and then elements must
be chosen in the order they become available.

The most natural and general solution to this problem is to use parallel eval-
uation, and we will take a look at this next. But by changing the representation
of stream processors it is possible to obtain solutions that work in an ordinary
sequential language. We will look at these solutions in Section 20.4.

20.3 Parallel implementations

As illustrated in the previous section, when representing stream processors as
list functions, parallel evaluation is needed, not to gain speed, but because no
sequential evaluation order can give the desired result. We need an operator
that starts the evaluation of two subexpressions in parallel, and then tells which
evaluation finished first. The result is thus not determined by the values of the
expressions, but rather from their operational behaviour. Therefore, such an
operator cannot be added to a purely functional language without problems.

The operator suggested above is a variant of amb, McCarthy’s ambivalent
operator [McC67]. But a programming language with such an operator is not
purely functional, and thus makes ordinary equational reasoning unsound. Al-
though such a language may still be useful [Mor94|, there are solutions that
allow you to make indeterministic choices in a purely functional way.

In the following section, we will introduce a variant of amb which is purely
functional.

20.4 Sequential implementations 81

20.3.1 Oracles

To be purely functional, the result of an operator must depend entirely on the
values of the arguments, and the same arguments should always give the same
result. One way to make an operator for indeterministic choice purely functional
is to introduce an extra argument and pretend that the result is determined
solely by this argument, although operationally, something else happens. Such
an extra argument is called an oracle [Bur88].

We call our operator for indeterministic choice choose:

choose :: Oracle —> a —> b —> Bool

Operationally, the expression choose o a b is evaluated by starting the evaluation
of a and b in parallel and then returning True if a reaches head normal form
first, and False if b does. Denotationally, choose 0 @ b returns True or False
depending only on the value of the oracle o (which magically happen to have
the “right” value). An oracle should only be used once, since it must always
give the same answer. We therefore distribute an infinite tree of oracles to all
stream processors, as an additional argument:

data OracleTree = OracleNode OracleTree Oracle OracleTree
type SP i o = OracleTree —> Stream i —> Stream o

Using the oracle tree, we can now easily implement parallel composition of
stream processors (see also Figure 42):

spl —x— sp2 =
\(OracleNode (OracleNode ot _ otl) ot2) xs —>
merge ot (spl otl xs) (sp2 ot2 xs)
where merge (OracleNode ot 0) ys zs =

if choose o ys zs
then merge’ ot ys zs
else merge’ ot zs ys

merge' ot (y:ys) zs = y:merge ot ys zs

merge' ot [| zs = zs

In this implementation, the oracle tree is split into three: two subtrees are fed
to the composed stream processors, and one is given to the function merge,
together with the output streams from the composed stream processors. The
function merge extracts fresh oracles from the tree and uses choose to see which
stream is first to reach head normal form, It then calls merge’, with the second
argument being the stream which has been evaluated.

20.4 Sequential implementations

As we have seen above, the most natural representation of streams, i.e., as
lists, requires parallel evaluation and indeterministic choices. But there are
solutions that allow you to stay within a purely functional language, like Haskell.
Although they do not provide the same degree of parallelism, they have proved
to be adequate for practical use. The solutions below have been used in the
implementation of the Fudget system.

82 20 Implementing stream processors

oracle stream

Figure 42. Parallel composition of stream processors using oracles.

20.4.1 Synthetic oracles

As seen in Section 20.2, the problem with the most natural representation of
stream processors—representing streams as lazy lists and stream processors as
functions on lazy lists—is the implementation of parallel composition. It is
impossible to know in which order the output streams should be merged.

If we impose the restriction that sp; and sp, must produce output at the
same rate, then sp; —x— spy can be defined as:

(spl —x— sp2) xs = merge (spl xs) (sp2 xs)
where merge (y:ys) (z:zs) = y:z:merge ys zs

However, it is awkward to impose such a constraint between the output streams
of two different stream processors. Also, this solution does not work well for
tagged parallel composition. A more useful constraint relates the input and
output stream of a single stream processor.

e We impose the constraint that there must be a one-to-one correspondence
between elements in the output and the input stream, i.e., a stream proces-
sor must put one element in the output stream for every element consumed
from the input stream.

The function map is an example that satisfies this constraint, whereas filter is a
function that does not.

With this restriction, tagged parallel composition can easily be implemented:
the next element in the output stream should be taken from the stream processor
that last received an element from the input stream. The following implementa-
tion of tagged parallel composition uses this fact by merging the output streams
using a stream of synthetic oracles computed from the input stream (see also
Figure 43):

20.4 Sequential implementations 83

synthetic
oracles

A

Figure 43. Parallel composition of stream processors using synthetic oracles.

(=+—) :: SP al bl —> SP a2 b2 —> SP (Either al a2) (Either bl b2)
(spl —+— sp2) xs = merge os (spl xs1) (sp2 xs2)
where
xsl =[x | Left x <— xs]
xs2 = [y | Righty <— xs]
-- 08 : a synthetic oracle stream
os = map isLeft xs
merge (True:os) (y:ys) zs =
Left y:merge os ys zs
merge (False:os) ys (z:zs) =
Right z:merge os ys zs
isLeft (Left) = True
isLeft (Right) = False

This solution has some practical problems, however. As it stands above, there
is a potentially serious space-leak problem. Consider the evaluation of an ex-
pression like

(sp1 —+— sp2) [Left n | n<—[1..]]

Here, sp, will never receive any input. This means that merge will never need to
evaluate the argument (sp2 xs2), which holds a reference to the beginning of the
input stream via xs2. This would cause all input consumed by the composition
to be retained in the heap. However, provided that pattern bindings are imple-
mented properly [Spa93], this problem can be solved by computing xs1 and xs2
with a single recursive definition that returns a pair of lists:

split :: [Either a b] —> ([a].[b])
split [] = ([1.)
split (x:xs) =
case x of
Left x1 —> (x1:xslxs2)
Right x2 —> (xs1,x2:xs2)
where
(xs1,xs2) = split xs

Another problem is that the 1-1 restriction is rather severe. What should a
stream processor do if it does not want to put a value in the output stream
after consuming an input (like filter)? What if it wants to output more than

84 20 Implementing stream processors

one value? Obviously, if an implementation with this restriction is given to a
programmer, he will invent various ways to get around it. It is better to provide
a solution from the beginning.

One way to relieve the restriction is to change the representation of stream
processors to

type SP a b = [a] —> [[b]]

thus allowing a stream processor to output a list of values to put in the out-
put stream for every element in the input stream. Unfortunately, with this
representation the standard list functions, like map and filter, can no longer be
used in such a direct way. For example, instead of map f one must use map
(\x—>[f x]). Serial composition is no longer just function composition, rather
it is something more complicated and less efficient. Also, it is still possible to
write stream processors that do not obey the 1-1 restriction, leading to errors
that can not be detected by a compiler. Consequently, it is not a good idea to
reveal this representation to the application programmer, but rather provide the
stream-processor type as an abstract type. And while we are using an abstract
type, we might as well use a better representation.

20.4.2 Continuation-based representation

Instead of using lists, the Fudget library uses a data type with constructors
corresponding to the actions a stream processor can take (as described in Section
3.2):

dataSPio
= NullSP
| PutSP o (SPio)
| GetSP (i —> SP i o)

We call this the continuation-based representation of stream processors. The
type has one constructor for each operation a stream processor can perform.
The constructors have arguments that are part of the operations (the value
to output in PutSP), and arguments that determine how the stream processor
continues after the operation has been performed.

The continuation-based representation avoids the problem with parallel com-
position that we ran into when using the list-based representation, since it makes
the consumption of the input stream observable. With list functions, a stream
processor is applied to the entire input stream once and for all. The rate at
which elements are consumed in this list is not observable from the outside.
With the continuation-based representation, a stream processor must evaluate
to GetSP sp each time it wants to read a value from the input stream. This is
what we need to be able to merge the output stream in the right order in the
definition of parallel composition.

An implementation of broadcasting parallel composition is shown in Fig-
ure 44. The implementation of tagged parallel composition is analogous. Note
that we arbitrarily choose to inspect the left argument sp; first. This means
that even if sps could compute and output a value much faster than sp;, it will
not get the chance to do so. With the continuation-based representation, serial
composition can be implemented as shown in Figure 45.

A definition of the loop combinator loopSP is shown in Figure 46.

20.4 Sequential implementations 85

NullSP —%— sp2 = sp2
spl —x— NullSP = spl
PutSP o spl" —x— sp2 = PutSP o (spl' —x— sp2)
spl —%— PutSP o sp2’ = PutSP o (spl —x— sp2’')

GetSP xspl —x— GetSP xsp2 = GetSP (\i —> xspl i —%— xsp2 i)

Figure 44. Implementation of parallel composition with the continuation-based
representation.

NullSP —==—sp2 = NullSP

PutSP o spl’ —==— sp2 = PutSP o (spl' —==— sp2)

GetSP xspl —==— NullSP = NullSP

GetSP xspl —==— PutSP m sp2’ = xspl m —==— sp2’

GetSP xspl —==— GetSP xsp2 = GetSP (\i —> GetSP xspl —==— xsp2 i)

Figure 45. Implementation of serial composition with the continuation-based
representation.

loopSP sp = loopSP’ empty sp
where

loopSP’' q NullSP —> NullSP

loopSP’ q (PutSP o sp’) —> PutSP o (loopSP’ (enter q o) sp’)

loopSP' q (GetSP xsp) —>

case gremove q of

Just (i,q’) —> loopSP’ q' (xsp i)
Nothing —> GetSP (loopSP . xsp)

-- Fifo queues

data Queue
empty : Queue a
enter © Queue a —> a —> Queue a

gremove :: Queue a —> Maybe (a,Queue a)

Figure 46. Implementation of loopSP with the continuation-based representa-
tion.

86 20 Implementing stream processors

Example: Implement runSP :: SP ab —> [a] —> [b].

Solution: runSP sp xs =
case sp of
PutSP y sp” —> y : runSP sp’ xs
GetSP xsp —> case xs of
x 1 xs' —> runSP (xsp x) xs'

0 —>1
NullSP —>]

20.5 Continuations vs list functions

We have seen two representations of stream processors: one based on list func-
tions and one based on continuations. Which one is better?

Using list functions works well for parallel implementations. Demand is prop-
agated from the output to the input stream by the normal evaluation mechanism
of the functional language. Since streams are represented as lists, the standard
list functions can be used directly as stream processors.

For sequential implementations, we saw that representing stream processors
as functions from streams to streams prevented us from implementing paral-
lel composition. Here, the continuation-based representation seems more at-
tractive, and is the one that we currently employ in the Fudget library. The
continuation-based representation also allows stream processors to be detached,
moved, and plugged in somewhere else in the program—something that is used
in Chapter 25.

Since our implementation is based on a sequential programming language,
we do not get true concurrency. As long as all stream processors quickly react
to input to avoid blocking other stream processors in the program, this is ac-
ceptable in practice. The reactiveness property is not enforced by the compiler,
however.

It would be nice to have a representation that works well for both parallel and
sequential implementations. Is perhaps the continuation-based representation
useful also for parallel implementations? Consider the composition

(sp1 —*— idSP) —==— sp»

The first output from the composition should be either the first output from
spy or the first output from sp,, whichever happens to be ready first. But the
parallel composition must evaluate to either PutSP ..., or GetSP In the first
case we have prematurely committed ourselves to taking the output from sp;
first. In the second case we will not be able to deliver the first output until after
sp2 has delivered its first output. It is not clear to us how the desired behaviour
should be achieved.

87

21 Fudgets as stream processors

Having an implementation of stream processors, we are ready to build fudget
combinators and some simple fudgets, based on the stream processor combi-
nators and operations. With Figure 4 in mind, we can view fudgets in two
ways:

1. As plain stream processors which can have I/O effects. This is the abstract
view that is presented to the application programmer. With this view,
the fudget combinators simply do the same things as the corresponding
stream-processor combinators.

2. As stream processors with explicit high-level and low-level streams. In
this chapter, we will take this view in order to implement fudgets.

It should be noted that there are other ways of implementing fudgets. We give
two examples suitable for a monadic I/O system in Section 21.5 (references to
other work in implementing fudgets are given in Chapter 42).

The fudget implementation used in the library is highly influenced by the
synchronised stream I/O system used in version 1.2 of Haskell [HPJWe92].

21.1 Synchronised stream I/0

Synchronised stream I/O can be seen as a variant of the Landin stream I/0O
in Figure 1, where characters in the output and input streams are replaced
by request and response constructors. The program and the I/O system are
synchronised, in that for each request that the program produces, one response
is produced by the I/O system. Thus, the program and the I/O system can
be seen as two parts in a special type of dialogue. The type of a synchronised
stream program main is

type Dialogue = [Request] —> [Response]
main :: Dialogue

Each request constructor represents a specific effect, and is defined in the
datatype Request in Haskell 1.2:

data Request = ReadFile String
| WriteFile String String
| ReachChan Chan
| AppendChan Chan String

The constructor ReadFile f is a request for the I/O system to read the contents
of the file with name f. WriteFile f s is a request for writing s to a file with
name f. Standard input and output are instances of so called channels: reading
the character stream from standard input is requested by ReadChan stdin, and
AppendChan stdout s is a request to write s on standard output.

The type of the response that is generated, when a request is carried out,
depends on the request constructor. All response types are put in the union
type Response:

88 21 Fudgets as stream processors

data Response = Success
| Failure I0Error
| Str String
| IntResp Int

If the I/0 requests are successful, requests for output merely generate a Success
response, whereas input requests generate a value tagged with Str, IntResp, or
some other constructor depending on its type. If a request fails, an error value
tagged Failure is generated.

A program that uses the synchronised stream I/O model can be viewed as
an atomic, sequential stream processor, that explicitly uses lists for representing
the streams.

21.2 The tagged low-level streams

When adapting the synchronised stream model to Fudgets, we do two modifi-
cations. Firstly, we discard the explicit representation of streams as lazy lists,
and secondly, we tag the requests and responses, to allow more than one stream
processor to do I/O in our program.

We define a fudget of type F hi ho to be a stream processor that can input
messages of type hi or tagged responses, and outputs ho messages or tagged
requests:

type F hi ho = SP (Message TResponse hi) (Message TRequest ho)

data Message low high = Low low | High high

We could have used the standard type Either, but we prefer using the equivalent
type Message for clarity.

The low-level streams carry I/O requests and responses. Fudget combina-
tors like >+< and >==< merge the requests streams from the two argument
fudgets. But when a fudget outputs a request we must be able to send the cor-
responding response back to the same fudget. For this reason, messages in the
low-level streams are tagged with pointers indicating which fudget they come
from or should be sent to. Since a fudget program can be seen as a tree of fud-
gets, where the nodes are fudget combinators and the leaves are atomic fudgets,
we have chosen to use paths that point to nodes in the tree structure:

type TResponse = (Path,Response)
type TRequest = (Path,Request)

type Path = [Turn]
data Turn = L | R -- left or right

The messages output from atomic fudgets contain an empty path, [|. The binary
fudget combinators prepend an L or an R onto the path in output messages
to indicate whether the message came from the left or the right subfudget.
Combinators that combine more than two fudgets (such as listF) uses a binary
encoding of subfudget positions. On the input side, the path is inspected to find
out to which subfudget the message should be propagated.

As an example, consider the fudget

21.2 The tagged low-level streams 89

>+< :: Filol —> F i2 02 —> F (Either i1 i2) (Either ol 02)

fl >+< f2 = mapSP post —==— (f1 —+— f2) —==— mapSP pre
where
post msg =
case msg of
Left (High hol) —> High (Left hol)
Right (High ho2) —> High (Right ho2)

Left (Low (path,req)) —> Low (L:path,req)
Right (Low (path,req)) —> Low (R:path,req)

pre msg =

case msg of

High (Left hil) —> Left (High hil)
High (Right hi2) —> Right (High hi2)
Low (L:path,resp) —> Left (Low (path,resp))
Low (R:path,resp) —> Right (Low (path,resp))

Figure 47. Tagged parallel composition of fudgets.

f=f>==<(f >+< fz)

When f, wants to perform an I/O request r, it puts ([],r) in its low-level output
stream. The >+4< combinator will prepend an L to the path, since f, is the
left subfudget. so ([L],r) will appear in the low-level output of fo >+< f;.
Analogously, the >==< combinator will prepend an R, so the low-level output
from f will contain ([R,L],7). When a response later appears in the input stream
of f, it will be tagged with the same path, [R,L], which will cause the combinators
to propagate it to fo.

As should be apparent, the length of the paths is determined directly by
the nesting depth of fudget combinators in the program. For programs that are
structured roughly as balanced trees of fudgets, the length of the paths thus
grow logarithmically with the number of atomic fudgets in the program. Hence,
the overhead of constructing and analysing the paths also grows logarithmically
with the number of fudgets. In practice, the maximal path length we have
observed varies from 4 for trivial programs (the "Hello, world!" program in
Section 9.1), 16 for small programs (the calculator in Section 9.8) and 30 for
large programs (the proof assistant Alfa in Chapter 33).

Constructing and analysing the paths of messages is not the only source
of overhead in the low-level message passing. Some fudget combinators, most
notably the filters (see Chapter 24) treat some commands or events specially.
They thus need to inspect all messages that pass through them. When a large
number of messages have to be sent, the overhead may become too high. In
Section 27.5.3 we present a situation in which we encountered this problem, and
give a solution.

An implementation of tagged parallel composition of fudgets is shown in
Figure 47. We have reused tagged parallel composition of stream processors by
adding the appropriate tag adjusting pre and post processors. The other fudget
combinators can be implemented using similar techniques.

When a request reaches the top level of a fudget program, the path should

90 21 Fudgets as stream processors

fudlogue :: F a b —> Dialogue
fudlogue mainF = runSP (loopThroughRightSP routeSP (lowSP mainF))

routeSP =
getLeftSP $ \ (path,request) —>
putSP (Right request) $
getRightSP $ \ response —>
putSP (Left (path,response)) $
routeSP

lowSP :: SP (Message li hi) (Message lo ho) —> SP li lo
lowSP fud = filterLowSP —==— fud —==— mapSP Low

filterLowSP = mapFilterSP stripLow

stripLow (Low low) = Just low
stripLow (High _) = Nothing

Figure 48. A simple version of fudlogue for synchronised stream I/O. It does
not handle asynchronous input.

be detached before the request is output to the I/O system and then attached
to the response before it is sent back into the fudget hierarchy. This is taken
care of in fudlogue. A simple version of fudlogue is shown in Figure 48. This
version will suffice for programs where individual fudgets do not block in their
I/0O requests. If we want to react on input from many sources which comes in
an unknown order (e.g. sockets, standard input, the window system, timeout
events), this implementation will not be enough, so what should we do? We will
discuss this more in Section 22.2. The short answer is that we can detect when
the main fudget has become idle (that is, it has evaluated to getSP, and does
not wait for a synchronous response). At this point, we perform a system call
(namely select) to wait for input to happen on any of our sources of events.

21.3 Writing synchronous atomic fudgets

With the fudget representation in Section 21.2, an atomic fudget which repeat-
edly accepts a Haskell I/O request, performs it and outputs the response, can
be implemented as follows. The combinators getHighSP and getLowSP waits
for high- and low-level messages, respectively. They are defined in terms of
waitForSP (Section 18.1).

requestF :: F Request Response

requestF = getHighSP $ \ req —>
putSP (Low ([].req)) $
getLowSP § \(_,response) —>
putSP (High response) $
requestF

21.4 Fudget kernels 91

Some requests should be avoided, since when we evaluate their responses, the
program might block. For example, we should not use ReadChan stdin, because
its response is a lazy list representing the character streams from the standard
input.

Files are usually OK to read, a fudget like readFileF (Section 14.2) can be
implemented as follows:

readFileF :: F String (Either IOError String)
readFileF = post >"=< requestF >="< ReadFile
where post (Str s) = Right s

post (Failure f) = Left f

On its input, it waits for file names to open. The output is either an error value
or the content of the file.

21.4 Fudget kernels

The fudget requestF in the previous section provides an interface to the Haskell
stream I/O system. To program a fudget with a particular sequential I/0
behaviour, a combinator like

-- Preliminary version
streamloF :: SP (Either Response i) (Either Request o) —> F i o
streamloF sp = loopThroughRightF (absF sp) requestF

could be used. The argument stream processor sp can talk to requestF using mes-
sages tagged Left and to other fudgets through messages tagged Right. However,
it seems more appropriate to tag messages with the type Message introduced
above, and let the type of streamloF be

-- Final version
streamloF :: Kio—>Fio

where
type K i o = SP (Message Response i) (Message Request 0)

We call stream processors of type K i o fudget kernels. Fudget kernels are thus
used when defining new atomic fudgets with particular I/O behaviours. We
define some combinators for describing I/O behaviours in continuation style:

putHighK :: 0 => Kio —> Kio

getHighK :: (i —> Kio) —> Kio

nullK :: Kio

doStreamlOK :: Request —> (Response —> K io) —> Kio

The first three operations correspond directly to the stream-processor combi-
nators putSP, getSP and nullSP, so fudget kernels can be seen as plain stream
processors with access to the I/O system.

The implementations of the combinators introduced in this section are shown
in Figure 49.

92 21 Fudgets as stream processors

type K i o = SP (Message Response i) (Message Request 0)

streamloF :: Kio—>Fio

streamloF kernel = mapSP post —==— kernel —==— mapSP pre
where
pre (High i) = High i
pre (Low (_,resp)) = Low resp
post (High o) = High o
post (Low req) = Low ([],req)

putHighK :: 0 => Kio —> Kio
putHighK = putSP . High

getHighK :: (i —> Kio) —> Kio
getHighK = waitForSP high
where
high (High i) = Just i
high = Nothing

nullK :: Kio
nullK = nullSP

doStreamlOK :: Request —> (Response —> Kio) —> Kio
doStreamlOK request contK =

putSP (Low request) $

waitForSP low contK

where
low (Low resp) = Just resp
low = Nothing

Figure 49. Fudget kernel combinators.

21.5 Alternative implementations using monadic I/0 93

21.5 Alternative implementations using monadic I/O

Today, Haskell uses the monadic I/O model, which is briefly explained in Sec-
tion 41.1.3. A monadic version of fudlogue can be defined as follows:

fudlOl :: Fab —> 10 ()
fudlO1 f = case f of

NullSP —> return ()
GetSP —> return ()
PutSP (High) f' —> fudlO1 '

PutSP (Low (path,req)) f' —>
do resp <— doRequest req
fudlO1 (startupSP [Low (path,resp)] ')

This version still uses the stream I/O constructors internally to represent effects.
It relies on an auxiliary function

doRequest :: Request —> 10 Response

that converts requests to corresponding monadic effects.

We can also go one step further by throwing out the request and response
datatypes, and use the 10 monad directly to represent effects. This can be im-
plemented by adding a constructor to the continuation-based stream-processor

type:

data F' i o = PutF o (F' i o)
| GetF (i —> F'io)
| NullF
| DoloF (10 (F'i0))

The constructor DoloF is used to express I/O effects. This constructor does
not have any explicit argument for the continuation fudget, which instead is
returned from the I/O computation. To connect fudgets to the I/O system, we
use fudlO2:

fudlO2 :: F'io —> 10 ()
fudlO2 f = case f of
NullF —> return ()
GetF —> return ()
PutF _ f" —> fudlO2 f'
DoloF io —> io >>= fudlO2

We can provide an operation doloF for plugging in monadic I/O operations in
a fudget:

doloF :: 10 a—>(a—>F'io)—>F'io
doloF io ¢ = DoloF (map c io)
The fudget combinators are defined just as the corresponding for stream pro-

cessors, with extra cases for the DoloF constructor. For example, in the case of
parallel composition, these are:

DoloF io >*< g = DoloF (map (>*< g) io)
f >x*< DoloF io = DoloF (map (f >*<) io)

94 22 Fudget I/0: the gory details

22 Fudget I/0O: the gory details

In this chapter, we will dive into some of the gory details in the Fudget library
implementation. We will see how the GUI fudgets are designed to fit with
X Windows in Section 22.1, using the hierarchical windows that X provides.

Asynchronous I/0 is necessary to handle events from many sources such as
the X server, standard input, and sockets. The implementation of asynchronous
I/0 is described in Section 22.2.

The communication between a fudget program and the X server uses the
library Xlib [Nye90], which is written in C. Xlib defines a number of data types
and calls for creating and maintaining windows, drawing in windows and receiv-
ing input events.

There is no standardised foreign-language interface for Haskell, so Haskell
programs cannot directly call Xlib. To solve this problem, we have implemented
a number of interfaces to Xlib: one of which is compiler independent, and three
which are specific for HBC, NHC, and GHC. These interfaces are described in
Section 22.3.

22.1 GUI Fudgets

The implementation of GUI fudgets uses the possibility to create hierarchical
windows in X Windows, a feature that works as follows.

In X Windows, an application program creates one or more shell windows.
We have already seen in Chapter 9 how the fudget shellF is used to create a shell
window. These windows appear on the user’s desktop and are decorated with
a title bar by the window manager. The window manager allows the user to
manipulate shell windows in various ways, for example, they might be resized
and moved around on the desktop. A shell window thus corresponds to the
user’s concept of a window.

From the point of view of the application programmer, a shell window pro-
vides an area which can be filled with graphics, and which can “react” to events
such as mouse clicks, which the X server can report to the application as events.
The window has its own coordinate system which has its origin in the upper left
corner, regardless of the window’s position on the desktop. The window system
also ensures that when the application draws in a shell window, only areas that
are visible are updated. This implies a simplification for the application pro-
grammer, since he does not have to consider other applications that the user
has started.

So far, this story holds for most window systems. X Windows goes one
step further, and allows the programmer to create more windows within the
shell window. These can in turn contain even more windows. Each window has
its own coordinate system, and can be moved and resized (but not directly by
the user of the application, as was the case with shell windows). If a window
is moved, all windows inside it will follow, keeping their position in the local
coordinate system. In addition, each window is associated with an event mask,
which allows the programmer to control how “sensitive” the application should
be to user input when the pointer is in the window.

The simplification that the concept of shell windows brought us as appli-
cation programmers can be carried over to hierarchical windows. If each GUI
element is put in its own subwindow, the application program does not need to

22.1 GUI Fudgets 95

know the element’s position in the shell window when drawing in it, for exam-
ple. It is also possible to have a large subwindow inside a smaller window. By
moving the large window, we get the effect of scrolling an area.

Since each GUI fudget has its own window (possibly containing subwindows),
we have also used the possibility to associate each GUI fudget with its own
event mask, something that we use to limit the network traffic of events from
the server to the application. This was initially an important aspect in Fudgets

(see Section 22.3.1), and is still an advantage when running programs over low-
bandwidth links.

Using one window per GUI fudget also simplifies the routing of events inside
the application, which receives one single stream of events from the X server.
The handling of events is not centralised, instead the GUI fudgets handle events
by themselves. When the X server reports a mouse click, the event contains in-
formation about what subwindow was clicked, and the position uses the local
coordinate system of the subwindow. The window information is used in fud-
logue, which maintains a mapping from window identifiers to GUI fudget paths.

22.1.1 Data types for the X Windows interface

The GUI fudgets uses four datatypes for their communication with the X server
via Xlib. First, we have the datatypes XRequest and XResponse (which can be
seen as extensions to Request and Response), which allow us to communicate
with the X server.

data XRequest
= OpenDisplay DisplayName
| CreateSimpleWindow Path Rect
| CreateRootWindow Rect
| CreateGC Drawable GCld GCAttributeList
| LoadFont FontName
| CreateFontCursor Int

data XResponse
= DisplayOpened Display
| WindowCreated Window
| GCCreated GCld
| FontLoaded Fontld
| CursorCreated Cursorld

The remaining two datatypes are XCommand, which can be seen as a set of
requests without responses, and XEvent, which encode events that the X server
asynchronously reports to the application.

96

22 Fudget I/0: the gory details

data XCommand

= CloseDisplay Display

| DestroyWindow

| MapRaised

| LowerWindow

| UnmapWindow

| Draw Drawable GCld DrawCommand
| ClearArea Rect Bool

| ClearWindow

| CreateMyWindow Rect

data XEvent

= KeyEvent { time::Time,
pos,rootPos::Point,
state::ModState,
type'::Pressed,
keycode::KeyCode,
keySym::KeySym,
keyLookup::KeyLookup }

| ButtonEvent { time::Time,
pos,rootPos::Point,
state::ModState,
type'::Pressed,
button::Button}

| MotionNotify { time::Time,
pos,rootPos::Point,
state::ModState }

| EnterNotify { time::Time,
pos,rootPos::Point,
detail::Detail,
mode::Mode }

| LeaveNotify { time::Time,
pos,rootPos::Point,
detail::Detail,
mode::Mode }

| Expose { rect::Rect,
count::Int }

The datatypes correspond more or less closely to Xlib calls and X events, with
one important difference: The Xlib calls and events deal with additional display
(a display is a connection to an X server) and window arguments, which are

added by fudlogue (see Section 22.2.2).

A number of auxiliary data types that also correspond more or less directly

to definitions found in the Xlib library are shown in Figure 50.

22.1 GUI Fudgets 97

-- Resource identifiers

newtype Display = Display Int

-- and similarly for Window, Pizmapld, Fontld, GCId, Cursorld,
-- Colormapld, ...

-- Type synonyms for readability:
type FontName = String

type ColorName = String

type Time = Int

type Depth = Int

-- GC and Window attributes:
data WindowAttributes
= CWEventMask [EventMask]
| CWBackingStore BackingStore
| CWSaveUnder Bool

type GCAttributeList = [GCAttributes Pixel Fontld]
data GCAttributes a b = ... -- See Section 27.4.3

-- Various enumeration types:

data EventMask
= KeyPressMask | KeyReleaseMask | ButtonPressMask | ButtonReleaseMask
| EnterWindowMask | LeaveWindowMask | PointerMotionMask
| ExposureMask

data BackingStore = NotUseful | WhenMapped | Always

-- Geometry

data Point = Point{xcoord::Int, ycoord::Int}

data Rect = Rect{rectpos::Point, rectsize::Size} -- upper left corner and size
type Size = Point

data Line = Line Point Point -- coordinates of the two end points

Figure 50. Some of the auxiliary types used by the interface to Xlib.

98 22 Fudget I/0: the gory details

22.1.2 groupF: the primitive window creation fudget
GUI fudgets are created with the group fudget:
groupF :: Kab —> F ¢ d —> F (Either a ¢) (Either b d)

The type of groupF resembles >+<, and indicates that it puts two stream
processors in parallel. It will also create a window which will be controlled by
the first stream processor, which is a kernel (see Section 21.4). All X commands
that the kernel outputs will go to the group fudget’s window, and the X events
from the window will go to the kernel.

As the name indicates, groupF also groups the GUI fudgets in its second
argument, in the following sense. Assume we have the group g:

g = groupF k f

All the windows that are created by groups inside f will be created inside the
window created by g, and thus grouped. A consequence is that if the kernel &
decides to move its window, all groups inside f will follow.

The atomic GUI fudgets are constructed along the pattern groupF k nullF,
that is, they do not have any internal fudgets, just a kernel controlling a window.
As an example, consider a group fudget of the form

groupF k; (groupF k» (groupF k3 nullF) >+4< groupF k4 nullF)

It will have a window with two subwindows, one of which will have yet another
subwindow, as is illustrated in Figure 51.

A group fudget starts by outputting the command CreateMyWindow 7, where
r is a rectangle determining the size and position of the window in its parent
window. This is a command that does not correspond to any Xlib call. Instead,
it will be intercepted by the closest containing group fudget, which will see
it as a tagged command of the form (p,CreateMyWindow 7). The containing
group fudget will convert this to the request CreateSimpleWindow p r. When
this request reaches fudlogue, it will be of the form (¢,CreateSimpleWindow p r).
From this information, fudlogue will be able to deduce in which window the new
window should be created, and new window’s path is found by concatenating ¢
and p (see also the end of section Section 22.2.2).

The observant reader now asks “What if there is no containing group fud-
get?” The answer is that shellF also counts as a kind of group fudget, and
we know that a shellF is always wrapped around GUI fudgets. The main dif-
ference between groupF and shellF is that the latter starts by outputting Cre-
ateRootWindow instead of CreateMyWindow. The request CreateRootWindow is
used to create shell windows.

The group fudget concept can be used for structuring complex fudgets. One
example is buttonGroupF:

buttonGroupF :: F (Either BMevents a) b —> F a b
data BMevents = BMNormal | BMInverted | BMClick

It is used in the Fudget library to program push buttons. The enclosed fudget
will get messages which indicate what visual feedback is appropriate to give,
and when the user actually has clicked in the window. This is an example of a
group fudget which is invisible to the user—it only deals with input.

22.2 Synchronous versus asynchronous I/0 99

Figure 51. Four group fudgets. Each group has a kernel stream processor
controlling an X window.

As an example of a group fudget which only deals with output, we can have
a look at buttonBorderF,

buttonBorderF :: F a b —> F (Either Bool a) b

which is used to draw the three-dimensional border around push buttons, which
can look either pressed or released. The familiar button fudget buttonF is a
combination of these two group fudgets and a labelF.

One would think that the buttonBorderF always is used im-
mediately inside a buttonGroupF, but this is not necessary. A !I Run
good counter example is toggleButtonF, in which a buttonGroupF
is wrapped around two fudgets: a buttonBorderF which has a little
onOffDispF in it indicating its state, and a labelF. The user can
control the toggle button by clicking anywhere in the buttonGroupF, including
the label. Note that the group structure in the toggle button coincides with
Figure 51.

22.2 Synchronous versus asynchronous I/0

The implementation of stream processors in the Fudget library gives us cooper-
ative multitasking, which implies that stream processors should be programmed
in a reactive style. This means that the normal state for a stream processor is to
be idle, waiting for input. When such input comes, the stream processor reacts
by more or less immediately outputting zero or more messages, and then goes
back to the waiting state.

100 22 Fudget I/0: the gory details

Moreover, fudgets must be cooperative when performing I/O tasks. As we
have seen in Chapter 21, the I/O requests from all fudgets in a program are
performed in fudlogue. We must make sure that these requests are of a transient
nature and can be carried out more or less immediately.

For these reasons, the Fudget library makes a distinction between syn-
chronous and asynchronous I/O. Synchronous I/O, where the whole fudget pro-
gram must wait for the I/O operation to complete, is only used for transient
operations. Its implementation is straightforward, as we saw in Section 21.3.
Since synchronous I/O is simple to implement, the Fudget library currently uses
it when reading and writing to files, and when writing to sockets, standard out-
put and the X server. (In most cases, but not all, these operations are transient,
and a future improvement of Fudgets would be to use asynchronous I/O even for
these.) When it comes to reading from standard input or sockets, or waiting for
events from the X server, asynchronous I/O is used, since these are operations
that are likely to block for arbitrary long periods of time.

22.2.1 Fudgets for asynchronous I/0

The fudgets timerF (Section 14.3) and socket TransceiverF (Section 26.1) are ex-
amples of fudgets that must use asynchronous I/O to avoid blocking the whole
program. Both of them create descriptors as a first step.

data Descriptor = SocketDe Socket
| TimerDe Timer
| DisplayDe Display

A socket descriptor (of type Socket) is returned as a response to the request
OpenSocket h p which opens a socket connection to the port p on host h. Sim-
ilarly, a request CreateTimer ¢ d results in a timer descriptor associated with
interval ¢ and delay d.

Simply creating a descriptor does not result in any asynchronous I/0. A
fudget can use the special request

Select :: [Descriptor] —> Request

to signal to fudlogue that it is interested in asynchronous input from a specified
set of descriptors.

22.2.2 The asynchronous fudlogue

To handle asynchronous I/O, fudlogue maintains a mapping between descriptors
and paths to fudgets. We have just seen that fudlogue can receive messages of
the form (p, Select ds), which announce that there is a fudget with path p which
waits for the asynchronous input associated with the descriptors in ds. The
function fudlogue collects all descriptors received in this way from all fudgets in
the program. When the main fudget evaluates to getSP without an outstanding
request, fudlogue knows that it is time to wait for some asynchronous event to
happen. It emits a Select request, with all collected descriptors as an argument.
The effects of this request are

1. a call to the UNIX function select, which will wait for input to arrive on
any of the descriptors, or a timeout, and

22.3 The interfaces to Xlib 101

2. aread operation on the corresponding descriptor (unless it was a timeout).

The response generated is of type Asynclnput:

type Asynclnput = (Descriptor, AEvent)

data AEvent = SocketAccepted Socket Peer
| SocketRead String
| TimerAlarm
| XEvent (Windowld, XEvent)

As the type AEvent indicates, the response of Select is the descriptor which
became ready, paired with the data read.

Using the descriptor table, fudlogue is able to route the received asyn-
chronous input to the waiting fudget.

In addition, fudlogue performs the following translations to handle events to
the GUI fudgets:

e For each group fudget, fudlogue has an association from its path to the
identifier of its window, and a display descriptor (the socket connection
to the X server). The group fudgets are unaware of which window or
display they are associated with, so fudlogue adds this information to the
X related commands and requests from GUI fudgets.

e There is also the reversed mapping from window identifiers to paths, which
fudlogue uses to route events from the X server to the group fudget asso-
ciated with the window.

22.3 The interfaces to Xlib

We have already seen in Section 22.1 that we have extended the Request and
Response datatypes with constructors divided in XRequest, XResponse, XCom-
mand, and XEvent, that correspond to Xlib calls and X events. (These data
types do not provide a complete interface to Xlib. We have implemented those
calls that we found useful and extended the interface by need. Also, some pa-
rameters have been omitted from some constructors.) Somewhere, the actual
I/0 that these requests and commands represent must be carried out, and this
is done in what we call the interface to Xlib. We have implemented a number
of different such interfaces, and they are described in what follows.

22.3.1 A compiler independent interface

The first implementation of Fudgets was done in LML in 1991, and used Landin’s
stream I/O model (see Chapter 4). A program in LML is a function of type
String—>String. The first interface to Xlib was done by outputting the calls
and receiving the return values and events in text form via the standard output
and input channels. The program was connected by a bidirectional pipe to
an external C program that performed the actual Xlib calls. The type of the
function fudlogue was F i o —> String—>String.

The advantage with this method is that it is portable. No changes need to be
made to the compiler or its associated run-time system. The same C program
can be used with another compiler or even another programming language.

102 22 Fudget I/0: the gory details

type Dialogue = [Response] —> [Request]

data Request = ReadFile String

| WriteFile String String
-- Extensions
| XCommand (XDisplay,XWId,XCommand)
| XRequest (XDisplay,XWId,XRequest)
| SocketRequest SocketRequest
| Select [Descriptor]

data Response = Success
| Str String
| Failure IOError
|
-- Extensions
| GotSelect Asynclnput
| SocketResponse SocketResponse
| XResponse XResponse

Figure 52. Extending the Haskell 1.2 dialogue I/O types with requests for the
interface to Xlib

The disadvantage with this method is that it is inefficient because of the
parsing and printing of commands, return values and events. By printing them
in a simple format, the overhead can be kept down, though. Also, for most
user-interface tasks, the throughput need not be very high.

22.3.2 The interface for HBC

To avoid the overhead of the text communication with a separate process,
Lennart Augustsson integrated the interface to Xlib with the run-time system
of LML. LML uses the synchronised stream I/O (see Section 21.1), so the inte-
gration was done by adding new constructors to the request and response types.
The extensions are shown in Figure 52. They handle commands and requests
corresponding to Xlib calls, requests for socket I/0O, and the asynchronous I/0
described in Section 22.2.2. The type of the function fudlogue was changed to
F i o —> Dialogue.

The part of HBC’s run-time system that handles dialogue I/O is imple-
mented in C. The procedure that implements the Requests was modified to
handle the XRequest and XCommand requests by calling a new procedure dox-
call outlined in Figure 53. As can be seen in Figure 54, a few lines of C code
per supported Xlib call are needed.

22.3 The interfaces to Xlib 103

PTR doxcall(t, p)
int t; /% tag of the Request %/
PTR p; /* pointer to the argument of the Request */

{

PTR response;

p = evaluate(p);
switch(t) {
case XCommand: /* (Display, Window, XCommand) %/
p = evalArgs(p,3);
xdocommand((Display *)INTOF(GET1OF3(p)),
INTOF(GET20F3(p)),
GET30F3(p));
response=mkconstrO(RSuccess);
break;
case XRequest: /* (Display, Window, XRequest) */

PTR xresp;
p = evalArgs(p,3);
xresp=doxrequest((Display *)INTOF(GET10F3(p)),

INTOF(GET20F3(p)),
GET30F3(p));
response=mkconstr1(XResponse,xresp);
}
break:
default:
fprintf(stderr, "Unknown X I/O request ...", ...);
exit(1);
break;
}
return response,
}

void xdocommand(display, wi, p)

Figure 53. The C function doxcall was added to HBC’s run-time system to
handle the extra requests XCommand and XRequest.

104 22 Fudget I/0: the gory details

PTR
doxrequest(display,wi,p)
Display xdisplay;
Window wi;
PTR p;

PTR rp;
Window parent;

switch(getcno(p)) {
case XRqOpenDisplay: /* DisplayName */
{
char displayname[BUFSIZE];
Display xdisplay;

evalstring(EARG1(p), displayname, sizeof displayname);
display=XOpenDisplay(displayname[0] ? NULL : displayname);
return MkPtrXResp(XRDisplayOpened,display);
}
break;
case XRqCreateRootWindow: /x Rect */

Figure 54. The C function doxrequest analyses the XRequest constructor and
carries out the corresponding call to Xlib.

22.3 The interfaces to Xlib 105

22.3.3 The interface for NHC

In the summer 1996, the Fudget library was ported to NHC [R6j95b] for Haskell
1.3 [PH96], to allow fudget programs to take advantage of the new heap profiling
features available in NHC [RR96a][RR96b].

The Fudget library could be ported to NHC by a relatively small effort:

e A module containing the definitions of the Haskell 1.2 types Request and
Response types was added, since none of these are defined in Haskell 1.3.

e The fudlogue function was modified to look like fudlO1 in Section 21.5.

e The run-time system of NHC was extended to implement the Xlib calls and
the other extensions. Fortunately HBC and NHC have very similar run-
time systems, so all of the C code written for HBC could be reused with
only minor changes, in spite of the differences between the I/O systems.
The extensions were made available as a new monadic I/O operation,
similar to doRequest in Section 21.5:

doXCall :: Request —> 10 Response

The effect of this function is a call to the procedure doxcall in Figure 53.

22.3.3.1 Support for two-pass heap profiling Heap profiling can help you
improve the memory behaviour of your programs. For example, you may find
out using a biographical heap profile that a large portion of the data in the heap
is drag, that is, a lot of nodes that are kept in the heap after their last use. You
may then use a combination of a biographical profile and a retainer profile to
find out which set of functions in the program that are responsible for retaining
the drag. This may give you a clue as to how you should change the program
to get rid of the drag.

The implementation of certain combined profiles, as described in [RR96b],
collects the needed information in two passes, that is, the program is run twice.
In order to create two identical runs, the return values of all I/O operations
must be recorded during the first run and then played back during the second
run.

In order to allow fudget programs to take advantage of the latest heap profil-
ing technology, Niklas Rojemo added the necessary code for recording and play-
ing back the results of the Xlib calls and other extended I/O operations used by
the Fudget library. As a typical example, the glue code for the Xlib procedure
XOpenDisplay (which we have already seen in Figure 54) was changed as shown
in Figure 55. The macros RECORD ONE and REPLAY ONE_AND _SKIP ex-
pand to code that records the result during the first run and recalls it and skips
the actual call during the second run. Their definitions are shown in Figure 56.
The variables replay, record and inputFILE are set by NHC’s run-time system as
appropriate.

22.3.4 The interface for GHC

As a consequence of the NHC implementation, the Fudget library did not depend
on a Haskell 1.2 I/O system anymore. This opened the door for an interface
to Xlib using the I/O monad and the C-interface in GHC [JT97]. By using

106 22 Fudget I/0: the gory details

case XRqOpenDisplay: /* DisplayName */
{
char displayname[1000];
Display *display;

evalstring(EARG1(p), displayname, sizeof displayname);

REPLAY ONE_AND SKIP(display)
display=XOpenDisplay(displayname[0] ? NULL : displayname);

RECORD _ONE(display);

return MkPtrXResp(XRDisplayOpened,display);

}
break:

Figure 55. Changes to the Xlib glue code for two pass heap profiling.

#define REPLAY _ONE_AND_ SKIP(x) if(replay) { REPLAY(x); } else
#define RECORD _ ONE(x) if(record) { RECORD(x); }

#define RECORD(x) fwrite((void x)&(x),sizeof(x),1,inputFILE)
#define REPLAY (x) fread((void x)&(x),sizeof(x),1,inputFILE)

Figure 56. Macros for two pass heap profiling.

this port, it is possible to take advantage of GHC’s time profiling tools and
possibility to generate efficient code.

The interface to Xlib in GHC is written in a rather ad hoc style using _ccall
and casm_ statements. Today, a nicer interface could be created using the
foreign-language interface support of Green Card [JNR97].

107

23 Automatic layout

The layout combinators in Chapter 11 are used to specify the position and size
of graphical objects. Today, these objects can be of two types: GUI fudgets or
drawings as described in Chapter 27. The original layout system was designed
for the GUI fudgets, and its implementation will be described in this section.

The purpose of the automatic layout system is to relieve the application
programmer of the task to specify the exact position and size of each GUI
fudget. This task has several dynamic aspects. To start with, it depends on
factors that are not known until the program has started. For example, the
size of a text drawn in a label fudget depends on the the font and size chosen,
and can only be determined after the label fudget has communicated with the
X server. Individual GUI fudgets can also change their size at any time, and
the user might resize a shell window. Both these activities may imply that a
number of GUI fudgets must change their position and size.

The layout system also simplifies the implementation of the individual GUI
fudget, in that it does not have to worry about the place and position of other
GUI fudgets. It must only specify an initial request for a size, and the layout
system will allocate a place and actual size.

The implementation of the layout system operates by moving and resizing
rectangular units corresponding to the group fudgets (Section 22.1). Remember
that a group fudget basically consists of a stream processor controlling an X
window, possibly with a number of group fudgets inside it. Each group fudget
also contains a piece of the layout system, which is responsible for the placement
and sizing of each immediate subgroup fudget. The responsibility is only one
level deep: a group fudget does not control any group contained in any of its
groups. As an example, the group corresponding to k; in Figure 51 is responsible
for the layout of k» and k4 (but not k3).

This division of responsibility is natural, since a group is easily placed and
resized by the single Xlib command (ConfigureWindow). All subwindows inside
the group will follow and keep their relative positions.

The mechanism of the layout system can be studied by looking at the message
traffic between a group fudget and its immediate subgroups.

The group fudget has a filter (other filters are described in Chapter 24),
called autolLayoutF, which listens for layout messages that are output on the
low-level streams from the subgroups.

data LayoutMessage
= LayoutRequest LayoutRequest
| LayoutName String
| LayoutPlacer Placer
| LayoutSpacer Spacer

The subgroups decide what sizes they need, and output a layout request.

data LayoutRequest
= Layout { minsize :: Size,
fixedh, fixedv :: Bool }
The field minsize is the requested size, and fixedh (fixedv) being true specifies
that the size is not stretchable in the horizontal (vertical) direction. (Some
placers use this information to allocate extra space to stretchable boxes only.)

108 23 Automatic layout

The layout filter also receives placers and spacers that the programmer has
wrapped around subgroups. Since all layout messages are tagged with a path,
the layout filter can associate the placers and spacers with the wrapped sub-
groups, by analysing the paths. The constructor LayoutName is used in a similar
way to associate a subgroup with a name.

The placers and spacers are functions that decide the actual layout. A placer
operates on a list of layout requests, yielding one single request for space needed
for the placement of all the associated subgroups. Looking back at the discussion
of boxes in Section 11.1, we will recognise that there will be one layout request
corresponding to each box.

In contrast to the placers, a spacer takes a single request as an argument,
and the layout filter maps it on all requests corresponding to the enclosed boxes
associated with the spacer, yielding the same number of requests.

type Placer = [LayoutRequest] —> (LayoutRequest, Rect —> [Rect])

type Spacer = LayoutRequest —> (LayoutRequest, Rect —> Rect)

As can be seen from these types, placers and spacers also return a residual
function, which we will describe below.

Having collected layout requests and having applied the layout functions to
them, the group fudget must decide on one single layout request to output.
Since programs should work even if no layout is specified by the programmer, a
default placer is wrapped around the subgroups.

The default placer used is called autoP, which picks a suitable layout based
on the layout requests at hand. In the current implementation, it simply chooses
between verticalP and horizontalP, based on two preferences:

1. layouts which do not waste space by unwanted stretching are preferred
over those that do,

2. square layouts are preferred over long and narrow layouts.

Future implementations could conceivably take more parameters into account
when choosing a layout and have a wider choice of layouts to choose between.
Having produced a single layout request, the group fudget outputs it, and it
will be handled by the enclosing group, unless the group is a shell group. In this
case, the minsize field in the request is used to set the size of the shell window.
The XEvent type includes constructors that are used to report changes in
layout to the GUI fudgets:

data XEvent = ...
| LayoutPlace Rect
| LayoutSize Size

The propagation of these layout events start in the shell group fudget. When
the shell window has been resized, the X server sends a ConfigureNotify event
containing the new size to the shell group fudget. Note that this event is gener-
ated regardless of whether the resize operation was done by the program (as a
result of a layout request) or the user (via the window manager). Anyhow, the
shell group fudget generates an event of the form LayoutPlace (Rect 0 s), to the
layout filter. This informs the layout filter that the rectangle from the origin

23.1 The historic steps of fudget layout 109

to s is available for the subgroups. Now, the layout filter applies the residual
placers and spacers to this rectangle in a reversed pattern. Each residual placer
will yield a list of rectangles, where the elements correspond to the list of re-
quests (and thus to the boxes) that was fed to the original placer. Similarly,
residual spacers are mapped over rectangles to adjust positions of the associated
subgroups.

When this reversed process is finished, the layout filter outputs one Layout-
Place message to each subgroup, which will move itself accordingly, pass the
message to its layout filter, and so the process goes on recursively.

When a group receives a LayoutPlace message, it also sends a LayoutSize
message to the kernel stream processor, so that it can adjust the graphical
content of its window to the new geometry. Note that the kernel only needs to
know the size of its window, and not its place. This is due to the fact that all
window operations use local coordinates.

23.1 The historic steps of fudget layout

1. Initially, there was no support at all for layout. The programmer had to
explicitly specify the size and position of each GUI fudget.

2. Then, automatic layout was implemented, with the restriction that each
GUI fudget had to correspond to exactly one box. This implied that
when two GUI fudgets where composed, a placer had to be specified.
The combinators for parallel and serial composition had an extra placer
argument. As a result, the layout was too tightly coupled to the dataflow
between the GUI fudgets.

3. The current system allows many boxes per fudget. Together with named
layout, this allows more flexible layout.

110 24 Filter fudgets

24 Filter fudgets

The fact that all I/O effects of a fudget are represented through constructors in
the datatypes Request, Response and others, opens up the possibility to write
what we will call filters, which alter specific aspects of a fudget’s input/output
behaviour. Filters have type F a b —> F a b, which indicates that they do not
tamper with the high-level messages, they only analyse and modify the low-level
messages.

A number of problems can be solved by using filters—for example, swapping
the meaning of the left and the right mouse buttons, or swapping the black and
white colors in GUI fudgets.

In the following sections, we will see two examples of filters from the Fudget
library which alter the behaviour of complex fudgets:

e The cache filter, which improves the space and time behaviour of fudget
programs by letting subfudgets share X server resources (Section 24.1).

e The focus filter, which implements click-to-type input style in forms by
redirecting keyboard events (Section 24.2).

The filters in the Fudget library are constructed by means of a combinator that
resembles loopThroughRightF, and is called loopThroughLowF:

loopThroughLowF :: SP (Either TRequest TResponse)
(Either TRequest TResponse)
—>Fio—>Fio

Just as loopThroughRightF is often used by application programmers to encap-
sulate and modify the behaviour of existing fudgets, loopThroughLowF is used
in filters located in fudlogue and shellF, and can thus modify certain aspects of
all fudgets in an application. The controlling stream processor, which is the
first argument to loopThroughLowF, receives as input the stream of all tagged
requests that are output from the encapsulated fudgets, and also all tagged
responses directed to the same fudgets. It can analyse and manipulate these
messages in any manner before outputting them, after which they will continue
their way to the I/O system (in the case of the requests), or the fudgets (in the
case of the responses). The simplest conceivable filter is

loopThroughLowF idSP

which simply passes through all requests and responses undisturbed, and thus
acts as the identity filter.

24.1 The cache filter

Each GUI fudget allocates or queries a number of resources in the X server, such
as fonts, font descriptions, graphical contexts and colors. For example, a fudget
program with a large GUI may query a large number of font descriptions. This
can result in a slow startup time, especially if the round trip delay between the
program and server is large. Usually, most GUI fudgets will query the same
resources as the others in the program, which seems wasteful. It would be
beneficial if the resource allocation could be shared between the GUI fudgets.

24.1 The cache filter 111

Not only would this result in a faster startup and less network load, but the
program would also consume less memory. This is relevant in the case where
font descriptions are queried, since these could occupy a significant amount of
the heap.

It is the role of the cache filter to support this resource sharing between
fudgets. It is part of fudlogue, which means that all fudgets in the program
benefit from the resource sharing.

The effect of the cache filter is most notable on slow connections with high
round trip delays, such as dialup connections. To demonstrate this, we have run
Cla, one of the demonstration programs from the Fudget distribution, over a dial-
up connection using PPP and secure shell (ssh, compression rate 9). The modem
speed was 14400 bits per second, and the round trip delay 250 milliseconds on
average. To eliminate errors due to different compression rates, the program
was started repeatedly, until the startup time converged. Without the cache
filter, the minimum startup time for Cla was clocked to 133 seconds. When
enabling the cache, the startup time decreased to 9.6 seconds, a speedup factor
of over 13. (As a comparison, we also ran Cla on this slow connection without
compression: the startup times were 274 seconds with no cache, and 31 seconds
with cache. Compression is a good thing!)

The heap usage is also better when the cache is enabled, the peak decreases
from 990 to 470 kilobytes.

These figures should not come as a surprise since the GUI in Cla consists of
one display, and 28 push buttons which can share the same resources.

Using the cache filter means that there is an overhead in the program. Except
for drawing commands, the filter will analyse each request that is output. As a
result, the calculator startup time is about 5% longer when the X server runs
on the same computer as the calculator. In this case, the connection is fast and
has negligible round trip delay.

24.1.1 Implementation

Before describing the implementation, we will show a communication scenario
that takes place when a fudget allocates a particular kind of resource, namely
a graphics context (GC). First, the fudget outputs the X request CreateGC d
tgc al, where d is the drawable in which the GC will be used, tgc is a template
GC, and al is a list of attributes that the new GC should have. The request
is turned into a call to the Xlib function XCreateGC, which returns a reference
to a new GC. This is sent back as the response GCCreated gc¢ to the requesting
fudget, which brings it to use. When the GC is not needed anymore, the fudget
can explicitly deallocate it by outputting the X command FreeGC gc.

The idea of using a cache is of course that if a second fudget wants to create
a GC with the same template and attributes, we could reuse the first GC, if
it is not yet deallocated. So a GC cache maintains table from template and
attributes to graphics contexts and reference counts.

It turns out that most resource (de)allocation follows the same pattern as
our scenario, if we abstract from the specific request and response constructors.
This abstraction is captured in the type RequestType, which expresses whether
a request is an allocation, a deallocation, or something else:

112 24 Filter fudgets

data RequestType a r = Allocate a
| Freer
| Other

The argument to the Allocate constructor carries allocation data that the cache
filter uses as search key in the resource table. Similarly, the Free constructor
carries the resource that should be freed. In the case of graphics contexts, the
allocation data are pairs of template GCs and attribute lists, and the resources
are graphics contexts.

The function gcRequestType determines the type of request for graphics con-
texts:

gcRequestType :: Request —> RequestType (GCld,GCAttributeList) GCld
gcRequest Type r =

case r of
CreateGC d tgc al —> Allocate (tgc,al)
FreeGC gc —> Free gc

—> Other

The general cache filter cacheFilter is parameterised over the function that de-
termines the request type:

cacheFilter :: (Eq a,Eq r) => (Request —> RequestType a r)
—>Fio—>Fio

cacheFilter rtf = loopThroughLowF (cache [])
where cache table = ...

The internal state table is a list of type [(a, (r, Int))], where the elements are
allocation data with associated resources and reference counts.
The definition of a cache for graphics contexts is now simple:

gcCacheFilter :: Fio —> Fio
gcCacheFilter = cacheFilter gcRequest Type

The Fudget library defines request type functions like gcRequestType for a
number of resources, and the corresponding cache filters, using the general
cacheFilter. All these filters are combined into allCacheFilter:

allcacheFilter :: Fab —->Fab

allcacheFilter =
fontCacheFilter .
fontStructCacheFilter .
gcCacheFilter .
colorCacheFilter .
bitmapFileCacheFilter .
fontCursorCacheFilter

This cache filter is wrapped around all fudget programs in fudlogue. One should
fear that allcacheFilter would impose a considerable overhead, since all com-
mands must be inspected in turn by each of the six filters. In practice, the
overhead is not a big problem.

24.2 The focus filter 113

24.2 The focus filter

When I type on the keyboard, which GUI element should receive the typed
characters? Equivalently, which GUI element has the input focus? Initially, the
Fudget library implemented the simple model of point-to-type focus, since it is
directly supported by X Windows. With point-to-type, a GUI fudget cannot
have the input focus unless the pointer is over it. A GUI fudget (such as
stringF) signals its interest in focus by configuring its event mask to include
KeyPressMask, EnterWindowMask, and LeaveWindowMask. This means that the
fudget can receive keyboard input, and also events when the pointer enters or
leaves the fudget (crossing events). The crossing events are used to give visual
feedback about which fudget has the focus.

A potential problem with point-to-type controlled focus, is that the user
must move a hand back and forth a lot between the keyboard and the pointing
device (assuming that the pointer cannot be controlled from the keyboard), if
she wants to fill in data in a form that consists of several input fields. It is also
easy to touch the pointing device accidentally so that the pointer jumps a little,
which could result in a focus change.

These problems vanish when using a click-to-type focus model. With click-
to-type, the tight coupling between the pointer position and focus is removed.
Instead, the user clicks in an input field to indicate that it should have the focus.
The focus stays there until the user clicks in another input field. In addition,
if the keyboard can be used for circulating focus between the input fields in a
form, it can be filled in without using the pointing device.

A limited variant of this improved input model has been added to the Fudget
library as a filter in the shell fudgets, leaving the various GUI fudgets unmodi-
fied. The limitation is that the model is only click-to-type as long as the pointer
is inside the shell fudget. When the pointer leaves the shell fudget, focus goes
to whatever application window is under it, unless the window manager uses
click-to-type.

24.2.1 Implementation

The implementation of the focus is based on the key observation that GUI
fudgets that need keyboard input (let us call them focus fudgets) can be distin-
guished by the kind of events that they configure their window to report. All
focus fudgets are of course interested in key press events, but they also need
crossing events, for giving proper visual feedback when they have focus. There-
fore, focus fudgets will initially set their window event mask so that ffMask is a
subset:

ffMask = [KeyPressMask, EnterWindowMask, LeaveWindowMask]

A simplified implementation of a focus filter is shown in Figure 57. The focus
filters reside immediately inside the shell fudgets. To get keyboard events, no
matter the position of the pointer (as long as it is inside the shell window), a
group fudget is created around the inner fudgets with a suitable event mask.
This is done with simpleGroupF, which acts as a groupF without a kernel.

The filtering is done in focusSP, whose argument fpaths accumulates a list
of paths to the focus fudgets. This is done by looking for window configuration
commands with matching event masks. The event masks of the focus fudgets

114 24 Filter fudgets

focusFilter : Fab —>Fab
focusFilter f = loopThroughLowF (focusSP [])
(simpleGroupF [KeyPressMask] f)

focusSP :: [Path] —> SP (Either TRequest TResponse)
(Either TRequest TResponse)
focusSP fpaths = getSP (either request response)
where
request (p,r) =
case getEventMask r of
Just mask | ffMask ‘issubset’ mask —>
putSP (Left (p,setEventMask (mask’ r)) $
focusSP (p:fpaths)
where mask’ = [ButtonPressMask] ‘union’ mask

_ —> putSP (Left (p.r)) $
focusSP fpaths

response (p,r) =
if keyPressed r
then (putSP (Right (head fpaths, r)) $
focusSP fpaths)
else if leftButtonPressed 1 r && p ‘elem’ fpaths
then putSP (Right (p,r)) $
focusSP (aft++bef)
else putSP (Right (p,r))
where (bef,aft) = break (==path) fpaths

-- Augziliary functions:

simpleGroupF :: [EventMask] —> Fab —>Fab
getEventMask :: Request —> Maybe [EventMask]
setEventMask :: [EventMask] —> Request —> Request
keyPressed :: Request —> Bool

leftButtonPressed :: Request —> Bool

Figure 57. A focus filter.

24.3 Pros and cons of filters 115

is modified to mask’, so that the windows of focus fudgets will generate mouse
button events.

The head of fpaths is considered to own the focus, and incoming key events
are redirected to it. If the user clicks in one of the focus fudgets, fpaths is
reorganised so that the path of the clicked fudget comes first.

As noted, Figure 57 shows a simplified focus filter. The filter in the Fudget
library is more developed; it also handles crossing events, and focus changes
using the keyboard. More complex issues, like dynamic creation and destruction
of fudgets, are also handled. Still, it ignores some complications, introduced by
the migrating fudgets in Chapter 25.

It should also be noted that the X window model supports special focus
change events which should rather be used when controlling focus. This fits
better with window managers that implement click-to-type.

24.3 Pros and cons of filters

The experience we have had with filters in the Fudget library are both good
and bad. On the good side, the filters open the possibility to modify the I/0
behaviour of existing software without having to alter its source code. On the
other side, although the filters were developed without changing the source
code of the GUI fudgets, detailed knowledge about their source code was used
in order to decide on what assumptions we could make about their behaviour.
For example, we have seen that the focus filter assumes that all GUI fudgets
that should be under focus control can be distinguished by analysing their event
masks. This complicates the semantics of event masks, something that must be
taken into account when programming new GUI fudgets. Similarly, the possible
sharing of a resource caused by the cache filter means that imperative operations
on resources (such as XChangeGC) must be avoided in the GUI fudgets.

The implementation of filters often involves that a piece of state must be
associated with each GUI fudget. This means that the state of some GUI
fudgets are spread out in the library, in some sense. One piece resides in the
fudget itself as local state, then there is non-local state in the focus filter, and in
the fudlogue tables, which are used to route asynchronous events. If fudget state
is distributed like this, there is always a danger that it becomes inconsistent,
for example when fudgets move or die.

116 25 Moving stream processors

25 Moving stream processors

One distinguished feature of stream processors is that they are not directly
connected to their input streams. Rather, a stream processor reacts to one
message at a time. A better name would really be message processor, since
there are no explicit streams anywhere, only messages. This is in contrast to
functions operating on streams as lazy lists, which are instances of the type
[i] —> [o] (if we only consider functions from one input stream to one output
stream). To get the output stream of such a stream function, one must apply
it to the input stream. Once that is done, there is no easy way to detach the
stream function from the stream again.

Why would one want to do such a detachment? One reason arises if we want
a stream processor to run for a while in one environment, and then move it to
some other environment and continue running it there. Remember that stream
processors are first class values and may be sent as messages. This, together
with the fact that there is no difference (in the type) between a stream processor
that has been executing for a while and a “new” one, allows us to program a
combinator that can catch the “current continuation” of an arbitrary stream
processor whenever we want.

extractSP :: SP i o —> SP (Either () i) (Either (SP i o) o)
extractSP s = case s of
PutSP o s —> PutSP (Right o) $ extractSP s
NullSP —> NullSP
GetSPis —> GetSP $ \m —>
case m of
Right i —> extractSP (is i)
Left () —> PutSP (Lefts) $
NullSP

The stream processor extractSP s accepts messages of the form Right ¢, which
are fed to s. Output o from s is output as Right o. At any time, we can feed
the message Left () to it, and it will output the encapsulated stream processor
in its current state as a message, tagged with Left. Note that in general, the
stream processor that is output in this way is not equal to the original stream
processor s.

So when we demand the continuation, extractSP s outputs it and dies. But
why should it die? It might be useful to have it carry on as if nothing had
happened. This reminds us of cloning of objects, and forking of processes. The
variant is easily programmed, by modifying the last line of extractSP.

cloneSP :: SP i o —> SP (Either () i) (Either (SP i o) o)
cloneSP s = case s of
PutSP o s —> PutSP (Right o) $ cloneSP s
NullSP —> NulISP
GetSP is —> GetSP $ \m —>
case m of
Right i —> cloneSP (is i)
Left () —> PutSP (Left s) $
cloneSP s

117

Since stream processors are mere values, we do not need any machinery for
duplication of state—this is indeed a case where we appreciate purely functional
programming.

We can promote these ideas to fudgets as well, although the implementation
gets more complicated. In the case of a GUI fudget, some action must be taken
to ensure that it brings its associated window along when it moves, for exam-
ple. We can then program drag and drop for any GUI fudget, as illustrated in
Figure 58. In what follows, we will describe a set of combinators for support-
ing drag-and-drop in fudget programs. We call the fudgets that the user can
drag and drop drag fudgets, and the areas in which they live drop areas. The
communication of drag fudgets between the drop areas is mediated by a single
invisible drag-and-drop fudget. A schematic picture of these fudgets is shown
in Figure 59. These three types of fudgets exchange special messages to control
the motion of the drag fudgets. To allow the drag fudgets to communicate with
the rest of the program independently of these control messages, we pretend for
a moment that fudgets have two mid-level input and output connections.

type SF mi mo hi ho = F (Either mi hi) (Either mo ho)

The type SF stands for stratified fudget. With this type, we can think of the
message types of stream processors as stratified in three levels. The drag fudgets
are formed by the container dragF:

dragF :: Fab —> DragF ab
type DragF a b = SF DragCmd (DragEvt ab) a b

The result type of dragF fis a stratified fudget in which the high-level streams
are connected to f, and the mid-level streams are used for control, by means of
drag commands and drag events. The drag commands are sent from the drop
area to the drag fudgets during drag. The most important drag command is
DragExtract, and informs the drag fudget that it has been accepted by another
drop area. To this command, the drag fudget responds with an event containing
itself:

data DragCmd =
DragExtract

data DragEvt a b =
DragExtracted (DragF a b)
[...

Since the drag events can contain drag fudgets, we see that it is necessary to
parameterise the type DragEvt. The exact type of the drag fudget must be
visible in the type of drag events, as well as in other control message types we
will introduce in the following. Thus, the type system ensures that a dragged
fudget cannot be dropped in an area for fudgets of different type.

The drop area is a stratified variant of dynListF (see Section 13.4):

dropAreaF :: SF (DropCmd a b) (DropEvt a b) (Int,a) (Int,b)

The mid-level messages are called the drop commands and drop events, and are
used by the drag-and-drop fudget to control the drop areas. Note that both these

118 25 Moving stream processors

About to drag

Drop area 1 [rop area 2

While dragging

Drop area 1 Orop area 2

|2: Tjogan

Drag me (2)

Drag me (1)

Heﬁan

After dropping

Drop area 1

1: Hejzan | 1: Hej=zan!

Drag me (2)

Drag me (1)

Figure 58. Pictures showing a fudget we are about to drag, while dragging, and
after dropping it. After the fudget was dropped, the user changed its text. Note
that the output from the moved fudget now goes to Drop area 2.

119

dragAndDropF
dropAreaF /,/' dropAreaF \‘\\
-7 \\‘
dragF fi
dragF f;
dragF f; dragF /;

Figure 59. Schematic view of an invisible drag-and-drop fudget (indicated by
the dashed frame) which in this case contains two rectangular drop areas, each
of which contains a number of draggable fudgets. The dotted arrow indicates
what will happen if a user drags the fudget fi from the first to the second
area: it will be extracted as a message from the first drop area and reach the
drag-and-drop-fudget, which will bounce it to the second drop area.

120 25 Moving stream processors

types are parameterised, because both can carry drag fudgets as messages. As
indicated in Figure 59, the drop area contains drag fudgets, which furthermore
are tagged. The high-level messages from these are therefore tagged when they
enter or leave the drop area.

There is one drop command that is interesting for the application program-
mer:

dropNew :: DragF a b —> DropCmd a b

It is used to inject new drag fudgets inside a drop area.
Finally, we have the drag-and-drop fudget, which mediates dropped fudgets
between drop areas.

dragAndDropF :: SF (t,DropCmd a b) (t,DropEvtab)cd —> F cd

The argument to dragAndDropF is a stratified fudget whose mid-level messages
should be uniquely tagged drop area messages. The intension is that the strat-
ified fudget contains a list of drop area fudgets. Such a list can conveniently be
created using a stratified variant of listF:

listSF :: Eq t => [(t,SF a b c d)] —> SF (t,a) (t,b) (t,c) (t.d)
listSF sfl = pullEither >"~=< listF sfl >=" < pushEither

pushEither (Left (t,a)) = (t,Left a)
pushEither (Right (t,a)) = (t,Right a)

pullEither (t,Left a) = (Left (t,a))
pullEither (t,Right a) = (Right (t,a))
By means of dragF, dropAreaF, and dragAndDropF, we can program the example
(illustrated in Figure 58. As drag fudgets, we use labelled stringlnputF’s.
drag :: Show i => DragF String String
drag i = dragF $
labAboveF ("Drag me ("++show i++")") $
((show i++": ")++) >"=< stringlnputF
The string output from the drag fudget is prepended with its identity i.
We define a drop area with an associated display which shows the output
from the drag fudgets in it. We initialise the drop area by creating a drag fudget
in it with the same identity as the drop area.

area :: Show i =>
i —> SF (DropCmd String String) (DropEvt String String)
(Int,String) a
area i = vBoxF $
idLeftF (displayF >="< snd) >==
startupF [Left $ dropNew $ drag i] dropAreaF
Finally, we define a drag-and-drop fudget with two drop areas inside shell fud-
gets.

dnd :: F (Int,(Int,String)) (Int,a)
dnd = dragAndDropF §$ listSF §
[(t,shellF ("Drop area "++show t) (area t)) | t <— [1..2]]

main = fudlogue dnd

25.1 Problems with dragging windows in X Windows 121

25.1 Problems with dragging windows in X Windows

Dragging objects as windows under the pointer in the X Window system is not
problem free: it is difficult to determine where the object is dropped when the
user releases the mouse button. This release generates a button event which
contains information about what window is under the pointer. But this will
not be the window in which we drop the object, it will be the object’s window
itself! If we are content with somewhat less spectacular visual feedback, we
could choose not to move the object itself, but change the pointer to a symbol
that carries a little object, as is done in Open Windows [Sol97].

What we need is to have the dragged object’s
window transparent with respect to certain events. . |
We achieve this in a brutal way, by simply zapping
a small temporary hole in the object window under Drag me (1)
the pointer, as shown in the detail.

However, we now have timing problem, which can
appear if the user moves the pointer quickly and im- |
mediately drops the object. There is a delay in the
movement of the pointer and the object, since it is
the client which is doing the tracking. With a con-
stant delay, the tracking error is proportional to the speed of the pointer, which
means that if the speed is large enough, the pointer will not be above the hole
anymore. Currently, we do not know if there exists a good solution to this “drop
problem” in X Windows.

Hej=zan

122 26 Typed sockets for client/server applications

26 Typed sockets for client /server applications

In this section, we will see how fudgets can be suitable for other kinds of I/O
than graphical user interfaces. We will write client/server applications, where
a fudget program acts as a server on one computer. The clients are also fudget
programs, and they can be run on other computers if desired.

The server is an example of a fudget program which may not have the need
for a graphical user interface. However, the server should be capable of handling
many clients simultaneously. One way of organising the server is to have a client
handler for each connected client. Each client handler communicates with its
client via a connection (a socket), but it may also need to interact with other
parts of the server. This is a situation where fudgets come in handy. The
server will dynamically create fudgets as client handlers for each new client that
connects.

We will also see how the type system of Haskell can be used to associate
the address (a host name and a port number) of a server with the type of the
messages that the server can send and receive. If the client is also written in
Haskell, and imports the same specification of the typed address as the server,
we know that the client and the server will agree on the types of the messages,
or the compiler will catch a type error.

The type of sockets that we consider here are Internet stream sockets. They
provide a reliable, two-way connection, similar to Unix pipes, between any two
hosts on the Internet. They are used in Unix tools like telnet, ftp, finger, mail,
Usenet and also in the World Wide Web.

26.1 Clients

To be able to communicate with a server, a client must know where the server is
located. The location is determined by the name of the host (a computer on the
network) and a port number. A typical host name is www.cs.chalmers.se. The
port number distinguishes different servers running on the same host. Standard
services have standard port numbers. For example, WWW servers are usually
located on port 80.

The Fudget library uses the following types:

type Host = String
type Port = Int

The fudget
socket TransceiverF :: Host —> Port —> F String String

allows a client to connect to a server and communicate with it.> Chunks of
characters appear in the output stream as soon as they are received from the
server (compare this with stdinF in Section 14.1).

The simplest possible client we can write is perhaps a telnet client:

telnetF host port = stdoutF >==
socket TransceiverF host port >==
stdinF

3The library also provides combinators that give more control over error handling and the
opening and closing of connections.

26.2 Servers 123

This simple program does not do the option negotiations required by the stan-
dard telnet protocol [RFC854,855], so it does not work well when connected to
the standard telnet server (on port 23). However, it can be used to talk to many
other standard servers, e.g., mail and news servers.

26.2 Servers

Whereas clients actively connect to a specific server, servers passively wait for
clients to connect. When a client connects, a new communication channel is
established, but the server typically continues to accept connections from other
clients as well.

A simple fudget to create servers is

simpleSocketServerF :: Port —> F (Int,String) (Int,String)

The server allows clients to connect to the argument port on the host where the
server is running. A client is assigned a unique number when it connects to the
server. The messages to and from simpleSocketServerF are strings tagged with
such client numbers. Empty strings in the input and output streams mean that
a connection should be closed or has been closed, respectively.

This simple server fudget does not directly support a program structure with
one handler fudget per client. A better combinator is shown in the next section.

26.3 Typed sockets

Many Internet protocols use messages that are human readable text. When im-
plementing these, the natural type to use for messages is String. However, when
we write both clients and severs in Haskell, we may want to use an appropriate
data type for messages sent between clients and server, as we would do if the
client and server were fudgets in the same program. In this section we show how
to abstract away from the actual representation of messages on the network.
We introduce two abstract types for typed port numbers and typed server
addresses. These types will be parameterised on the type of messages that we
can transmit and receive on the sockets. First, we have the typed port numbers:

data TPort c s
The client program needs to know the typed address of the server:
data TServerAddress c s

In these types, ¢ and s stand for the type of messages that the client and server
transmit, respectively.
To make a typed port, we apply the function tPort on a port number:

tPort :: (Show ¢, Read c, Show s, Read s) => Port —> TPort c s

The Show and Read contexts in the signature tells us that not all types can be
used as message types. Values will be converted into text strings before they
are transmitted as a message on the socket. This is clearly not very eflicient,
but it is a simple way to implement a machine independent protocol.

Given a typed port, we can form a typed server address by specifying a
computer as a host name:

124 26 Typed sockets for client/server applications

tServerAddress :: TPort ¢ s —> Host —> TServerAddress ¢ s

For example, suppose we want to write a server that will run on the host animal,
listening on port 8888. The clients transmit integer messages to the server, which
in turn sends strings to the clients. This can be specified by

thePort :: TPort Int String
thePort = tPort 8888
theServerAddr = tServerAddress thePort "animal"

A typed server address can be used in the client program to open a socket to
the server by means of tSocketTransceiverF:

tSocket TransceiverF :: (Show ¢, Read s) =>
TServerAddress ¢ s —> F ¢ (Maybe s)

Again, the Show and Read contexts appear, since this is where the actual con-
version from and to text strings occurs. The fudget tSocketTransceiverF will
output an incoming message m from the server as Just m, and if the connection
is closed by the other side, it will output Nothing.

In the server, we will wait for connections, and create client handlers when
new clients connect. This is accomplished with tSocketServerF:

tSocketServerF :: (Read ¢, Show s) =>
TPort c s
—> (F s (Maybe ¢) —> F a (Maybe b))
—> F (Int,a) (Int,Maybe b)

So tSocketServerF takes two arguments, the first one is the port number to listen
on for new clients. The second argument is the client handler function. When-
ever a new client connects, a socket transceiver fudget is created and given to
the client handler function, which yields a client handler fudget. The client han-
dler is then spawned inside tSocketServerF. From the outside of tSocketServerF,
the different client handlers are distinguished by unique integer tags. When a
client handler emits Nothing, tSocketServerF will interpret this as the end of a
connection, and kill the handler.

The idea is that the client handler functions should use the transceiver argu-
ment for the communication with the client. Complex handlers can be written
with a loopThroughRightF around the transceiver, if desired. In many cases
though, the supplied socket transceiver is good enough as a client handler di-
rectly. A simple socket server can therefore be defined by:

simpleTSocketServerF :: (Read ¢, Show s) =>
TPort ¢ s —> F (Int,s) (Int,Maybe c)

simpleTSocketServerF port = tSocketServerF port id

26.4 Avoiding type errors between client and server

By using the following style for developing a client and a server, we can detect
when the client and the server disagree on the message types.

First, we define a typed port to be used by both the client and the server.
We put this definition in a module of its own. Suppose that the client sends
integers to the server, which in turn can send strings:

26.5 Example: a group calendar 125

module MyPort where
myPort :: TPort Int String
myPort = tPort 9000

We have picked an arbitrary port number. Now, if the client is as follows:

module Main where -- Client
import MyPort

main = fudlogue (... tSocketTransceiverF myPort ...)
and the server

module Main where -- Server
import MyPort

main = fudlogue (... tSocketServerF myPort ...)

then the compiler can check that we do not try to send messages of the wrong
type. Of course, this is not foolproof. There is always the problem of having
inconsistent compiled versions of the client and the server, for example. Or one
could use different port declarations in the client and the server.

Now, what happens if we forget to put a type signature on myPort? Is
it not possible then that we get inconsistent message types, since the client
and the server could instantiate myPort to different types? The immediate
answer is no, and this is because of a subtle property of Haskell, namely the
monomorphism restriction. A consequence of this restriction is that the type of
myPort cannot contain any type variables. If we forget the type signature, this
would be the case, and the compiler would complain. It is possible to circumvent
the restriction by explicitly expressing the context in the type signature, though.
If we do this when defining typed ports, we shoot ourselves in the foot:

module MyPort where
myPort :: (Read a, Show a) => TPort a String -- Wrong/
myPort = tPort 9000

We said that this was the immediate answer. The real answer is that if the
programmer uses HBC, we might get inconsistent message types, since it is
possible to give a compiler flag that turns off the monomorphism restriction,
which circumvents our check. This is a feature that we have used a lot (see also
Section 40.1).

26.5 Example: a group calendar

Outside the lunch room in our department, there is a whiteboard where the
week’s activities are registered. We will look at an electronic version of this
calendar, where people can get a view like this on their workstation (Figure 60).
The entries in the calendar can be edited by everyone. When that happens,
all calendar clients should be updated immediately.
The calendar consists of a server maintaining a database, and the clients,
running on the workstations.

126 26 Typed sockets for client/server applications

Jl Calendar
File
Iléndag Tisdag || Onsdag Torsdag Fredag
8
g
10
11
12
13 || Problemlésning Doktorandkurs: Doktorandkurs: Datorstédd
14 Temporal Logic utveckling av bevis & pgm
15 Multiméte: Kakprat: Erland
16 Magnus C & Kent K| SUPA JARNET!

Figure 60. The calendar client.

databaseSP tSocketServerF

Figure 61. The structure of server. The small fudgets are client handlers created
inside the socket server.

26.5.1 The calendar server

The server’s job is to maintain a database with all the entries on the whiteboard,
to receive update messages from clients and then update the other connected
clients. The server consists of the stream processor databaseSP, and a tSock-
etServerF, where the output from the stream processor goes to tSocketServerF,
and vice versa (Figure 61). The program appears in Figure 62. The stream
processor databaseSP maintains two values: the client list cl, which is a list of
the tags of the connected clients, and the simple database db, organised as a list
of (key,value) pairs. This database is sent to newly connected clients. When a
user changes an entry in her client, it will send that entry to the server, which
will update the database and use the client list to broadcast the new entry to
all the other connected clients. When a client disconnects, it is removed from
the client list. The client handlers (clienthandler) initially announce themselves
with NewHandler, then they apply HandlerMsg to incoming messages.The type
of the (key,value) pairs in the database is the same as the type of the messages
received and sent, and is defined in the module MyPort:

26.5 Example: a group calendar 127

module Main where -- Server

import Fudgets
import MyPort(myPort)

main = fudlogue (server myPort)
data HandlerMsg a = NewHandler | HandlerMsg a

server port = loopF (databaseSP [] [>~ "=<
tSocketServerF port clienthandler)

clienthandler transceiver =
putSP (Just NewHandler) (mapSP (map HandlerMsg))
>""=< transceiver

databaseSP cl db =
getSP $ \(i,e) —>
let clbuti = filter (/= i) cl
in case e of
Just handlermsg —> case handlermsg of
NewHandler —>
-- A new client, send the database to it,
-- and add to client list.
putsSP [(id) | d <— db] $
databaseSP (i:cl) db
HandlerMsg s —>
-- Tell the other clients,
putsSP [(i"s) | i' <— clbuti] $
-- and update database.
databaseSP cl (replace s db)
Nothing —>
-- A client disconnected, remove it from
-- the client list.
databaseSP clbuti db

replace :: (Eq a) => (a,b) —> [(a,b)] —> [(a.b)]
replace = ...

Figure 62. The calendar server.

128 26 Typed sockets for client/server applications

module MyPort where
import Fudgets
type SymTPort a = TPort a a
myPort :: SymTPort ((String,Int),String)
- e.g. (("Torsdag",13),"Doktorandkurs:")
port = tPort 8888

129

27 Displaying and manipulating graphical objects

So far, we have seen that fudgets can display text, but we have not seen how to
create and display other kinds of graphical objects. (You might have wondered
how button borders are drawn, for example.) In the first few sections of this
chapter we present data types, type classes and fudgets for handling graphics.

Structure editors of various kinds are programs that can make good use of
graphics. Examples of such programs are drawing programs, WYSIWYG word
processors, file managers, etc. The common characteristic is that they allow
you to manipulate a graphical representation of some object on the screen, for
example, by selecting a part of the object and performing some editing operation
on it (for example, making a word italic in a word processor, or deleting a file
in a file manager). The editing operations performed by the user can lead
to marginal or radical changes to the structure of the object and its graphical
representation. The editor will need to have an efficient mechanism for updating
the screen to reflect these changes. The fudget for graphics that we describe in
this chapter supports this.

The Fudget library components we have seen so far allow you to build user
interfaces that consist of a number of parts that communicate, but we have not
seen any mechanisms that allow an arbitrary part to be selected by the user
and perhaps replaced by something else, so we have not seen a general mecha-
nism for building structure editors. Some basic fudgets, like toggleButtonF and
stringF can be seen as structure editors for particular structures (booleans and
strings, respectively). The later sections in this chapter present data types and
fudgets that can be used as a starting point when building more general struc-
ture editors. In Chapter 28 we go on and describe combinators more directly
aimed at building structure editors, or syntax directed editors.

The support for graphics in the Fudget library was prompted by the de-
velopment of the syntax directed editor Alfa (Chapter 33), and functionality
was added to the fudget system as needed for that particular purpose. Some
development was also prompted by the work on the web browser described in
Chapter 32.

27.1 The class Graphic

We have already encountered the class Graphic many times. Many of the GUI
fudgets presented in Chapter 9 display graphics. Recall, for example, buttonF:

buttonF :: (Graphic a) => a —> F Click Click

It has an argument that determines what is displayed inside the button. In
early versions of the Fudget library, the type of buttonF was

buttonF :: String —> F Click Click

but later, the class Graphic was introduced and many fudgets were generalised
from displaying only strings to displaying arbitrary graphical objects. Since
the new types are more general than the old ones, the changes are backwards
compatible (old programs continue to work unmodified).*

4This kind of change can actually cause ambiguous overloading.

130 27 Displaying and manipulating graphical objects

data DrawCommand
= Drawline Line

| DrawlmageString Point String

| DrawString Point String

| DrawRectangle Rect

| FillRectangle Rect

| FillPolygon Shape CoordMode [Point]

| DrawArc Rect Int Int

| FillArc Rect Int Int

| CopyArea Drawable Rect Point

| CopyPlane Drawable Rect Point Int

| DrawPoint Point

| CreatePutlmage Rect ImageFormat [Pixel]

| DrawLines CoordMode [Point]

Figure 63. The type DrawCommand provides an interface to the Xlib library
calls for drawing geometrical shapes and strings.

The Graphic class serves a purpose similar to that of the Show class: types
whose values have graphical representations are made instances of the Graphic
class, just like types whose values have textual representations are instances of
the Show class. As with the Show class, the methods of Graphic class are not
often used directly, except when defining new instances, and we discuss them
in a later section. The library provides instances in the Graphic class for many
standard types.

27.2 Primitive drawing operations

Before we describe the data types that are instances of the Graphic class, we
take a look at the low-level interface that allows a fudget to draw something in
its window.

The Fudgets GUI toolkit is built on top of the Xlib [Nye90] library level of the
X Windows system [SG86] (as described in Section 22.1). This shines through
in the Fudget library support for graphics: the primitive drawing operations
available in the fudget library correspond directly to what is provided by Xlib.

An interface to the Xlib library calls for drawing geometrical shapes and
strings is provided through the data type DrawCommand shown in Figure 63.
Apart from the parameters describing the shape to be drawn, the Xlib calls
have some additional parameters that are not present in the constructors of the
DrawCommand type. As a typical example of the relationship between the Xlib
calls and the constructors, consider XDrawLine:

XDrawLine(display, d, gc, x1, y1, x2, y2)
Display xdisplay;

Drawable d;

GC gc;

int x1, y1, x2, y2;

27.3 Types for simple graphical objects 131

T Hello [O1x]
import Fudgets

main = fudlogue (shellF "Hello" helloF)
helloF = labelF (BitmapFile "hello.xbm")

Figure 64. The graphical version of the "Hello, world" program is just as simple
as the textual version in Section 9.1.

A drawable d (a window or a pixmap) and a graphics context gc are supplied
by the fudget that outputs the drawing command. The type XCommand (see
Section 22.1.1) contains the following constructor for outputting drawing com-
mands:

data XCommand = ... | Draw Drawable GCld DrawCommand | ...

The display argument can be determined from the drawable. (The current
Fudget library supports only one display connection, so nothing extra is needed
for this.)

27.3 Types for simple graphical objects

Having seen how a fudget can output drawing commands to draw in its window,
we can now take a look at some simple types for graphical objects. These types
provide the most low-level interface to the Xlib drawing commands.

27.3.1 BitmapfFile

Apart from the drawing commands supported through the type DrawCommand,
the Fudget library also supports the Xlib library call XReadBitmapFile for read-
ing images (bitmaps) from files:

data XRequest = ... | ReadBitmapFile FilePath | ...
data XResponse = ... | BitmapRead BitmapReturn | ...

data BitmapReturn = BitmapBad | BitmapReturn Size (Maybe Point) Pixmapld

This means that we can easily create a data type that allows us to use images
stored in files as graphical objects.

data BitmapFile = BitmapFile FilePath
instance Graphic BitmapFile where ...
As you can see in Figure 64, by using the type BitmapFile, a program that loads

an image from a file and displays it is as just as simple as the "Hello, world!"
program (see Section 9.1):

132 27 Displaying and manipulating graphical objects

27.3.2 FlexibleDrawing

The Fudget library provides the following type to create stretchable graphical
objects:

data FlexibleDrawing = FlexD Size Bool Bool (Rect —> [DrawCommand])

instance Graphic FlexibleDrawing where ...

The first argument of the FlexD constructor indicates a nominal size, but the
actual size is determined by the fudget layout system and depends on the con-
text. The next two arguments indicate the stretchiness, that is, whether the
size should be fixed horizontally and vertically, respectively.

The last argument is a function that should produce drawing commands
that draw within the given rectangle. The argument is a rectangle rather than
just a size to make flexible drawings more efficient to use as parts of structured
graphical objects. Although the drawing function could draw completely dif-
ferent things for different rectangle position and sizes, changing the position is
expected to have no other effect than a translation, that is,

f (Rect pos size) = moveDrawCommands (f (Rect origin size)) pos

where moveDrawCommands,
moveDrawCommands :: [DrawCommand] —> Point —> [DrawCommand]

moves (translates) drawing commands. Changing the size is expected make the
function adjust the drawing to fill the available space, typically by stretching it.

As an example, here are flexible drawings for filled rectangles, horizontal
lines and vertical lines:

filledRect, hFiller, vFiller :: Int —> FlexibleDrawing

filledRect = filler False False
hFiller = filler False True

vFiller = filler True False
filler fh fv d = FlexD (Point d d) fh fv (\r—>[FillRectangle r])

A sample usage can be seen in Figure 66.

27.3.3 Fixed size drawings

Having defined the type FlexibleDrawing, we can easily define a function for
creating graphical objects of a fixed size:

fixedD :: Size —> [DrawCommand] —> FlexibleDrawing
fixedD size dcmds = FlexD size True True drawit
where drawit (Rect pos) = moveDrawCommands decmds pos

The arguments are a list of drawing commands to draw the desired shape and
a size. The commands are expected to draw within a rectangle of the indicated
size, with the origin as the upper left corner.?

5Instead of leaving it to the user to indicate the size of the drawing, it would be possible to
compute a bounding rectangle by inspecting the drawing commands, but doing it accurately
in the general case is rather involved and would be less efficient.

27.4 Types for structured graphical objects 133

Notice that depending on how you define your FlexibleDrawing value, you
may get very different operational behaviour. Using fixedD, you will get a value
containing a reference to a list of drawing commands that will be retained in
the heap and translated to the appropriate position (by moveDrawCommands)
each time the drawing is used. For FlexibleDrawings created like filler above, the
drawing commands may be recomputed and thrown away each time the drawing
is used. So, although the result on the screen will be the same, how much
recomputation that occurs and how much memory is used depends on details in
how the program is written and what kind of lambda lifting the compiler does
(whether it supports full laziness [Kar92]).

27.4 Types for structured graphical objects
The types for graphical objects presented above lack two important features:

e The ability to specify drawing attributes, such as colors, line widths and
fonts.

e The ability to compose simple objects into larger ones with a layout spec-
ified in a simple way.

As discussed in the introduction of this chapter, we also need a way to iden-
tify parts of a composite graphical object when building structure editors. We
introduce the type Drawing to take care of these needs.

data Drawing label leaf
= AtomicD leaf
| LabelD label (Drawing label leaf)
| AttribD GCSpec (Drawing label leaf)
| SpacedD Spacer (Drawing label leaf)
| PlacedD Placer (Drawing label leaf)
| ComposedD [Drawing label leaf]

instance Graphic leaf => Graphic (Drawing label leaf) where ...

placedD :: Placer —> [Drawing | a] —> Drawing | a
placedD p ds = PlacedD p (ComposedD ds)

So, composite drawings are trees. The leaves (built with the constructor Atom-
icD) can contain values of any type, but as seen from the instance declaration
above, the drawing can be displayed only if the leaf type is an instance of the
Graphic class. The internal nodes can contain:

e drawing attributes (the constructor AttribD) that are in effect in the sub-
tree of the node. These are discussed further below.

e layout information in the form of spacers and placers (the constructors
SpacedD and PlacedD) from the ordinary fudget layout system (Chap-
ter 11).

e labels that can be used to identify, or just hold some extra information
on, part of a drawing (the constructor LabelD). These have no graphical
effect.

134 27 Displaying and manipulating graphical objects

type DPath = [Int]
up :: DPath —> DPath

drawingPart :: Drawing a b —> DPath —> Drawing a b

maybeDrawingPart :: Drawing a b —> DPath —> Maybe (Drawing a b)

updatePart :: Drawing a b —> DPath —> (Drawing a b —> Drawing a b) —> Drawing a b
mapLabelDrawing :: (a —> b) —> Drawing a ¢ —> Drawing b ¢

mapLeafDrawing :: (a —> b) —> Drawing c a —> Drawing c b

drawingLabels :: Drawing a b —> [(DPath, a)]

deletePart :: Drawing a b —> DPath —> Drawing a b

Figure 65. Some functions for manipulating parts of drawings.

e Composed drawings (the constructor ComposedD). Most of the time when
drawings are composed, it is useful to also specify a layout, so rather than
using the constructor ComposedD directly, you use the function placedD.

Since the Drawing type is an instance of the Graphic class, drawings can be
displayed by GUI fudgets that create labels, buttons, menus, displays and so
on. There is also a fudget that makes use of the properties of the Drawing type:

hyperGraphicsF :: (Eq Ibl, Graphic gfx) =>
Drawing Ibl gfx —> F (Ibl, Drawing Ibl gfx) Ibl

It displays a drawing, with labels in it. When you click on a point in a drawing,
the fudget outputs the label of the smallest part containing the point where you
clicked. You can replace a part by feeding a pair of a label and a new drawing to
the fudget. hyperGraphicsF can thus be the starting point for simple graphical
browsers and editors.

27.4.1 Manipulating drawings

Some functions to manipulate parts of drawings are shown in Figure 65. These
can be used in the implementation of structure editors. Values of type DPath
identify parts of drawings.

27.4.2 Mixing graphical objects of different types in one drawing

In a Drawing, all the leaves must have the same type. Although you could draw
anything using only leaves of type FlexibleDrawing, it would be more conve-
nient to be able to mix different types of leaves. For this purpose, the Fudget
library provides the following type that makes use of existentially quantified
types [LO92]:

data Gfx = (Graphic ?a) => G 7a
instance Graphic Gfx where ... -- trivial

g . Graphic a => Drawing Ibl Gfx
g = AtomicD . G

27.4 Types for structured graphical objects 135

placedD verticalP [SpacedD centerS (g "1"), 1
g (hFiller 1),
g "x+y"] K+F

Figure 66. A sample drawing with leaves of different types.

In the definition of Gfx, 7a is an existentially quantified type variable. The
context (Graphics ?a) => limits the domain of the variable to the types in the
Graphic class. The result is that the constructor G can be applied to a value of
any type in the Graphic class, yielding a value of type Gfx. When you later use
pattern matching to extract the argument of G, you will not know what type it
has, but you will know that the type is in the Graphic class, so you can apply
the methods of that class on it. So, making Gfx an instance of the Graphic class
becomes trivial. (The instance declaration is shown in Figure 71).

An example where strings and a FlexibleDrawing are mixed in a Drawing is
shown in Figure 66.

The use of existential types gives us a way of packaging data with the meth-
ods that operate on it and abstract away from the concrete representation of
the data. This is reminiscent of how data abstraction is achieved in object-
oriented programming. (The reader is referred to [CW85] for a fuller discussion
of the relation between existential types, data abstraction and object-oriented
programming.)

27.4.3 Drawing attributes

Most of the Xlib drawing commands have an argument of type GC, a graphics
contezt. This is a data structure containing the values of a number of parameters
that affect the result of the drawing commands, but which would be tiresome to
have to pass explicitly as arguments every time you draw something. Examples
of such parameters, or attributes, are:

e foreground and background colors,
e which font to use for text,
e line width, line style (e.g., solid or dashed), fill style.

Most of these attributes are specified by numbers or elements of enumeration
types, but colors and fonts are more troublesome. Colors can be specified using,
e.g., color names or RGB values, but before a color can be used in a GC it must
be converted to a pixel value. Depending on the wvisual type of the display, a
pixel value can be, e.g., an 8-bit index into a 256 element colormap (for 8-bit
PseudoColor displays) or RGB information packed into 16 or 24 bits (for 16-bit
and 24-bit TrueColor displays, respectively).

Fonts can be specified by font names, but before they can be used, they have
to be converted to font identifiers. Also, if you want to know how much space
the text you draw will take up, you need obtain a data structure containing
metric information on the font.

136 27 Displaying and manipulating graphical objects

The data types provided by the Fudget library for specify drawing attributes
are shown below. The types ColorSpec and FontSpec are described further in
the next section.

data GCSpec
= SoftGC [GCAttributes ColorSpec FontSpec]
| HardGC GCtx

data ColorSpec -- see below
data FontSpec -- see below

data GCAttributes color font
= GCFunction GCFunction

| GCForeground color

| GCBackground color

| GCLineWidth Width

| GCLineStyle GCLineStyle

| GCFont font

| GCCapStyle GCCapStyle

| GCFillStyle GCFillStyle

| GCTile Pixmapld

| GCStipple Pixmapld

data GCtx = GC GCld FontStruct

data FontStruct -- abstract type for font metric info
data GCld -- An Xlib GC
type Width = Int

data GCFunction = GXclear | GXand | GXandReverse | GXcopy | ... | GXset
data GCLineStyle = LineSolid | LineDoubleDash | LineOnOffDash

data GCCapStyle = CapNotlast | CapButt | CapRound | CapProjecting
data GCFillStyle = FillSolid | FillTiled | FillStippled | FillOpaqueStippled

To include drawing attributes in a Drawing (defined above), you use the con-
structor AttribD applied to a GCSpec, which usually is the constructor SoftGC
applied to a list of attributes containing high-level specifications of fonts and col-
ors. However, before the drawing can be displayed, this high-level specification
must be converted into a GC. In addition, to be able to automatically determine
the size of text, the metric information for the specified font is required. The
high-level drawing attributes are therefore converted into a value of type GCtx
by fudgets that display drawings. This conversion may require calls to Xlib
library functions like XLoadQueryFont, XAllocNamedColor and XCreateGC. For
drawings that are to be displayed many times, making these calls every time
can cause a noticeable performance degradation, so the library provides a way
to create GCtx values in advance. These can then be included in drawings us-
ing GCSpecs with the constructor HardGC. The drawing can then be displayed
without making any calls except for the necessary drawing commands. The
reason for choosing the names SoftGC and HardGC is that the subdrawings of
a node setting the drawing attributes using the SoftGC alternative, inherit the

27.4 Types for structured graphical objects 137

attributes not present in the GCAttributes list from the parent drawing, whereas
with the HardGC alternative, all attributes are taken from the given GCtx.

27.4.4 Specifying fonts and colors

To allow fonts and colors to be specified conveniently in different ways, we have
introduced the following types and classes:

class ColorGen a where ...
data ColorSpec -- an abstract type
colorSpec :: ColorGen a => a —> ColorSpec

class FontGen a where ...
data FontSpec -- an abstract type
fontSpec :: FontGen a => a —> FontSpec

The following types are instances of the ColorGen class and can be used to specify
colors:

type ColorName = String -- color names, as used by Xlib
data RGB = RGB Int Int Int -- RGB wvalues, as used by Xlib

data Pixel -- previously obtained pizel values

Values of the RGB type specifies the intensities of the primary colors red, green
and blue, using 16-bit integers. RGB 0 0 0 is black, and RGB 65535 65535 65535
is white.

The following types are instances of the FontGen class and can be used to
specify fonts:

type FontName = String -- font names as used by Xlib

data FontStruct -- a previously obtained FontStruct

The canonical way of including font and color specifications in a drawing is to
do something like this:

blueHelloMsg =
AttribD (SoftGC [GCForeground (colorSpec "blue"),
GCFont (fontSpec "—*—times—s—r—x—18—x")]),
(g "Hello, world!")

As you can see, this is rather clumsy, so the Fudget library provides the following,
more convenient functions:

bgD, fgD :: ColorGen color =>
color —> Drawing Ibl leaf —> Drawing Ibl leaf

fontD :: FontGen font =>
font —> Drawing Ibl leaf —> Drawing Ibl leaf

Using these, you can write the above example like this:

blueHelloMsg = fgD "blue" $ fontD "—x—times—x—r—%—18—x%" §
g "Hello, world!"

138 27 Displaying and manipulating graphical objects

27.4.5 Allocating colors and fonts in advance

As mentioned above, you might for efficiency reasons want to allocate colors
and fonts in advance, and include the resulting GCtx values in the drawings you
construct. For this purpose, the Fudget library provides the following;:

wCreateGCtx :: (FontGen b, ColorGen a) =>
GCtx —> [GCAttributes a b] —> (GCtx —> Fcd) —> F ¢

rootGCtx :: GCtx

The function wCreateGCtx allows you to create GCtx values, by modifying a
template GCtx. You can start from rootGCtx which contains the default settings
for all attributes.

27.5 Implementation

How should a fudget that displays Drawings be implemented? Drawings are
trees, composed from leaves containing simple graphical objects, using placers
and spacers from the ordinary fudget layout system. A natural solution thus
seems to be to implement new fudgets for displaying simple graphical objects
and then display composed drawings by composing fudgets that display the
leaves. While this at first seems like a simple and elegant solution that gives
us maximal reuse of existing Fudget library components, remember that we
not only want to display drawings: to build structure editors we also need a
mechanism that lets the user select and manipulate parts of a structure. We
would need to set up a structure where every node in a Drawing is represented
by a fudget, and a communication structure which allows us to communicate
which each node fudget. Further, in order to be able to replace arbitrary nodes
with new drawings, we would have to use the combinator dynF (Section 13.4)
at each node.

dynF :: Fab —> F (Either (Fab)a)b

We tried this approach, but when taking all requirements into account, this
seemingly natural solution became rather tricky. It also turned out to be rather
inefficient and there are several possible reasons for this:

e the solution requires a lot of the work to be done by message passing in a
complex structure of fudgets. Compared to making function calls, passing
messages between fudgets can be expensive (see Section 39.1.2.4).

e cach graphical fudget is represented by a window in the X Windows sys-
tem. This means that there will be at least one window per drawing leaf.
Creating and maintaining windows requires some work both by the fudget
program and the X server.

As a result, we have developed another solution that is now part of the Fudget
library. It uses one fudget, graphicsF, to display complete drawings in one win-
dow. This has proved to be reasonably efficient. It has allowed us to implement
usable, non-trivial applications, the syntax directed editor Alfa (Chapter 33)
and the web browser WWWBrowser (Chapter 32) being the largest. A draw-
back is that some functionality (most notably hit detection and clipping) that in

27.5 Implementation 139

principle could be handled by the window system (and it was in the “natural”
solution) had to be duplicated in the implementation of graphicsF. The fud-
get graphicsF could actually be seen as an implementation of a simple window
system!

27.5.1 The capabilities of graphicsF

Since graphicsF is intended to satisfy all the needs for displaying graphics within
the Fudget library, and also be the ground on which applications like syntax
directed editors and web browsers can be built, it has been made fairly general.
In addition to just displaying graphics, graphicsF

e can receive requests to change parts of a complex drawing. This allows you
to create editors with efficient screen updates. If graphicsF only accepted
complete drawings as input, either the entire window would have to be
redrawn after each change, or expensive computations would be needed to
calculate the difference between the new and the old drawing.

e can highlight part of a drawing in a fairly efficient way. This can be used
to implement cursors in editors.

e supports receiving mouse and keyboard input. graphicsF indicates which
part of a drawing a mouse click occurred in.

e can display a background image behind a drawing.
e can sound the terminal bell.

e can be told to make a certain part of a drawing visible when displaying a
large drawing in a scrolling area.

The type of graphicsF is:
graphicsF :: (Graphic a) => F (GfxCommand a) GfxEvent

The definitions of the message types GfxCommand and GfxEvent are show in
Figure 67. The constructor ChangeGfx creates messages that allow you to re-
place or modify the graphical object being displayed. The argument is a list of
changes. Each change has the form

(path,(hilite,opt_repl))

where path selects which part of the object should be changed, hilite switches
on or off highlighting and opt repl is an optional replacement for the selected
part.

graphicsF is actually a simplification of graphicsGroupF,

graphicsGroupF :: (Graphic gfx) =>
(F a b) —> F (Either (GfxCommand gfx) a)
(Either GfxEvent b)

which like groupF, discussed in Section 22.1.2, can contain subfudgets. The fud-
get activeGraphicsF (discussed in Section 32.3) for displaying drawing with active
parts (for example forms in a web browser) is built on top of graphicsGroupF.

There are also customisable versions of these fudgets, allowing you to change
parameters like the event mask, border width and resizing policy.

140 27 Displaying and manipulating graphical objects

data GfxCommand gfx
= ChangeGfx [(DPath,(Bool,Maybe gfx))]
| ChangeGfxBg ColorSpec
| ChangeGfxBgPixmap Pixmapld Bool -- True = free pizmap
| ShowGfx DPath (Maybe Alignment,Maybe Alignment)
-- makes the selected part visible
| BellGfx Int -- sound the bell
| GetGfxPlaces [DPath] -- ask for rectangles of listed paths

data GfxEvent
= GfxButtonEvent { gfxState :: ModState,
gfxType :: Pressed,
gfxButton:: Button,
gfxPaths :: [(DPath,(Point,Rect))] }
| GfxMotionEvent { gfxState :: ModState,
gfxPaths :: [(DPath,(Point,Rect))] }
| GfxKeyEvent { gfxState::ModState,
gfxKeySym::KeySym,
gfxKeyLookup::KeyLookup }
| GfxPlaces [Rect] -- response to GetGfrPlaces
| GfxResized Size

Figure 67. The message types used by graphicsF.

27.5.2 Implementation of graphicsF

The fudget graphicsGroupF is implemented using groupF:

graphicsGroupF subfudgets = groupF graphicsK subfudgets
graphicsK = ...

The behaviour of the fudget is thus implemented in the fudget kernel graphicsK.
Here is roughly what graphicsK does in the course of displaying a graphical
object.

e A graphical object is received on the high-level input.

e The sizes of the parts of the graphical object are determined and the
required resources (fonts, colors, GCs) are allocated. This part requires
calls to Xlib, which are made by graphicsK through the appropriate low-
level messages. The result is a value of type MeasuredGraphics (Figure 68),
containing leaves of known sizes (i.e., with known LayoutRequests), GCtxs
and placers/spacers.

The conversion from an arbitrary graphical object to a value of type Mea-
suredGraphics is done using the methods of the Graphic class. These are
shown in Figure 69. Sample instance declarations are shown last in this
section.

27.5 Implementation

141

data MeasuredGraphics
= LeafM LayoutRequest GCtx (Rect—>[DrawCommand])
| SpacedM Spacer MeasuredGraphics
| PlacedM Placer MeasuredGraphics
| ComposedM [MeasuredGraphics]

Figure 68. The type MeasuredGraphics.

class Graphic a where
measureGraphicK :: a —> GCtx —> Cont (K i o) MeasuredGraphics
measureGraphicListK :: [a] —> GCtx —> Cont (K i 0) MeasuredGraphics

-- Default method for lists:

measureGraphicListK xs gctx cont = ...
-- converts zs one element at a time and applies ComposedM
-- to the resulting list.

Figure 69. The methods of the Graphic class.

e The layout is computed, generating a value of type CompiledGraphics (Fig-
ure 70), containing bounding rectangles and drawing commands for all the

parts. This step is taken by a pure function:

compileMG :: MeasuredGraphics
—> (CompiledGraphics, LayoutRequest)

e When Expose events are received, the drawing commands of the parts
whose bounding rectangles intersect with the damaged rectangles can ef-
ficiently be extracted and output. Notice that the drawing commands are
kept in the form of XCommands in the CompiledGraphicss. This means that
they can be output as they are. No temporary data structures need to be
created when responding to an Expose event. This fact, in combination
with the use of bounding rectangles allows Expose events to be handled
very efficiently. This is noticeable in applications like WW WBrowser and
Alfa.

When a part of the drawing is replaced by a new drawing, the new draw-
ing is converted into a MeasuredGraphics and inserted in the old Measured-
Graphics at the appropriate place. (Paths are preserved when a Drawing

data CompiledGraphics = CGraphics Rect Cursor [XCommand] [CompiledGraphics]

-- The only XCommand used is
-- Draw MyWindow some_ GC some_ DrawCommand

type Cursor = Bool

Figure 70. The type CompiledGraphics.

142 27 Displaying and manipulating graphical objects

instance Graphic Gfx where
measureGraphicK (G x) = measureGraphicK x

instance Graphic FlexibleDrawing where
measureGraphicK (FlexD s fh fv drawf) gctx k =
k (LeafM (plainLayout s fh fv) gctx drawf)
-- plainLayout is defined in Section 27.6.2.

instance Graphic Char where
measureGraphicK ¢ = measureString [c]
measureGraphicListK = measureString

instance Graphic a => Graphic [a] where
measureGraphicK = measureGraphicListK

instance Graphic Int where -- and similarly for other basic types
measureGraphicK i = measureString (show i)

measureString s gctx@(GC ge fs) k =
let rO(Rect size) = string_rect fs s
d = font_descent fs
a = font__ascent fs
pl = Point 0 a -- left end of base line reference point
p2 = Point (xcoord size) a -- right end of base line ref point
drawit (Rect p (Point _ h)) = [DrawString (p+(Point 0 (h—d))) s]
in k (LeafM (refpLayout size True True [p1,p2]) gctx drawit)
-- refpLayout is defined in Section 27.6.2.

Figure 71. Some sample instances for the Graphic class.

is converted into a MeasuredGraphics.) A new CompiledGraphics is then
computed from the new MeasuredGraphics. Guided by the paths of the
changes and the differences between the bounding rectangles of the cor-
responding parts in the old and new CompiledGraphics, only those parts
that have actually changed, or have moved because of the changes, are
redrawn.

A shortcoming of current implementation of graphicsF is that it does not handle
overlapping parts properly, not because overlapping parts would be too difficult
to handle in the current solution, but simply because it has not been important
in the applications where graphicsF has been used so far. This means that
a drawing with overlapping parts can look different after part of it has been
redrawn in response to an Expose event.

Finally, some sample instance declarations for the Graphic class are shown
in Figure 71.

27.6 Extended layout mechanisms 143

27.5.3 Efficiency issues in the implementation of graphicsF

As mentioned above, when part of a drawing is replaced, graphicsF recomputes
the layout of the complete drawing. None of the old layout computations are
utilised in this step. This may put an upper limit on how big objects can be
handled with reasonable response times in a structure editor. A better solution
would be to reuse layout information for parts that are not affected by a change.
This is done in the ordinary fudget layout system (see Chapter 23).

Large drawings consist of many DrawCommands. Outputting these one at a
time in low-level messages turned out to entail a considerable overhead. For ex-
ample, redrawing the window after a page scroll in the editor Alfa (Chapter 33)
in a typical situation could take 1 second. In an attempt to improve this, we
added a new constructor to the XCommand type:

data XCommand = ... | XDoCommands [XCommands] ...

It allows many commands to be passed in one low-level message, thus allowing
all the DrawCommands needed to redraw a window to be passed in one message
from graphicsF to the top level of the fudget hierarchy. The message passing
overhead thus becomes negligible. Also, caches and other filters (see Chapter 24)
that previously had to examine every DrawCommand now only examine one
XDoCommands message (they do not look inside). This reduced the above
mentioned redrawing time from 1 second to about 0.1 second, which makes a
big difference from the user’s point of view.

27.6 Extended layout mechanisms

In Chapter 11, we saw placers and spacers suitable for specifying the layout of
GUI elements. However, to describe the layout of text in structured graphical
objects fully and conveniently, two new features are needed:

e Base line alignment. Text has a base line and when text is composed
horizontally, the base lines of the pieces should be aligned.

e Line wrapping. When displaying longer pieces of text, it is usually not
convenient to specify in advance where line breaks should be inserted,
since this can depend on the size of the window, which is under user
control.

These two new features are provided through two new placers, alignP,
alignP :: Placer

which allows you to compose text with base line alignment, and paragraphP,
paragraphP :: Placer

which does line breaking.

To implement these, two extensions of the layout system were needed. Al-
though they should still be considered to be in an experimental stage, we de-
scribe them below.

We also present the idea of conditional placers and spacers, which could be
implemented without any extensions. These can be used, for example, to select
between different layouts depending on the size of an object.

144 27 Displaying and manipulating graphical objects

27.6.1 Reference points

To implement alignP, the layout requests (see Chapter 23) were extended to
contain, in addition to the nominal size and the stretchiness, a list of reference
points:

data LayoutRequest
= Layout { minsize :: Size,
fixedh, fixedv :: Bool,
refpoints :: [Point] }

The use of these appear in the Graphic instance for strings (see the function
measureString in Figure 71).

alignP places the argument boxes so that the last reference point in one box
coincides with the first reference point in the next box. This gives us base line
alignment when composing text.

Unlike most other placers, alignP does not stretch the argument boxes. In
fact, we have not included a mechanism for specifying how reference points are
affected by stretching, so you may get odd layout if a box containing refer-
ence points is first stretched by one placer and then aligned with another box
containing reference points by alignP.

We have also found use for some spacers that manipulate reference points:

refMiddleS, refEdgesS, noRefsS :: Spacer

moveRefsS :: Point —> Spacer

The spacer refMiddleS replaces the reference points of a box with two reference
points placed on the middle of the left and right edges. refEdgesS takes the
first and last reference points and moves them horizontally to the left and right
edges, respectively. noRefsS removes the reference points from a box. moveRefsS
displaces the reference points of a box by a given vector.

The placers and spacers we have presented do not make use of more than two
reference points, so it perhaps seems more appropriate to have a pair (instead
of a list) of reference points in the layout requests. Omne can also consider
more elaborate use of reference points, for example, different placers might use
different sets of reference points. To take a concrete example, when putting
equations together horizontally in a comma separated list, you probably want
to do base line alignment, but when placing equations in a vertical list, you may
want them to appear with the = symbols on the same vertical line. Also, you
may want the layout system to choose between horizontal and vertical placement
depending on the available space, so the equations must contain reference points
for both possibilities, and the placers must be able to choose between them.

27.6.2 Line breaking

The fudget layout system computes the layout in two steps: first a bottom-up
pass collects the layout requests from the leaf boxes, giving the required size
of the top-level window as a result. Based on this size, the exact placement of
each box is computed in a top-down pass. The actual size of each box depends
on the requested sizes of all boxes. The actual sizes can also be changed if the
user resizes the shell window.

27.6 Extended layout mechanisms 145

To display text with automatic line breaking, we would like the requested
height to depend on the actual width. The line breaking should be redone when
the width of the window is changed.

In the original fudget layout system, there was no way for a fudget to ask
for a size where the requested height depends on the available width. A fudget
could still achieve this behaviour: whenever notified of a size change, it could
output a new request with the same width as in the notification but with a new
height. Care of course had be taken to avoid generating infinite sequences of
notifications and requests and other unpleasant effects. This solution was used
in an early version of the web browser described in Chapter 32.

As part of the work on support for structured graphics, we developed a better
solution to the line breaking problem. We extended the layout requests with
a function that answers the question “if you can be this wide, how tall do you
want to be?”. For symmetry, there is also a function that allows the requested
width to depend on the actual height (otherwise flipP would not work). The
two functions are called wAdj and hAdj, respectively.

data LayoutRequest
= Layout { minsize :: Size,
fixedh, fixedv :: Bool,
refpoints :: [Point],
wAdj, hAdj :: Int —> Size}

The placers now combine such functions in addition to combining nominal sizes
and stretchiness. Although the old behaviour can be achieved by using con-
stant wAdj/hAdj functions, the layout requests still contain the usual nominal
size. This saves us from having to rewrite all placers and spacers. Also, the
usual nominal size is still used rather than the wAdj/hAdj functions on the top
level in normal shell windows, while the wAdj function is used in vScrollF (see
Section 10.7) , where the width is constrained but the height can vary freely.
(Not surprisingly, hAdj is used in hScrollF.)

Changing the data type LayoutRequest meant that all occurrences of the
constructor Layout in the Fudget library had to be adjusted. The functions
plainLayout and refpLayout were introduced to simplify these adjustments:

plainLayout s fh fv = refpLayout s fh fv []
refpLayout s fh fv rps = Layout s th fv (const s) (const s) rps

27.6.3 Conditional spacers and placers

Occasionally, we have found use for combinators that try alternative layouts
and pick the best one according to some condition. We have implemented an
ad hoc choice of such combinators:

ifSizeP :: (Size—>Size—>Bool) —> Placer —> Placer —> Placer
ifSizeS :: (Size—>Size—>Bool) —> Spacer —> Spacer —> Spacer

stretchCaseS :: ((Bool,Bool)—>Spacer) —> Spacer

alignFixedS :: Alignment —> Alignment —> Spacer

146 27 Displaying and manipulating graphical objects

The first two allow you to choose between two placers/spacers depending on
the size of the resulting box, i.e., if placer; and placers yield boxes of size; and
sizeg, respectively, then ifSizeP p placer; placery uses placer; if p size; sizes is
True, and placers otherwise. ifSizeS works analogously for spacers.

stretchCaseS allows you to write spacers that depend on the horizontal and
vertical stretchiness of the argument box. alignFixedS is an application of stretch-
CaseS. It can be used to allow stretchable graphical objects to be stretched while
objects of fixed size are aligned. As an example, when buttonF was generalised
from displaying strings to arbitrary graphics, we switched from unconditionally
centering the label with centerS to conditionally centering it with alignFixedS
aCenter aCenter. This means that text labels will be centered as before, while
graphical labels may be stretched.

27.7 Concluding remarks

As mentioned, the support for graphics in the Fudget library was prompted
by the development of the syntax directed editor Alfa (Chapter 33), and stuff
was added as needed for that particular purpose. Some development was also
prompted by the work on the web browser described in Chapter 32.

The fudget graphicsF was designed to support efficient screen updates after
small changes to structured graphical objects. Changes are made by sending
messages to graphicsF telling explicitly with part of an object to replace. Struc-
tured graphical objects are trees and parts are identified by their path from the
root of the tree. A different approach to modifying graphical objects is used in
Pidgets [Sch96] (see Section 41.5.1), where the nodes of a tree (actually a dag)
can be modified through mutable variables.

We have of course been inspired by other work on graphics in functional lan-
guages. An early example of such work is [Hen82], where vertical and horizontal
composition of simple graphical objects are used together with recursion to cre-
ate complex images in the style of Escher. A more recent example is the Picture
data type [FJ95] provided in the GUI toolkit Haggis [FP96] (see Section 41.3.2).

Although our purpose was not to implement a window system, graphicsF
actually provides some of the core functionality of a window system. Rob No-
ble has studied the problem of implementing a window system in a functional
language more directly. His implementation of Gadgets (see Section 41.3.1)
includes an implementation of a window system [Nob95].

Some compromises in the design have been made because of peculiarities of
Haskell:

e We have limited the use of existential types, since they are not part of the
Haskell standard.

e Since you can’t directly make the String type an instance of a type class,
we had to add extra methods to the class definitions and make more types
than we wanted instances of the classes.

These peculiarities are discussed further in Section 40.3 and Section 40.2, re-
spectively.

We have not yet added any good support for animation to the Fudget library.
The ideas from [Ary94] or [ElI97] could probably be used as they are without
too much difficulty.

147

28 Combinators for syntax-oriented manipulation

In Chapter 27, we have seen how graphical objects can be drawn and manipu-
lated using the type Drawing and the fudgets graphicsF and hyperGraphicsF. In
this chapter, we will present a set of combinators that can be used for building
syntaz-oriented editors. Such editors present a graphical view of a structured
value in an abstract syntax, for example a program in a programming language.
The editors let the user manipulate the (graphical view of) the program in
various controlled ways.

One problem the programmer must deal with, when developing syntax-
oriented editors, is how the values of the abstract syntax should be represented,
and how they should be connected to the graphical objects. We will present
a solution where the operations on the abstract syntax is defined closely with
the corresponding operations on the graphical objects, to avoid inconsistencies
between the abstract syntax and its graphical view.

As a concrete example, consider a grammar for a tiny expression language
with arithmetic operations on numbers.

Ezpr = Integer

| Ezxpr Op Expr
Op =+

| _

| X

Such an abstract syntax is straightforward to represent in Haskell using one
datatype for each non-terminal in the grammar, and where each alternative
corresponds to a data constructor.

data Expr = Number Integer
| Operation Expr Op Expr
data Op = Add
| Subtract
| Multiply
| Divide
How should we connect these datatypes to the graphical objects? One solution is
to define Graphic instances for each type, which means that they can be used as
leaves in the type Drawing (confer Section 27.4). The drawing can be decorated
with labels containing functions for building the abstract syntax when needed,
and manipulation functions describing how the user can modify different parts
of the abstract syntax. However, all labels in a Drawing must have the same
type, which presents a complication when we want to use different datatypes
for different non-terminals. In contrast, the combinators in this chapter allow
editors of different type, representing different non-terminals, to be combined.
The inspiration of the combinators comes from a certain style of parsing
combinators that is part of the functional folklore (the earliest publication we
know of is [R6j95a]). If P a is the type of parsers which returns a value of type
a, the combinators that are interesting in this context are

e ap:: P(a—>b) —>Pa—>Pb, which combines two parsers sequentially.
It also acts as lifted function application, in that the function returned by

148 28 Combinators for syntax-oriented manipulation

somF :: h —>SOMioha —> F (Eitheri (SOM i o h a))

(Either o a)
leaf :: Graphicg=>g—->a—->SOMioha
ap = SOMioh(a—>b)—>SOMioha—->SOMiohb
map :: (a—>b)—>SOMioha—->SOMiohb

select : (h —>a —>0)
—> (h —>a —>i —> Maybe (SOM i o h a))
—>SOMioha
—>SOMioha

attr :: (h —>a —>(h',a’)) —>SOMioh'a
—>SOMioha’

Figure 72. The SOM combinators.

the first parser is applied to the value returned by the second, yielding a
value that the combination returns.

e map :: (a —>b) —> P a —> P b, which applies a function to the value
that a parser returns.

The ap combinator is left associative (just like function application), and map
has higher precedence than ap. This allow a concise style when writing parsers.
For example, if pExpr is an expression parser, and pOp is an operation parser,

Operation ‘map’ pExpr ‘ap‘ pOp ‘ap’ pExpr :: P Expr

parses an expression followed by an operation and another expression, and re-
turns the appropriate Expr value using the Operation constructor.

The next section presents the basic combinators for building editors. Sec-
tion 28.2 shows how the combinators can be used to build an editor for arith-
metic expressions. Section 28.3 discusses how non-local editing operations, like
variable renaming, can be handled. The implementation of the combinators is
outlined in Section 28.4.

28.1 The SOM combinators

The combinators operate on the abstract type SOM i o h a (Syntaz Oriented
Manipulation), which represents a value (or piece of abstract syntax) of type a,
that can be manipulated through input/output of values of type i and o. The
parameter h is used to pass inherited attributes. The parameter a can also be
used for passing synthesised attributes, if needed.

A SOM expression not only represents a (structured) value, but also contains
information about how different parts of this value might be manipulated, and
how the value should be graphically displayed.

The combinators that operate on SOM expressions are shown in Figure 72.
The display and manipulation of SOM expressions are controlled by somF. The
fudget somF h s will initially display the SOM expression s, given an attribute

28.2 Example: manipulating arithmetic expressions 149

h to inherit. This expression can at any time be replaced by sending a new
SOM expression to the fudget. The fudget can also output the value that the
manipulated expression represents. This happens when a new expression is sent
to the fudget, or when a selected part of it is replaced. The message types i and
o in somF are used for the manipulation of selected subexpressions.

Primitive SOM expressions are built with the function leaf. The arguments
to leaf are a graphical object to display, and the value it represents. This
combinator is used, together with ap and map, to compose SOM expressions in
the same style as parsers.

To manipulate a SOM expression, the user must first select a subexpression.
A SOM expression might contain some nodes that are not possible to manipulate
(for example, syntactic decorations like keywords), and some that are. The
programmer declares that it should be possible to select and manipulate a node
by using the select combinator. The composition select f, f; s makes the SOM
expression s selectable. When the user clicks inside the graphical representation
of s, but not inside any inner selectable node, the composition is selected and
highlighted. As a result, the output function f, is applied to the inherited
attribute and the current value. The result is output from the fudget somF that
contains the composition, and is typically a set of editing operations that are
applicable to the selected node. Initially, the current value is merely the value
that s represents, but this might change if some part of s is replaced. If some
input (typically an editing operation picked by the user) is sent to the fudget
while s is selected, the input function f; is applied to the inherited attribute, the
current value and the input, yielding a new expression which replaces select f,
fi s. The input function also has a choice of returning Nothing, in case the input
could not be handled. This is used to delegate input to selectable ancestors,
and is covered in Section 28.3.

The combinator attr allows the inherited attribute and the current value to
be modified simultaneously. In the composition f ‘attr’ s, fis applied to the
inherited attribute and the current value that s represents. The result of fis
the attribute that s will inherit, and the current value of the composition.

28.2 Example: manipulating arithmetic expressions

By using leaf, ap and map, we can turn structured values into SOM expressions.
As an example, let us consider the expression language from the introduction.
We will define the functions edExpr and edOp that turn arithmetic expressions
and operators into SOM expressions. Since we do not need any inherited at-
tributes for the moment, and the type of input and output will always be the
same, we define a type synonym for the kind of SOM expressions that we will
form.

type ArithSOM a = SOM Choice [Choice] () a

edExpr :: Expr —> ArithSOM Expr
edOp :: Op —> ArithSOM Op

The expression editor edExpr is used in exprF to form the fudget that presents
the editor.

150 28 Combinators for syntax-oriented manipulation

® Expression 21
1+[2x3 J
!]
#® Choose |

ReplaceExpr {Humber 5)
ReplaceExpr {(Humber 7}
ReplaceExpr {Operation (Humber 0) Add {(Number 0))

7

Figure 73. An arithmetic expression manipulator. The user has selected the
subexpression 2 x 3, which can be replaced by 5, 7, or 0 + 0.

exprF :: Expr —> F (Either Choice (ArithSOM Expr))
(Either [Choice] Expr)

exprF e = somF () (edExpr)

When the user selects a subexpression, exprF outputs a list of choices that is
presented in a menu. These choices represent the operations that are available
on the subexpression. If a choice is picked, it will be sent back to the editor.
exprF also outputs the arithmetic expression for evaluation in the main fudget.
A screen dump of the program is shown in Figure 73.

main = fudlogue $
loopF (shellF "Choose" (smallPickListF show >+<
(displayF >="< (show . evalExpr))) >==<
shellF "Expression" (scrollF (exprF (Number 0)))
)

evalExpr :: Expr —> Integer

evalExpr (Number i) =i

evalExpr (Operation el b €2) = evalOp b (evalExpr el)
(evalExpr e2)

evalOp :: Op —> (Integer —> Integer —> Integer)
evalOp Add = (+)

evalOp Subtract = (—)

evalOp Multiply = (x)

evalOp Divide = \xy —> if y == 0 then 0 else x ‘div’ y

When we define edExpr and edOp, we use a programming style which resembles
the one we presented for parsing combinators in the introduction:

28.2 Example: manipulating arithmetic expressions 151

edExpr e = selExpr $ case e of

Number i —> Number ‘map’
leaf i i

Operation el b e2 —> Operation ‘map’
edExpr el ‘ap’
edOp b ‘ap’
edExpr e2

Numbers are shown as they are, whereas binary expressions are handled recur-
sively and by means of edOp. Each subexpression can be selected and manipu-
lated by selExpr, which is defined later.

The definition of edOp is similar.

edOp b = selOp $ leaf (showOp b) b

showOp Add ="4"
showOp Subtract = "-"
showOp Multiply = "x"
showOp Divide ="/"

We define the type Choice to contain expressions that can replace the selected
subexpression. Since subexpressions can be of both type Expr and Op, we use a
union type for the output.

data Choice = ReplaceExpr Expr
| ReplaceOp Op

When the user selects an expression, we arbitrarily choose to present three
alternatives which let the user replace the expression with its value plus or minus
one, or replace it with 0 4+ 0. The interface is not at all the most convenient
one could imagine, but it allows a patient user to enter an arbitrary expression
(the + can be replaced with any of the other operators, as we will see below).
This part of the editor could of course be elaborated as desired.

selExpr :: ArithSOM Expr —> ArithSOM Expr
selExpr = select outf inf
where
outf e = map ReplaceExpr
[Number (evalExpr e—1),
Number (evalExpr e+1),
Operation (Number 0) Add (Number 0)]
inf = map edExpr . stripExpr

stripExpr (ReplaceExpr €) = Just e
stripExpr = Nothing

If the user picks one of the choices, it will be propagated to the selected node, the
expression is extracted from the type union, and a replacement SOM expression
is formed. However, the type system cannot prevent programming errors that
result in an operator being sent to selExpr. To get a more robust program, the
function stripExpr ignores the input in this case and returns Nothing.

When an operator is selected, we present a choice of the four arithmetic
operators.

152 28 Combinators for syntax-oriented manipulation

selOp :: ArithSOM Op —> ArithSOM Op
selOp = select outf inf

where
outf = map ReplaceOp [Add,Subtract,Multiply, Divide]
inf = map edOp . stripOp

stripOp (ReplaceOp b) = Just b
stripOp = Nothing

28.3 Non-local manipulation

With the combinators presented so far, we can define local manipulation oper-
ations. The user can select a SOM subexpression, and arbitrary replacements
can be specified for that expression. If a manipulation would imply a change in
other parts of the expression, we are forced to replace the complete expression
globally, by sending a new SOM expression to somF. There are situations where
we want the possibility to specify replacements that are somewhere in between
the local and global alternatives. Suppose that we want to add variables to our
arithmetic expressions. We would then like to provide an operation for chang-
ing the name of a variable, by selecting one occurrence (possibly the binding
occurrence), and give a new name to it. This is an operation that affects the
whole subtree that starts with the binding of the variable.

This effect can be achieved by using the possibility to delegate input as
follows. Recall that the input function (the second parameter of select) can
return Nothing for input that cannot be handled. Instead of discarding the
input, somF will delegate it to the closest selectable ancestor, and apply its input
function. This delegation propagates towards the root of the SOM expression,
until a select node is found that accepts the input.

In the case of variable manipulation, delegation can be used to propagate
input to the node where the variable is bound. We will do this in the following
section, where we present a variant of the expression manipulator in Section 28.2,
extended with variables.

28.3.1 Extended example: manipulating variables
We extend the datatype Expr with constructors for variables and let expressions.
data Expr =
| Var Name
| Let Name Expr Expr

type Name = String

In the construction of a SOM expression, we assume the presence of an environ-
ment where we can lookup the value of variables.

type Env = [(Name,Integer)]

We will use the inherited attribute for propagating the environment. The type
of SOM expressions we will use are instances of ArithEnvSOM.

type ArithEnvSOM a = SOM Choice [Choice] Env a

28.3 Non-local manipulation 153

We introduce the additional combinators drLeft or drRight to prepend or append
a graphical decoration to an expression.

drLeft :: Graphicg=>g —>SOMioha—->SOMioha
drRight :: Graphicg =>SOMioha—->g—->SOMioha

These are used for drawing keywords, as we will see in the case of let expressions.
The associativity of ap, drLeft and drRight are set so that we avoid paren-
theses, at least in this application.
infixl 3 ‘ap’
infixr 8 ‘drLeft’
infixl 8 ‘drRight’

Haskell does not declare any fixity for map, which means that it gets a default
declaration.

infixl 9 ‘map'
But the type of map suggests that it should be right associative. If it were,
and had the same precedence level as drlLeft, we could skip the parentheses in

expressions like f ‘map* (d ‘drLeft’ s). If local fixity declarations were allowed in
Haskell, we could fix the fixity.

edExpr e =
let infixr 8 ‘map’
in ...

Local fixity declarations are not allowed in Haskell, so we give map a new name
with the desired fixity.

infixr 8 ‘mapp’

mapp :: (@ —>b) —>SOMioha —->SOMiohb
mapp = map

With mapp, we can construct SOM expressions in the style shown in in Figure 74.
The function extendEnv will be applied to the current let expression, from which
it will extract sufficient information to extend the environment that the body
should inherit. To avoid that the right-hand side in the let expression also
inherits the extended environment, we use the function dropEnv to pop the
added binding. (If we want to allow recursive declarations, we omit dropEnv.)

Note that we have also used different selection functions for different kinds
of expressions. Variables are handled by selVar, let expressions by sellLet, and
the others by selExpr.

The binding occurrence of a variable is handled by edName (Figure 75), and
selecting such a name results in a choice of renaming it. For simplicity, we pick
an arbitrary new name that is not present in the environment by using freshVar.
The input function in selName ignores all input, which instead is delegated to
sellet.

We have extended the manipulation type with a command for renaming a
variable.

data Choice =

| Rename Name Name

154 28 Combinators for syntax-oriented manipulation

edExpr :: Expr —> ArithEnvSOM Expr
edExpr e = case e of

Number i —> selExpr $ Number ‘mapp’
leaf ii

Operation el b €2 —> selExpr $ Operation ‘mapp'
edExpr el ‘ap’
edOp b ‘ap’
edExpr e2

Var n —> selVarn $ Var ‘mapp'
leaf n n

Let n el e2 —> selLet $ extendEnv ‘attr'
Let ‘mapp’
"let" ‘drLeft’
edName n ‘ap’
=" ‘drleft’
(dropEnv ‘attr' edExpr el) ‘ap’
"in" ‘drleft’
edExpr e2

extendEnv :: Env —> Expr —> (Env,Expr)
extendEnv = \env e@(Let n el) —> ((n,evalExpr env el):env,e)

dropEnv 1 Env —> Expr —> (Env,Expr)
dropEnv = \env e —> (tail env,e)

Figure 74. The function edExpr extended for variables.

edName :: Name —> ArithEnvSOM Name
edName n = selName $ leaf n n

selName :: ArithEnvSOM Name —> ArithEnvSOM Name
selName = select outf inf
where outf env n = [renameCommand n env]
inf = Nothing

renameCommand :: Name —> Env —> Choice
renameCommand old env = Rename old (freshVar env)

freshVar :: Env —> Name
freshVar env = head (map (:[]) ['a’..] \\ map fst env)

Figure 75. The editor for variable names.

28.3 Non-local manipulation 155

selExpr :: ArithEnvSOM Expr —> ArithEnvSOM Expr
selExpr = selExpr' (const []) exprInf

sellLet :: ArithEnvSOM Expr —> ArithEnvSOM Expr
selLet = selExpr’ (const []) letinf
where letinf env (Let n el €2) (Rename n’' new) | n ==n'
= Just (edExpr (Let new (rename n new el)
(rename n new e2)))
letinf env e i = exprInf env e i

selVar :: Name —> ArithEnvSOM Expr —> ArithEnvSOM Expr
selVar n = selExpr’ (\env —> [renameCommand n env]) exprinf

selExpr’ :: (Env —> [Choice])
—> (Env —> Expr —> Choice
—> Maybe (ArithEnvSOM Expr))
—> ArithEnvSOM Expr
—> ArithEnvSOM Expr
selExpr’ xchoices inf = select outf inf
where outf env e = xchoices env ++
map ReplaceExpr
([Number (v+1)
, Number (v—1)
, Operation n0 Add n0
. Let (freshVar env) n0 n0]
++ map (Var . fst) env

)
where v = evalExpr env e
n0 = Number 0

exprinf :: Env —> Expr —> Choice —> Maybe (ArithEnvSOM Expr)
exprinf env. = map edExpr . stripExpr

Figure 76. The selection functions for expressions.

156 28 Combinators for syntax-oriented manipulation

=

@ Expression
leta=6inletb=7infax b

® Choose =

Rename “"a" "c"

ReplaceExpr {Humber 7}

ReplaceExpr {Humber 5}

ReplaceExpr {Operation {(Humber 0) Add (Humber 03)
ReplaceEx=pr {Let "c" {Humber 0} (Humber 0))
ReplaceE=pr (Var "h")

ReplaceExpr (Var "a"})

42 |

Figure 77. Manipulating variables. There are additional choices for the variables
in the environment. Since a variable is selected, there is also a choice of renaming
it.

The selection functions are defined in Figure 76. The functions for let ex-
pressions and variables are variants of the original selExpr from Section 28.2. We
define a parameterised version (selExpr'), which lets us add choices and specify
the input function. Note that we have added choices for all variables in scope.

The standard selection function (selExpr) does not have any additional
choices, whereas the selection function for let expressions (sellLet) defines an ex-
tended input function which handles the renaming command. For a renaming
command to match, the old variable must equal the bound variable. Otherwise,
input is meant for some outer let expression. We assume a function rename,
where rename old new e substitutes new for old in e.

When selecting a variable, we extend the expression selection menu with a
renaming choice. Variable renaming can then take place at any occurrence of a
variable. Note that we do not handle renaming in the input function, it is the
same as in selExpr.

The rest of the program is almost the same as in the first example, except
that we pass the empty environment as an initial inherited attribute in exprF.
The program is seen in action in Figure 77.

exprF :: Expr —> F (Either Choice (ArithEnvSOM Expr))
(Either [Choice] Expr)
exprF e = somF emptyEnv (edExpr e)

emptyEnv :: Env
emptyEnv =]

28.4 The implementation of the SOM combinators 157

28.4 The implementation of the SOM combinators

We have taken the approach to implement SOM as a datatype with constructors
corresponding to the combinators leaf, select, map and ap. Since the types of the
arguments to map and ap have variables that do not show up in the result type,
we use the possibility to specify local existential quantification using variables
beginning with ? in the datatype declaration. Again, existential quantification
in datatypes proves to be a useful extension to Haskell (see also Section 27.4.2).

data SOMioha =

Select (h —> a —> 0)
(h —>a —> i —> Maybe (SOM i o h a))
(SOMioha)

| Map (?b —> a) (SOM i o h ?b)

| Ap (SOMioh (?b —> a)) (SOMio h ?b)

| Attr (h —> 7a —> (?h,a)) (SOM i o ?h 7a)

| Leaf Dr a

| Decor (Dr —> Dr) (SOM i o h a)

The first four constructors correspond directly to the respective combinators.

select = Select

ap =Ap

attr = Attr

instance Functor (SOM i o h) where map = Map

The first argument to the Leaf constructor is a drawing;:
type Dr = Drawing SOMPointer Gfx

The label type SOMPointer, which is defined later, is used to identify what
part of a SOM expression the user has selected. The type Gfx is used to store
arbitrary graphical objects in the leaves (Section 27.4.2). In the definition of
leaf, we turn these graphics into drawings by means of g (which was defined in
Section 27.4.2).

leaf :: Graphicg =>g —>a —>S0Mioha
leaf d a = Leaf (g d) a

The final constructor in SOM is Decor, and can be used to define layout or
add additional graphics on a part of a SOM expression. Its first argument is a
function which will be applied to a drawing that is constructed from its second
argument. The combinators drLeft and drRight uses this constructor:

drLeft d n = Decor (\d' —> hboxD [g d,d"]) n
drRight n d = Decor (\d'" —> hboxD [d',g d]) n

The fudget somF is built around a hyperGraphicsF, which outputs a SelectionPtr
whenever the user selects a subexpression.

data Dir = Le | Ri
type SelectionPtr = [Dir]

A SelectionPtr is a list of turns to take whenever an Ap node is encountered
in the SOM tree, and points out a select node. Using the function somOutput

158 28 Combinators for syntax-oriented manipulation

somQutput :: h —> SOM i o h a —> SelectionPtr —> o
somQutput h n p = case n of
Select outf _ n —> case p of
[[—> outf h (somValue h n)
_ —>somQOutput h np
Apfn —> case p of
Le:p —> somOQutput h f p
Ri:zp —> somQutput h n p

Map n —> somQutput h n p
Attr f n —> somQOutput (fst (apAttr fhn)) np
Decor n —> somQutput h n p

Figure 78. The function somOutput.

in Figure 78, somF can get the output choices of a selected node. If somF
receives an input choice for the selected node, the function somlnput (Figure 79)
is applied to the input and the selection pointer, to get the modified SOM tree.
somlnput also returns the pointer to the node whose input function accepted the
input, which is used by somF to update the correct part of the drawing. If all
input functions ignore the input, somlnput returns Nothing.

The functions somQOutput and somInput use the function somValue, to get the
current value of a SOM expression, and the function apAttr, to apply attribute
functions (Figure 80). The recursive definition in apAttr mirrors the fact that
attributes and values can have cyclic dependencies.

The implementation of somF is shown in Figure 81, and as mentioned pre-
viously, it is built around hyperGraphicsF. The auxiliary functions tohg, out,
updateDr, and replaceDr are routing functions that are typical when program-
ming with loopThroughRightF. The function out is used when outputting mes-
sages from somF, and updateDr and replaceDr are used when updating part of
or the whole of the drawing in the hyperGraphicsF. (Compare with the type of
hyperGraphicsF in Section 27.4.)

The controlling stream processor ctrl has an internal state which consists of
the SOM expression being edited (n), and a pointer to the selected node (p). If
there is no selected node, p is Nothing. An incoming message to ctrl is either a
click from the hyperGraphicsF, indicating a new selection by the user (handled
by click), an input choice (handled by input) or a new SOM expression (handled
by replace).

In click, the old selection cursor is removed, and a new node is selected.

In input, it is checked that there is a selection, and that a replacement node
can be obtained from somlnput. In this case, the appropriate subdrawing is
replaced, and selected.

28.4 The implementation of the SOM combinators 159

somlnput :: h —> SOM io ha —> i —> SelectionPtr
—> Maybe (SelectionPtr,SOM i o h a)
somlnput h ni p = case n of
Select o inf n —> case p of
[[—> mylnput
_ —> mapSOM (Select o inf)
(somlnput h n'i p)
++ mylnput
where mylnput = map (\n—>([].n))
(inf h (somValue h n) i)
Apfn —> case p of
[—> Nothing
Le:p —> map (mapPair ((Le:),(‘ap’ n)))
(somlnput h fi p)
Ri:zp —> map (mapPair ((Ri:),(f ‘ap’)))
(somlnput h ni p)

Map f n —> mapSOM (Map f)
(somlInput h ni p)
Attr f n —> mapSOM (Attr f)
(somlnput (fst (apAttr f h n)) ni p)
Leaf dr a —> Nothing
Decor f n —> mapSOM (Decor f)

(somlnput h n'i p)
where mapSOM = map . apSnd
mapPair f g (x,y) = (f x,g y)

Figure 79. The function somlnput.

somValue :: h —>SOMioha —>a
somValue h n = case n of

Select ~ n —> somValue h n

Ap nl n2 —> (somValue h nl) (somValue h n2)
Map f n —> f (somValue h n)

Leaf a —>a

Attr f n —> snd (apAttr f h n)

Decor n —> somValue h n

apAttr iz (h —=>a —> (h',a"))
—>h
—>SOMioh'a
—> (h',a")
apAttr f h n = h'a’ where h'a’ = f h (somValue (fst h'a’) n)

Figure 80. The functions somValue and apAttr.

160 28 Combinators for syntax-oriented manipulation

somF :: h —> SOM ioh a —> F (Either i (SOM i o h a))
(Either o a)
somF h n = loopThroughRightF
(absF (ctrl n Nothing))
(hyperGraphicsF (unselectedSomDr n))
where
tohg = putSP . Left
out = putSP . Right
updateDr = tohg . Left . unselectedSomDr
replaceDr = tohg . Right

unselectedSomDr = somDrawing]

ctrl n p = getSP $ click ‘either’ (input ‘either’ replace)
where
same = ctrl n p

click p' = maybe id (deselect n) p $
selectOnp'$
ctrl n (Just p")

input i = flip (maybe same) p $ \jp —>
flip (maybe same) (somlnput h nijp) $ \(rp,n’) —>
replaceDr (rp,somDrawing rp n’) $
selectO n' jp $
out (Right (somValue h n")) $
ctrl n' p

replace n’ = updateDr n" §
ctrl n’ Nothing

-- Select subnode and send its output.
selectO n p = select n p . out (Left (somOutput h n p))

-- Draw cursor
select = setselect cursor

-- Remove cursor
deselect = setselect id
setselect cu n p = replaceDr (p,cu (somDrawing p n))

-- The cursor is a frame around the node
cursor d = placedD overlayP (boxD [d,(g (frame’ 1))])

-- Extract selected subdrawing
somDrawing :: SelectionPtr —> SOM io ha —> Dr

Figure 81. The function somF.

161

29 Type directed GUI generation

29.1 Introduction

In the HCI (Human Computer Interaction) school [Shn98], it is good design
to first concentrate on a good user interface when developing a GUI applica-
tion, then implement the functionality behind. For example, the Logical User-
Centered Interactive Design Methodology (LUCID) [Kre96| consists of six stages,
in which the third stage includes the development of a so-called key-screen pro-
totype using a rapid prototyping tool. After a stage of iterative refinement, this
prototype is turned into a full system in the fifth stage.

To promote quick development of prototype programs, a programmer might
prefer to concentrate on the functionality, and ignore the GUI design (at least to
start with). Since this method can make life easier for the programmer, and to
put it in contrast with HCI, we call it PCI (Programmer Computer Interaction)
oriented.

With the PCI method, the GUI must be generated automatically somehow.
The basic idea is simple, and can be seen as the GUI variant of the Read and
Show classes in Haskell, which allow values of any type to be converted to and
from strings, using the functions read and show:

read :: Read a => String —> a
show :: Show a => a —> String

Part of the convenience with these classes is that instances can be derived auto-
matically by the compiler for newly defined datatypes. By using read and show,
it is easy to store data on files, or exchange it over a network (as is done in
Chapter 26).

In this section, we will define the class FormElement, which plays a similar
role to Read and Show, but for GUIs. Form elements are combined into forms,
which can be regarded as simple graphical editors that allow a fixed number of
values to be edited. They are often used in dialog windows to modify various
parameters in a GUI application.

Assuming that all the necessary instances of FormElement are available, we
show how forms can be generated automatically, entirely based on the type of
the value that the form should present.

29.2 The FormElement class

An individual form element displays a value of some type a. Whenever this
value is changed, it will be output by the element. Such a change occurs when a
user enters a new value, but it should also be possible to change the value from
the program itself.

A candidate type for form elements for a type a is a fudget with the type a
both on input and output.

type FormFt=F t t

The form element class has a method which specifies such a fudget.

162 29 Type directed GUI generation

class FormElement t where
form :: FormF t
formList :: FormF [t]

instance (FormElement t) => FormElement [t]
where form = formList

We have used the standard trick of adding a special method formList which
handles lists, so that we can get an instance for strings (this is discussed in
Section 40.2).

We can now define instances for the basic types integers, booleans, and
strings.

instance FormElement Int
where form = intlnputF

instance FormElement Bool
where form = toggleButtonF " "

instance FormElement Char
where formList = stringlnputF

We also need instances for structured types. The fundamental structured types
are product and sum.

instance (FormElement t,
FormElement u) =>
FormElement (Either t u)
where form = vBoxF (form >+< form)

instance (FormElement t,
FormElement u) =>
FormElement (t,u)
where form = hBoxF (form >-< form)

Note the vertical layout of alternatives, whereas elements within an alternative
have a horizontal layout.

The combinator >-< puts two fudgets in parallel, just like >+< and >*<,
but input and output are pairs.

(><):: Falbl —> Fa2b2 —> F (al, a2) (b1, b2)
f>< g=pairSP >~ =< (f >+< g) >=""< splitSP

pairSP :: SP (Either a b) (a,b)
pairSP = merge Nothing Nothing where
merge ma mb =
(case (ma,mb) of
(Just a,Just b) —> put (a,b)
_—>id)$
get $ \y —> case y of
Left a —> merge (Just a) mb
Right b —> merge ma (Just b)

29.3 Some suggestions for improvements 163

Input to f >-< g is split, the first component is fed into f, and the second
component is fed into g. The combined fudget will not output anything until
both fand g has output something. After this has occurred, a message from one
of the subfudgets for g is paired with the last message from the other subfudget
and emitted.

We are ready for a small example. The figure shows a form which can handle
input which either is an integer, or a pair of a string and a boolean.

[44 |
e s

Form

myForm :: FormF (Either Int (String,Bool))
myForm = border (labLeftOfF "Form" form)

An extended example connects the input and output of the form with fudgets
to demonstrate the message traffic:

main = fudlogue $
shellF "Form" $§
labLeftOfF "Output" (displayF >="< show)
>==< myForm
>==< labLeftOfF "Input" (read >"=< stringlnputF)

This program is illustrated in Figure 82.

29.3 Some suggestions for improvements

The little form program is a tangible example of how types can influence the
semantics of a Haskell program through overloading. To some extent, this style
allows a programmer to freely modify the type of data structures during devel-
opment without the need to change the code that deals with the GUI. Together
with the automatic layout system, this provides (limited) automatic GUI gener-
ation. However, as can be seen in Figure 82, there is much room for improvement
of the form. For example, there is no visual feedback that reveals the state of a
form element of type Either. It would be desirable to highlight the part that is
valid (or to dim the other part).

This generation can also be performed for user defined datatypes by using
polytypic programming [JJ97], based on the instances for products and sums.
Polytypic programming allows us to define how instances should be derived,
based on the structure of the user-defined datatype. For more complicated (for
example recursive) types, it might be a better idea to base the form elements
on the fudgets for structured graphics in Chapter 27.

After the functionality is there, the programmer’s attention might turn to
the look of the forms, and we need a way to tune them. An approach that
immediately comes to mind is to add an extra attribute parameter to the form
method.

class FormElement a t where
form :: a —> FormF t

164 29 Type directed GUI generation

® Form

Output |Right ('Hello’, True} |

| |
F
i CE—

Input | |

® Form

Output | Left 42 |

[4d |
e

Input | |

Fonm

® Form

Figure 82. First, the user has entered the string "Hello" and activated the toggle
button. Then, the user entered a number in the integer form element. The last
picture is a simulation of how the form can be controlled by the program, in
this case by entering a value in the Input field. The value sets the form and is
propagated to the output.

29.3 Some suggestions for improvements 165

If we have an instance FormElement @ t, we can construct a form for a type
t, given an attribute value of type a. A problem with this approach is that
currently, only one parameter may be specified in a class declaration in Haskell.
Multi-parameter classes are allowed in Mark Jones’ Gofer [Jon91|, which also
allows instance declarations for compound types like String. With these features,
we could define instances as follows.

instance (FormElement a t,
FormElement b u) => FormElement (a,b) (Either t u)

where form (a,b) = vBoxF (form a >+< form b)

instance (FormElement a t,
FormElement b u) => FormElement (a,b) (t,u)
where form (a,b) = hBoxF (form a >-< form b)

instance Graphic a => FormElement a String
where form a = labLeftOfF a $ striplnputSP >~ ~=< stringF

instance Graphic a => FormElement a Int
where form a = labLeftOfF a $ striplnputSP >~ "=< intF

instance Graphic a => FormElement a Bool
where form a = toggleButtonF a

166 30 Parameters for customisation

30 Parameters for customisation

There are many aspects of GUI fudgets that one might want to modify, e.g.
the font or the foreground or background colours for displayF. The simple GUI
fudgets have some hopefully reasonable default values for these aspects, but
sooner or later, we will want to change them.

In early versions of the Fudget library, the GUI fudgets had several extra
parameters to make them general and adaptable to different needs. For example,
the type of displayF was something like:

displayF :: FontName —> ColorName —> ColorName —> F String a

Having to specify all these extra parameters all the time made it hard to write
even the simplest program: when creating a program from scratch, it was next
to impossible to write even a single line of code without consulting the manual.
When we wrote programs on overhead slides or on the blackboard, we always
left out the extra parameters, to make the code more readable.

A simple way to improve on this situation would be to introduce two versions
of each GUI fudget: one standard version, without the extra parameters, and
one customisable version, with a lot of extra parameters:

displayF :: F String a
displayF’ :: FontName —> ColorName —> ColorName —> F String a

displayF = displayF' defaultFont defaultBgColor defaultFgColor

This would make it easy to use the standard version, and the blackboard exam-
ples would be valid programs. But the customisable version (displayF") would
still be hard to use: even if you just wanted to change one parameter, you would
have to specify all of them and you would have to remember the order of the
parameters. So, we went a step further.

First, we wanted be able to change one parameter without having to explic-
itly give values for all the other ones. A simple way of doing this would be to
have a data type with constructors for each parameter that has a default value.
In the case of displayF, it might be

data DisplayFParams = Font FontName
| ForegroundColor ColorName
| BackgroundColor ColorName

Then, one could have the display fudget take a list of display parameters as a
first argument:

displayF’ :: [DisplayFParams] —> F String a

We no longer have to remember the order of the parameter, and, whenever we
are happy with the default values, we just leave out that parameter from the
list, and all is fine.

displayF = displayF' []

However, suppose we want to do the same trick with the button fudget. We
want to be able to customise font and colours for foreground and background,
like the display fudget, and in addition we want to specify a “hot-key” that
could be used instead of clicking the button:

30.1 A mechanism for default values 167

data ButtonFParams = Font FontName
| ForegroundColor ColorName
| BackgroundColor ColorName
| HotKey (ModState, Key)

Now, we are in trouble if we want to customise a button and a display in the
same module, because in a given scope in Haskell, no two constructor names
should be equal. Of course, we could qualify the names with module names,
but this is tedious. We could also have different constructor names to start with
(ButtonFFont, ButtonFForegroundColor etc.), which is just as tedious.

30.1 A mechanism for default values

Our current solution® is not to use constructors directly, but to use overloaded
functions instead. We will define a class for each kind of default parameter.
Then, each customisable fudget will have instances for all parameters that it
accepts. This entails some more work when defining customisable fudgets, but
the fudgets become easier to use, which we feel more than justifies the extra
work.

Let us return to the display fudget example, and show how to make it cus-
tomisable. First, we define classes for the customisable parameters:

type Customiser a =a —> a

class HasFont a where
setFont :: FontName —> Customiser a

class HasForegroundColor a where
setForegroundColor :: ColorName —> Customiser a

class HasBackgroundColor a where
setBackgroundColor :: ColorName —> Customiser a

Then, we define a new type for the parameter list of displayF:
newtype DisplayF = Pars [DisplayFParams]
and add the instance declarations

instance HasFont DisplayF where
setFont p (Pars ps) = Pars (Font p:ps)

instance HasForegroundColor DisplayF where
setForegroundColor p (Pars ps) = Pars (ForegroundColor p:ps)

instance HasBackgroundColor DisplayF where
setBackgroundColor p (Pars ps) = Pars (BackgroundColor p:ps)

The type of displayF will be

displayF :: Customiser DisplayF —> F String a

6The basics of this design are due to John Hughes.

168 30 Parameters for customisation

We put these declarations inside the module defining displayF, making DisplayF
abstract. When we later use displayF, the only thing we need to know about
DisplayF is its instances, which tell us that we can set font and colours. For
example:

myDisplayF = displayF (setFont "fixed" .
setBackgroundColor "green")

If we want to have buttonF customisable in the same way, we define the addi-
tional class:

class HasKeyEquiv a where
setKeyEquiv :: (ModState,Key) —> Customiser a

The button module defines
newtype ButtonF = Pars [ButtonFParams]

and makes it abstract, as well as defining instances for font, colours and hot-
keys. Note that the instance declarations for font and colours will look exactly
the same as for the display parameters! (We can reuse the constructor name
Pars as long as we define only one customisable fudget in each module.) In
the Fudget library implementation, we have used cpp macros to simplify the
implementation of customisable fudgets and avoid code duplication.

We can now customise both the display fudget and the button fudget, if we
want:

myFudget = displayF setMyFont >+< buttonF (setMyFont.setMyKey) "Quit"
where setMyFont = setFont "fixed"
setMyKey = setKeyEquiv ([Meta],"q")

If we do not want to change any default values, we use standard, which does not
modify anything:

standard :: Customiser a
standard p = p

standardDisplayF = displayF standard

30.2 Naming conventions for the customisable GUI fudgets

The GUI fudget library is designed so that when you start writing a fudget
program, there should be as few distracting parameters as possible. Default
values will be chosen for colour, fonts, layout, etc. But a customisable fudget
must inevitably have an additional argument, even if it is standard. We use
short and natural names for the standard versions of GUI fudgets, without
customisation argument. So we have

30.3 Dynamic customisation 169

buttonF :: String —> F Click Click
buttonF = buttonF' standard

buttonF' :: Customiser ButtonF —> String —> F Click Click
buttonF' = ...

displayF :: F String a
displayF = displayF’ standard

displayF’ :: Customiser DisplayF —> F String a
displayF' = ...

and so on. This way, a programmer can start using the toolkit without having to
worry about the customisation concept. Later, when the need for customisation
arises, just add an apostrophe and the parameter. One could also have the
reverse convention and use apostrophes on the standard versions, something
that sounds attractive since apostrophes usually stand for omitted things (in
this case the customiser). But then a programmer must learn which fudgets
are customisable (and thus need an apostrophe), even if she is not interested in
customisation.

30.3 Dynamic customisation

Apart from specifying parameters in the program text, most parameters can
in fact be changed dynamically, if needed. Therefore, each customisable fudget
comes in a third variant, which is the most expressive. Their names end with
two apostrophes. These dynamically customisable fudgets allow customisers as
input messages in addition to the usual message type:

type CF p a b = F (Either (Customiser p) a) b

As an example, the button and the display fudgets can be dynamically cus-
tomised:

buttonF” :: Customiser ButtonF—>String—>CF ButtonF Click Click
displayF" :: Customiser DisplayF —> CF DisplayF String a

30.4 Discussion

Collecting all parameters in a customiser rather than using a high arity function
has a number of advantages:

e When you use a customisable fudget, you only need to mention the pa-
rameters you want to change from the default value.

e Future versions of the library can add new parameters without invalidating
old code.

¢ You do not have to remember the order of the parameters.

e By using Haskell’s class system for overloading, the name of the customiser
for a certain parameter can be the same for all fudgets that have that
parameter. For example, all fudgets that display text can be customised
with the setFont function.

170 30 Parameters for customisation

e Customisers are first class values. They can be named and used in many
function calls, even in calls to different functions. (Section 30.1 contains
an example of this.)

The last point is an advantage even when compared to what you can do in
languages with support for default values for parameters.

In the X Windows system, customisation is done via a resource database,
where the application can lookup values of various parameters. The database
is untyped, that is, all values are strings, so no static type checking can be
performed. With our customiser solution, parameters are type checked. In
addition, the compiler can check that the parameters you specify are supported
by the fudget in question, whereas parameters stored in the resource database
are silently ignored if the are not supported.

Disadvantages with this method, as compared to such languages, are that

e defining customisable functions is more cumbersome,

e you do not get an error message if you specify the same parameter twice,
and that

e you need two versions of each customisable function (for example, buttonF
and buttonF")

We used lists of parameters in the implementation of customisers:

newtype DisplayF = Pars [DisplayFParams]
data DisplayFParams = ...

An alternative would be to use record types instead:

data DisplayF = Pars { font::FontName,
foregroundColor, backgroundColor :: ColorName }

instance HasFont DisplayF where setFont f p = p { font=f }

This would make it easier to extract the values of the various parameters in
the implementation of the customisable fudgets. A possible disadvantage with
this representation is that in the implementation of dynamically customisable
fudgets, it would be more difficult to tell what parameters have actually been
changed. With the list representation, only the parameters that have been
changed occur in the list.

171

31 Gadgets in Fudgets

Gadgets [Nob95] is a GUI toolkit on top of a modified version of the Gofer
interpreter [Jon91]. As will be described the related work (Section 41.3.1),
the term Gadgets stands for Generalised Fudgets, and [Nob95] indeed presents
fudget combinators in Gadgets. In this section, we describe a purely functional
implementation of the underlying process scheduler in Gadgets, which enabled
us to port the source code for Gadgets to Haskell and use it on top of Fudgets.

The Gofer implementation of the process scheduler is implemented in C as
part of Gofer’s runtime system. A feature of the scheduler is that it attempts to
keep the message queues short by giving higher priority to processes that read
from channels with many waiting messages.

A limitation in the Gofer implementation of Gadgets resulted in that for each
channel, at most one process can be waiting for arriving messages, and channels
must be explicitly claimed by a process before trying to read from them.

The functional scheduler that we will describe is not as advanced as the
original one, but it is simpler and does not have the above mentioned limitation.
Before describing the functional scheduler, we give an overview of the process
primitives as they appear in the original Gofer version.

31.1 Wires and processes in Gadget Gofer

Gadget Gofer relies on an extension of Gofer with processes and wires. The type
Process s represents processes which have an internal state of type s. Commu-
nication between processes is asynchronous, and mediated by typed wires.

type Wire a = (In a,0ut a)
dataIn a = In Int
data Out a = Out Int

The communication along wires is directed, one end is input only (In a), the
other is output only (Out a). If a process only knows the input (output) end of
a wire, it can only read from (write to) it. Note that the wire ends are merely
represented by integer identifiers, although the types carry extra information
about the message type.

Wires are created by the primitive primWire.

primWire :: (Wire a —> Process s) —> Process s

(Just as with stream processors, the sequential behaviour of a process is pro-
grammed in a continuation passing style). To transmit something along a wire,
one uses primTx.

primTx :: Out o —> o —> Process s —> Process s

A process can wait for input from many wires simultaneously, by using guarded
processes. A guarded process (which we denote AGuarded s) is a process con-
tinuation that is waiting for input from one wire, and is formed by primFrom.

primFrom :: In m —> (m —> Process s) —> AGuarded s

Given a list of guarded processes, we can wait for input to any of them by
primRx.

172 31 Gadgets in Fudgets

type Guarded s = [AGuarded s]
primRx :: Guarded s —> Process s

Now, why are there two primitives for receiving input, when there is only one for
transmitting output? The reason is that although we could combine primFrom
and primRx,

-- not general enough!
primRxFrom :: [(In m, (m —> Process s))] —> Process s —> Process s
primRxFrom = primRx . map (uncurry primFrom)

the combination forces us to wait for messages of the same type. The introduc-
tion of guarded processes hides the message types and allows a process to select
input from wires of different type.

Processes need not live forever, they can die by calling primTerminate.

primTerminate :: Process s
Last but not least, a process can spawn a new process.
primSpawn :: Process s’ —> s’ —> Process s —> Process s

Thus, primSpawn p sy ¢ will spawn the new process p, giving it initial state s,
and continue with ec.

Gadget Gofer also uses primitives for claiming and disowning wires, and
requires that a wire should be claimed by a process before attempting to receive
from it. Since the functional scheduler does not have this restriction, we ignore
them in the following. The presentation will also ignore

1. that primRx actually takes an additional debugging argument, and

2. the existence of the global, polymorphic wire ends nci and nco, which are
not connected to anything.

31.1.1 Connecting processes to the world

Wires are not only used for inter-process communication, they also interface the
processes to the outside world. There are three primitive device processes that,
when spawned, attach wires to the keyboard, the mouse, and the screen.

keyboard :: In KeyboardCmnd —> Out KeyboardEvnt —> Process s
mouse : In MouseCmnd —> Out MouseEvnt ~ —> Process s
screen :: In [ScreenCmnd] —> Out ScreenEvnt ~ —> Process s

The mouse and keyboard can be configured by transmitting mouse or keyboard
commands, respectively, whereas the screen commands are used for drawing.
The events report key presses, mouse clicks, mouse movements, and exposure
events.

These three primitives are started once inside the Gadget window system.
For example, the keyboard process is started with

wire $ \smk —>
wire $ \ksm —>
spawn (keyboard (ip smk) (op ksm))

31.2 A functional process implementation 173

After this, the keyboard events are read from op smk, and the keyboard is
configured by writing to ip ksm.

To execute a process with a given initial state, Gadget Gofer provides the
primitive primLaunch.

primLaunch :: Process s —> s —> 10 ()

31.1.2 Manipulating the process state
A process uses the operations readState and setState.

readState :: (s —> Process s) —> Process s
setState :: s —> Process s —> Process s

In Gadget Gofer, the type Process s is a synonym for a function from s to s,
that is, a state transformer.

type Processs =s —> s
The implementation of readState and showState is then straightforward.

readState c =\s —>css
setStatesc=_ —>cs

31.2 A functional process implementation

The Fudgets implementation of Gadgets is purely functional, written in Haskell,
which means that all primitives described above are defined within Haskell. The
“runtime” system (the process scheduler) is also written in Haskell, except that
it uses a type cast (not defined in ordinary Haskell) at one place, as we will see.
In the functional version, processes cannot have the simple function type
s —> s any more, since we must be explicit about the effects that processes can
have. Instead, we will define the process type in steps, where we start with a
stream-processor type that handles messages related to the keyboard, mouse and
screen. On top of the stream-processor type, we define a state monad (SPms)
with operations for manipulating a state in addition to the I/O operations of
the stream processor. The state is used by the scheduler, and is used to define
a simple process type ProcessO, which amounts to the Gadget processes except
that they do not have any local state. Having done this, we define the full
Gadget processes on top. The steps are summarised in the following table.

Process Gadget processes with state
ProcessO Processes without state

SPms Stream-processor state monads
SP Plain stream processors

31.2.1 The stream-processor monad with state
We can build a stream-processor monad with state by using the type SPms:
type SPmsiosa=(a —> (s =>SPio)) —> (s —> SP i o)

A computation of type SPms i 0 s a can input messages of type ¢, output
messages of type o, manipulate a state of type s, and return a value of type a
through the following operations:

174 31 Gadgets in Fudgets

getSPms 1 SPmsiosi
putSPms :: 0o —> SPmsios ()
loadSPms :: SPmsioss
storeSPms :: s —> SPmsios ()

getSPms =\ks —> getSP$\i —> kis
putSPmso =\ks —> putSPo$k()s
loadSPms =\ks —>kss

storeSPmss =\k _ —>k()s

31.2.2 Processes without state

We use the state stream-processor monad to implement the stateless processes,
called Process0. The state of the stream processor is used by the scheduler for
bookkeeping.

type ProcessO i o = SPms i o (SchedulerState i o) ()

data SchedulerState i o = SS{ freeWire :: Wno
, messageQs :: MessageQueues

, ready i1 [Process0 i o]
, guarded :: [GuardedO i o]
, input it [i —> Process0 i o]

}

Just as in the Gofer implementation, we use integers to identify wire ends, except
that we call the integers wire numbers (Wno).

newtype Wno = Whno Int
newtype Ina = In Wno
newtype Out a = Out Wno

What follows are definitions of the primitives for creating wires and processes,
and communication over wires. We suffix the primitives with a 0 to indicate
that they operate on processes without local state.

A new wire is allocated with primWire0, which increments the field freeWire
in the state, and hands a fresh wire to the continuation.

primWire0 :: (Wire a —> Process0 i 0) —> Process0 i o
primWire0 ¢ =
do ps@(SS{ freeWire = w@(Wno i) }) <— loadSPms
storeSPms ps{ freeWire = Wno (i+1) }
¢ (In w, Out w)

The second component in the scheduler state (messageQs) is a mapping from
wire numbers to queues of not yet delivered messages.

type MessageQueues = IntMap (Queue Msg)

The types IntMap and Queue implement integer maps and Okasaki’s queues
[Oka95] come from HBC’s library, and have the following signatures:

31.2 A functional process implementation 175

module Queue where
empty :: Queue a

snoc :: a —> Queue a —> Queue a
tail : Queue a —> Queue a

head :: Queuea —> a

null :: Queue a —> Bool

module IntMap where
empty :: IntMap a
modify :: (a —>a) —> a —> Int —> IntMap a —> IntMap a
delete :: Int —> IntMap a —> IntMap a
lookup :: Int —> IntMap a —> Maybe a

The operations are standard, except modify, which deserves an explanation. The
expression modify f a i m applies the function fto the entry i in m if it exists.
Otherwise, it inserts the value a at .

Each message is paired with the wire number. Since different wires can have
different type, messages can also be of different type. We use an existential
type (an extension to Haskell provided by HBC) to hide the message type when
putting messages in the queue.

data Msg = Msg ?7a

Constructing values of type Msg is easy, but when de-constructing them, we
cannot assume anything about the type of the argument. We return to this
problem later.

Sending a value on a wire amounts to queueing the wire number together
with the value.

primTx0 :: Out a —> a —> Process0 i o —> Process0 i o
primTx0 (Out wno) msg p =
if wno == ncWno then p
else
do ps@(SS{ messageQs, ready }) <— loadSPms
storeSPms ps{ messageQs = addMsg wno (Msg msg) messageQs
, ready = p:ready}
scheduler

addMsg :: Wno —> Msg —> MessageQueues —> MessageQueues
addMsg wno m = modify (snoc m) (snoc m Queue.empty) wno

The field ready holds a list of processes that are ready to run. When spawning
off a new process, we put it on the ready list.

primSpawn0 :: ProcessQ i o —> Process0 i o —> Process0 i o
primSpawnQ p’ p =
do ps@(SS{ ready }) <— loadSPms
storeSPms ps{ ready = p":ready }

p

There is also a list of processes waiting for messages, stored in the field guarded.
The elements are lists of stateless guarded processes (AGuarded0 i o).

176 31 Gadgets in Fudgets

data AGuardedO i o = AGuarded0 Wno (?a —> Process0 i o)

A guarded process is a wire number and a function which takes a message as a
parameter. The actual type of the message is hidden in AGuarded0, so that we
can form a list of guarded processes regardless of what message type they are
waiting for.

type Guarded0 i o = [AGuarded0 i o]
A guarded stateless process is formed with primFrom0.

primFrom0 :: In m —> (m —> Process0 i o) —> AGuarded0 i o
primFromO (In wno) f = AGuardedO wno f

The function primRx0 will wait for a message to arrive to any of the guarded
processes in the first parameter. It adds the guarded processes to the state, and
then jump to the scheduler to find another process to execute.

primRx0 :: Guarded0 i o —> ProcessO i o —> Process0 i o
primRx0 g def =
do ps@(SS{ guarded }) <— loadSPms
storeSPms ps{ guarded = g:guarded }
scheduler

The scheduler’s (Figure 83) job is to apply guarded processes to matching mes-
sages, move them to the ready list, and pick one from the ready list to run.
In case the ready list is empty, the input list is investigated. This list con-
tains processes waiting for input from the outside of the stream processor. If
this list is also empty, then the gadget program is finished. Otherwise, we do
stream-processor input and give the message to all processes in the input list.

The function match applies all guarded processes for which there are match-
ing messages. It returns the remaining unmatched messages and guarded pro-
cesses, together with a list of new ready processes.

Recall that each element in the field guarded is itself a list, which comes from
a call to primRx. The function matchl looks for a matching message for one of
the elements in such a list, possibly returning a new message queue and a ready
process. A matching message must have the same wire number as the guarded
process. It seems like this cannot be expressed in the type system, so we are
forced to use a type cast (see the function matchl in Figure 83).

The stateless processes can do stream-processor input/output by means of
get0 and put0. The output part is easy:

putO :: 0 —> ProcessO i o —> ProcessO i o
putOop =
do putSPms (Right o)
%

When it comes to input, the process does not directly call getSPms, since that
would block other threads as well. Instead, the continuation is put on the input
list in the scheduler state, and jump to the scheduler. Note that more than one
process may call get0. As we have already seen, the scheduler will ensure that
all of them will receive the next message that the stream processor inputs.

31.2 A functional process implementation 177

scheduler :: Process0O i o
scheduler =
do ps@(SS{ freeWire, messageQs, ready, guarded, input }) <— loadSPms
let (messageQs',guarded’,moreReady) = match messageQs guarded
let run p ready’ input’ =
do storeSPms ps{ messageQs = messageQs’
, ready = ready’
, guarded = guarded’
, input = input’
¥
p
case (moreReady—++ready) of
[] —> if null input
then nullSPms
else do i <— getSPms
case [ih i | ih <— input] of
p:ready’ —> run p ready’' [|
p:ready’ —> run p ready’ input

match :: MessageQueues —> [GuardedO0 i o]
—> (MessageQueues,[Guarded0 i o],[Process0 i o])
match m [] = (m,[L.[1)
match m (g:f) = case matchl m g of
Nothing —> (m',g:f',r) where (m',f',r) = match m f
Just (m1,p) —> (m2,f',p:r) where (m2,f’,r) = match m1 f

matchl :: MessageQueues —> GuardedO i o
—> Maybe (MessageQueues,Process0 i o)
matchl m [] = Nothing
matchl m ((AGuarded0 (Wno w) f):gs) =
case IntMap.lookup w m of
Nothing —> matchl m gs
Just mq —> case Queue.head mq of
Msg msg —> Just (m’,cast f msg) -- ! type cast !
where mq’ = Queue.tail mq
m' = if Queue.null mq’
then delete w m
else modify Queue.tail undefined w m

cast :: a —> b -- Not defined in Haskell.

Figure 83. The scheduler.

178 31 Gadgets in Fudgets

get0 :: (i —> Process0 i 0) —> Process0 i o
get0 i =
do ps@(SS{ input }) <— loadSPms
storeSPms ps{ input = i:input }
scheduler

If a process terminates, we need to schedule some other process for execution if
possible. Therefore, primTerminate0 simply jumps to the scheduler.

primTerminate0 :: ProcessO i o
primTerminate0 = scheduler

To launch a process, the process state must be initialised. This is done in
primLaunchO.

primLaunchO :: ProcessO i o —> ProcessO i o
primLaunchO p =

do storeSPms SS{ freeWire = startWno

, messageQs = IntMap.empty

,ready =]
, guarded = []
input =[]
}

p

So far, we have been quite general about the type of messages that our stateless
processes will speak. To implement gadget processes, we will use the stream-
processor I/O to simulate the keyboard, mouse and screen, as discussed in
Section 31.1.1. We will call stateless gadget processes GProcess0.

type GProcessO = ProcessO0 GEvent GCommand
The types GEvent and GCommand will be defined in Section 31.2.4.

31.2.3 Gadgets processes with state

Now, we have defined most of the necessary primitive operations required for
Gadget processes, except for the ones that manipulate a local state. It turns
out to be straightforward to add state to GProcess0:

newtype Process s = P ((s —> GProcess0) —> s —> GProcess0)

A stateful process is a process-valued function which takes a stateless process
continuation (parameterised over its input state), and an input state as param-
eters. It can modify the state before applying it to the continuation, and also
use the stateless process primitives.

The state parameter is accessed by setState and readState.

unp (P p)=p

setState :: s —> Process s —> Process s
setStateap=P $\cs —>unppca

readState :: (s —> Process s) —> Process s
readStatep =P $ \cs —> unp(ps) cs

31.2 A functional process implementation 179

We now need to lift the primitive operations of type GProcess0 to Process. We
use two auxiliary functions, depending on whether the continuation takes an
argument or not. (This “duplication of code” is a price we pay for not working
with monads: in monadic style, all operations return a value, which might be
() if it is uninteresting. In CPS, operations without a result take continuations
without an argument, which can be seen as a slight optimisation, but adds to
the complexity of CPS programming.)

liftPOarg :: ((a —> GProcess0) —> GProcess0)
—> (a —> Process s) —> Process s
liftPOarg pO p = P $ \c s —> p0 (\a—>unp (p a) cs)

liftPOc :: (GProcessO —> GProcess0)

—> Process s —> Process s
liftPOc pOp =P $ \cs —> p0 (unp p cs)

We also need to lift stateless processes into stateful ones:

liftPO :: GProcessO —> Process s
liftPO p0 = P $ \cs —> p0

The operations for creating a wire and transmitting a message are straightfor-
ward to lift.

primWire :: (Wire a —> Process s) —> Process s
primWire = liftPOarg primWire0

primTx :: Out o —> o —> Process s —> Process s
primTx o m = liftPOc $ primTx0 o m

We will also need an auxiliary function to “downgrade” a stateful process to a
function from state to a stateless process.

down :: Process s —> (s —> GProcess0)
down (P p) s = p (\s' —> primTerminate0) s

When lifting primFrom, we must ensure that the guarded processes get access to
the state. Guarded stateful processes are therefore guarded stateless processes
parameterised over the state.

type AGuarded s = s —> AGuarded0 GEvent GCommand
type Guarded s = [AGuarded 5]

primFrom :: In m —> (m —> Process s) —> AGuarded s
primFrom i p = \s —> primFrom0 i (\m —> down (p m) s)

In primRx, we apply the state to each guarded process, revealing the stateless
guarded processes that primRx0 accepts.

primRx :: Guarded s —> Process s
primRx gs = P $ \c s —> primRx0 [gs | g <— g3]

The remaining primitive operations are straightforward to lift.

180

31 Gadgets in Fudgets

primTerminate :: Process s
primTerminate = P $ \c s —> primTerminate0

primSpawn :: Process a —> a —> Process s —> Process s
primSpawn p' s p = liftPOc (primSpawn0 (down p' s)) p

primLaunch :: Process s —> s —> GProcess0
primLaunch p s = primLaunchQ (down p s)

31.2.4 Simulating Gadget input/output

To complete the functional implementation of the Gadget primitives, we still
must define mouse, screen and keyboard. We use the stream-processor in-
put/output to mediate the events and commands from/to the mouse, keyboard
and screen.

data GEvent = ME MouseEvnt | KE KeyboardEvnt | SE ScreenEvnt
data GCommand = MC MouseCmnd | KC KeyboardCmnd | SC [ScreenCmnd]

Each device is controlled by two processes: the output handler, which injects
commands received on a wire into the type GCommand and outputs them, and
the input handler, which inputs events, extracts those specific for the device and
transmit them on a wire. These two handlers run in parallel. This is captured
with the deviceHandler.

deviceHandler :: (¢ —> GCommand) —> (GEvent —> Maybe e)

—> In ¢ —> Out e —> Process s
deviceHandler inj extract cw ew =

liftPO $ primSpawn0 ohandler ihandler
where ohandler = primRx0 [primFrom0 cw $ \cmd —>
put0 (inj cmd) ohandler]

ihandler = get0 $ \i —>
case extract i of
Just evt —> primTx0 ew evt $
ihandler
Nothing —> ihandler

We can now form our devices.

keyboard :: In KeyboardCmnd —> Out KeyboardEvnt —> Process s
keyboard = deviceHandler KC (\i —> case i of KE e —> Just e
—> Nothing)

mouse :: In MouseCmnd —> Out MouseEvnt —> Process s
mouse = deviceHandler MC (\i —> case i of ME e —> Just e
—> Nothing)

screen :: In [ScreenCmnd] —> Out ScreenEvnt —> Process s
screen = deviceHandler SC (\i —> case i of SE e —> Just e
—> Nothing)

31.3 Discussion 181

@ Gadget process status

Update

Figure 84. Example of wire queue length profiles, provided by the Gadgets-
in-Fudgets implementation. Each profile represents one wire, its height is pro-
portional to the length of the queue of messages waiting to be delivered. The
picture is a snapshot of the computation; by pressing the button, a new snapshot
is taken. The time axis is the one growing into the graph.

Outside the Gadget stream processor, the screen commands are transformed into
corresponding Fudget drawing commands, whereas the keyboard and mouse
control commands are ignored. Conversely, Fudget keyboard presses, mouse
clicks and screen exposure events are transformed into GEvent messages. This
is done in the fudget gadgetF, of type

gadgetF :: Gadget —> Fab

Note that the high-level streams of gadgetF are unused. It would be nice to use
them for communication between gadget processes and the rest of the fudget
program, but this is not possible in a type-safe way. The reason is that such a
communication could be used to exchange wires between different instances of
gadgetF. Each gadgetF has its own scheduler, and mixing wires between sched-
ulers is not type safe.

31.3 Discussion

For the functional programmer, the Haskell implementation of a Gadget sched-
uler seems attractive. Different scheduling principles can be implemented and
compared. Profiling tools can be added, also in Haskell. For example, it might
be interesting to see how the wire queue length evolves over time (Figure 84).

A disappointment is that we are not able to safely type check all parts of the
scheduler. Nevertheless, we believe that the Haskell implementation is “more”
type safe than the original scheduler, which was written in C.

The functional scheduler also has a serious performance problem for certain
processes. If a process dynamically creates wires, sends messages to them, and
then forgets them, the wire queues cannot be garbage collected. The functional
scheduler can never know if a process drops its reference to a wire.

A remedy for these problems is to use lazy state threads [LPJ94] and their
imperative variables for representing the queues.

V Applications

One strong motivation behind the development of Fudgets was practical useful-
ness, that is, we wanted to be able to write serious applications with graphical
user interfaces in a declarative style, in a pure functional language. Hand in
hand with the development of the library, we have therefore developed a num-
ber of small and large applications.

To give you some idea of what the potential of the fudget library is, and
to discuss various practical programming considerations, this part presents, in
varying detail, some applications we have implemented using Fudgets.

183

1 WWWBrowser

ﬁl 3' Bookmarks

URL: | http:/#localhost/Fudgets/Hanual /zearch, cgiscurrent Yhut tonF |

Fudget Library Reference Manual

For the current version of the library

Created from the Fudget Library sources on Fri February 13 17:22 MET 1998
+ Beginner's Index
+ Programmers’s [ndex

+ Full Index

1 URL History

See also the Fudgets Home Page .

Skalman - Thomas Hallgren’s Home C
L) Fudgets Home Page
This is a searchable index. Enter your search keywords belowr, Fudget Library Reference Manual

| Fudget Library Reference Manual
l:l Fudget Lib Reference Manual buttq

& Here is the result of your search for buttonkF :

data Click = ...

data ButtonF =

class HasLabelInside =z where ...

data ToggleButtonF

buttonF :: (Graphic 2) =»a -» F Click Click

buttonF® - (Graphic &% =» Customiser (ButtonF &% -»3 -> F Click Click

Progress: Got all 5143 bytes
Link URL: http:iocalhostiFudgetsiManualicurrentizmall himl |

Figure 85. WWWhbrowser, a simple web browser implemented using fudgets in
1994. It supports inlines images and forms.

32 WWWBrowser — a WWW client

A good example of an application that makes full use of all aspects of the Fudget
library is a World-Wide-Web client. It displays hyper-text documents with em-
bedded images and GUI elements (to implement fill-in forms). The documents
are obtained from various information sources on the Internet through protocols
like ftp, nntp, gopher and http.

In this section we will take a look at how such an application can be im-
plemented on top of the Fudget library, in Haskell. An actual implementation,
called WWWBrowser, was done mainly during the summer 1994. Some updates
and improvements were made in the summer 1997. A window snapshot is shown
in Figure 85. The 1994 version of WWWBrowser had the following features:

e It accepted most of HTML 2.0 (the HTML standard in use in 1994),
including

— fill-in forms.

— inlined images (file formats: gif, jpeg, xbm, pnm).

e It supported the usual protocols: http, gopher, ftp, news, local

184

32 WWWBrowser — a WWW client

files/directories.

It fetched multiple inlined images in parallel. This made WWWBrowser
faster than Mosaic (the most widely used browser in 1994) when fetching
pages with many small images.

It simplified copy and paste of URLs. You could mark a URL in, e.g., a
text editor and then click with the middle mouse button in the browser
window to view that page.

Some quick facts about the 1994 implementation:

The HTML input was parsed into an abstract syntax tree, which was then
converted in several stages into drawing commands producing text with
the appropriate layout, font and other attributes. This was done using
fudget kernels (see Section 22.1.2) written specifically for this purpose.

The HTML parser was implemented using the fairly efficient, backtracking
parsing combinators developed by Niklas Rojemo [R6j95a] for use in his
Haskell compiler. To improve the tolerance of bad HTML, an extra tag
balancing pass was added between the lexical analyser and the parser, but
the parser still failed on some web pages.

Form elements and images were implemented as ordinary fudgets, placed
appropriately in the text. (Their sizes affect the layout.)

Image conversion (e.g., decompressing gif and jpeg) was done by calling
external programs (giftoppm, etc.).

Image processing (color remapping and, optionally, dithering) was done
in Haskell.

Program size: approximately 4000 lines of Haskell.

Implementation time: approximately 1 man month.

The following was changed and added in 1997:

The source code was translated from Haskell 1.2 to Haskell 1.4.

The parser was rewritten using a version of Swierstra & Duponcheel’s
deterministic, error-correcting parsing combinators [SD96]. This parser
turned out to be more elegant (the extra tag balancing pass could be
removed) and more tolerant to bad HTML. At the same time, the parser
was updated to accept most of HTML 3.2 [Eng97]. The new parser ran
at roughly the same speed as the old one.

The rendering was done by translating the HTML into a Drawing (see
Section 27.4), using a function of the type Html —> Drawing ... (roughly).
The old tailor made fudget kernels were thrown out. The fudget library
placer tableP was be used to add support for tables (the table cell at-
tributes rowspan and colspan were not supported yet).

The fudget layout system was improved with the capabilities to do para-
graph filling and adjust the layout according to the width of the window
(see Section 27.6).

32.1 Overall structure of the current WWW browser
implementation 185

e Support for background colors and background images was added.

e Support for fetching documents via a proxy was added. (A prozy is a server
that relays document requests. Most WWW browsers can be configured
to fetch all documents via a proxy instead of fetching them directly from
the server that has the document.)

e Image fetching, conversion and processing was moved to a separate pro-
cess, allowing the text of a page to be displayed and be sensitive to clicks
before the images have been loaded. Part of the page may be redrawn
when the size of an image becomes known. (With a parallel implementa-
tion of fudgets, you would get this for free.)

e Experimental support for fupplets (functional applets) was added. Fup-
plets are applets written in Haskell using the Fudget library.

e WWWBrowser can now read the bookmark file created by Netscape [Netb]
and display it in a hierarchical menu.

e The program size now is approximately 4500 lines.

32.1 Overall structure of the current WWW browser im-
plementation

WWWBrowser is implemented in a straight-forward way. The key data types
are, not surprisingly, URL and Html. The key operations on these types are:

data URL = ...
data Html = ...

parseURL :: String —> Maybe URL
showURL :: URL —> String
joinURL :: URL —> URL —> URL

parseHtml .2 String —> Either Errorinfo Html
drawHtmIDoc :: URL —> Html —> HtmlIDrawing
type HtmIDrawing = Drawing ... -- details in Section 32.3

Documents are fetched from their location on the web by the fudget urlFetchF,
urlFetchF :: F HttpRequest HttpResponse -- details in Section 32.2

data HttpRequest = HttpReq { reqURL::URL, ... }
data HttpResponse = HttpResp { respBody::String, ... }

The fudget urlFetchF handles several protocol besides the HT'TP protocol, but
since HTTP is the primary protocol on the WWW, it was the one that was
implemented first. The fudgets for other protocols were then implemented with
the same interface.

Documents are displayed by the fudget htmlDisplayF,

htmlDisplayF :: F (URL,Html) HttpRequest

186 32 WWWBrowser — a WWW client

wwwBrowserF =
httpMsgDispF >==
loopThroughRightF urlFetchF’ mainGuiF >==<
menusF
where
mainGuiF = urllnputF >*< srcDispF >x<
(urlHistoryF >x< htmlDisplayF) >="< toHtml

httpMsgDispF =
nameF "MsgDisp" $ "Progress:" ‘labLeftOfF* displayF

urlFetchF' = post >"=< urlFetchF >=" < stripEither
where
post msg = ...
urllnputF = ... parseURL ... stringlnputF ... showURL ...

srcDispF = ...

urlHistoryF = ...

Figure 86. wwwBrowserF — the main fudget in WWWBrowser.

which displays HTML documents received on the input, and outputs requests for
new documents when the user clicks on links in the document being displayed.

Not all documents on the WWW are HTML documents. Other types of
documents (for example plain text, gopher pages, ftp directory listings and
Usenet news articles) are handled by converting them to HTML:

toHtml :: (URL, HttpResponse) —> (URL,Html)

The function toHtml uses parseHtml and other parsers.
Using the components presented above we can create a simple web browser
by something like

simpleWebBrowser =
loopF (htmIDisplayF >==< mapF toHtml >==< urlFetchF)

But in addition to the HTML display, WWWBrowser provides back /forward
buttons, an URL-entry field, a history window, a bookmarks menu, a document
source window and a progress report field. The structure of the main fudget is
shown in Figure 86. The layout is specified using name layout (see Section 11.2).

32.2 Implementing Internet protocols

The fudget urlFetchF is implemented as a parallel composition of fudgets han-
dling the different protocols. This is shown in Figure 87. The function distr

32.2 Implementing Internet protocols 187

urlFetchF :: F HttpRequest HttpResponse
urlFetchF = snd >"=< listF fetchers >="< distr

where
fetchers =
[("file" fileFetchF>="<reqURL), -- local files and ftp
("http",httpFetchF), -~ http and gopher requests

("news",newsFetchF>="<reqURL),
("telnet" telnetStarterF>="<reqURL)
]
distr req@(HttpReq {reqURL=url}) = (fetcher,req)
where
fetcher = ...

Figure 87. The fudget urlFetchF.

extracts the protocol field from the request URL and sends the request to the
appropriate subfudget. The implementation of the individual protocol fudget
kernels are written in continuation style. For the http protocol, the following
operations are performed:

1. A request is received in a high-level input.

2. The host field of the URL is extracted and a socket connection to that
host is opened. If a proxy is used, a connection to the proxy is opened
instead.

3. The request is sent to the host (or the proxy).

4. The reply is received in chunks (see Section 14.1) and assembled and the
connection is closed.

5. If a redirection response was received, the process is restarted from step 2
with the redirection URL.

6. If a normal or an error response was received, it is put in the high-level
output stream.

The implementation of the NNTP (news) protocol is similar. A difference is
that the NNTP protocol can handle several requests per connection, so the
connection is kept open after a request is completed, so that it can be reused if
the next request is directed to the same host. This is usually the case, since you
normally fetch all news articles from the same, local news server. (It is possible,
but uncommon, to specify a particular news server explicitly in the URL.)

The FTP protocol can also handle several requests per connection, and since
you are required to log in before you can transfer files, it is even more beneficial
to reuse connections.

The FTP protocol differs in that it uses a control connection for sending
commands that initiate file transfers and a separate data comnection for each
file transfer. The data connection is normally initiated by the server, to a socket
specified by the client. In the fudget implementation, these two connections are
handled by two separate, but cooperating, fudgets.

188 32 WWWBrowser — a WWW client

32.3 Displaying HTML

HTML documents contain a sequence of elements, which are delimited by tags.
Elements can contain plain text and other, nested elements. For example,

<H1>The fudget <TT>htmlIDisplayF</TT></H1>

is an element tagged as a top-level heading, and it has a nested element marked
to be displayed with a typewriter font.

There is a distinction between block-level elements and text-level elements.
The former mark up text blocks that are to be treated as complete paragraphs.
They are thus composed vertically. Heading elements are examples of block-
level elements. The latter mark up arbitrary sequences of characters within
a paragraph. Block-level elements can contain text-level elements (as in the
example above), but not vice versa.

WWWBrowser makes use of the distinction between block-level and text-
level elements. This makes it easier to do the layout. The function parseHtml
builds a syntax tree which on the top level is a sequence of block-level ele-
ments. Plain text occuring on the top level, outside any block-level element,
is understood as occuring inside an implicit paragraph (<P>) element. So, for
example,

<H1>The fudget <TT>htmlDisplayF</TT></H1>
The implementation of...

is parsed into the same syntax tree as as

<H1>The fudget <TT>htmIDisplayF</TT></H1>
<P>The implementation of...</P>

With this approach, the function drawHtmlDoc can simply recurse down the
syntax tree, composing the drawings of block-level elements using verticalP and
text-level elements using paragraphP.

Web pages contain not only text, but also images and form elements. In
WWWBrowser, these are implemented by embedding fudgets in the drawing.
We introduce the type ActiveDrawing for drawings containing active components
and define the type HtmIDrawing introduced above as

type HtmIDrawing = ActiveDrawing HtmlLabel Gfx HtmlInput HtmIOutput

type ActiveDrawing Ibl leaf i o = Drawing Ibl (Either (F i o) leaf)

where Htmllnput and HtmlOutput are the message types used by the fudgets
implementing images and forms. Elements with special functionality are marked
with a label of type HtmlLabel. Currently, hyperlinks, link targets, forms and
image maps are labelled.

To display ActiveDrawings, a generalisation of graphicsF (see Section 27.5.1)
has been defined:

activeGraphicsF ::
F (Either (GfxCommand (ActiveDrawing Ibl leaf i 0)) (Int,i))
(Either GfxEvent (Int,0))

32.4 Fetching images in parallel 189

The fudget htmlIDisplayF uses activeGraphicsF to display HTML documents. It
also contains

e a stream processor that collects the contents of form elements and gen-
erates the appropriate HttpRequest when the submit button of a form is
pressed.

e an instance of the fudget imageFetchF (described below) that the image
fudgets communicate with to obtain the images they should display.

32.4 Fetching images in parallel

Images in HTML documents are included by reference using URLs and are
fetched from their sources separately. The fudget htmIDisplayF uses the fudget
imageFetchF for this:

imageFetchF :: F ImageReq (ImageReq,ImageResp)

type ImageReq = (URL,Maybe Size)
type ImageResp = (Size,Pixmapld)

The requests handled by imageFetchF contain the URL of an image to fetch and
an optional desired size to which the image should be scaled. The responses
contain the actual size (after scaling) and a pixmap identifier.

Since documents may contain many images and the time it takes to fetch an
image often is dominated by network latency rather than bandwidth limitations,
it makes sense to fetch several images in parallel. The fudget parServerF,

parServerF :: Int —> F req resp —> F req resp

is a generic fudget for creating servers that can handle several requests in par-
allel. If serverF is a fudget that handles requests sequentially with a 1-1 corre-
spondence between requests and responses, then the fudget parServerF n serverF
handles up to n requests in parallel.

Clients of parServerF must have some way of telling which response belongs
to which request, since the order in which the responses are delivered is not
guaranteed to correspond to the order in which the requests are received. The
fudget imageFetchF accomplishes this by including the requests in the responses.

We also want to avoid fetching the same image twice. This is solved by using
a caching fudget,

cacheF :: Eq req => F req (req,resp) —>
F (client,req) (client,(req,resp))

In addition to caching responses, it keeps track of multiple clients and avoids
sending the same request twice to the server even if two clients send the same
request at the same time. (This situation arises easily in htmlDisplayF, since it
is common for the same image to occur in several places in the same HTML
document.)

In WWWBrowser, a composition like this is used to fetch images:

cacheF (parServerF 5 imageFetchF)

The implementation of parServerF is shown in Figure 88. The implementation
of cacheF is shown in Figure 89.

190 32 WWWBrowser — a WWW client

parServerF :: Int —> F req resp —> F req resp
parServerF n serverF =
loopThroughRightF (absF ctrlSPO) serversF

where
serversF = listF [(i,serverF) | i<—ns| -- n parallel servers
ns = [1..n] -- server numbers

ctrlSPO = ctrISP ns

-- The argument to ctrlSP is a list of currently free servers
ctrlSP servers =
case servers of
-- If all servers are busy, wait for a response.
[| —> getLeftSP $ fromServer
-- If there is a free server:
s:servers’ —> getSP §$ either fromServer fromClient
where
fromClient req =
-- When a requests is received, send it to the
-- first server in the free list and continue
-- with the remaning servers still in the free list.
putSP (Left (s,req)) $ ctrISP servers’
where
fromServer (n,resp) =
-- When a response is received from a server
-- output it and add the server to the free list.
putSP (Right resp) $ ctrISP (n:servers)

Figure 88. The fudget parServerF.

32.4 Fetching images in parallel 191

cacheF :: Eq req => F req (req,resp) —> F (client,req) (client,(req,resp))
cacheF serverF = loopThroughRightF (absF (cacheSP [] [])) serverF

cacheSP cache pending =
getSP $ either answerFromServerSP requestFromClientSP

where

requestFromClientSP (n,req) = -- A request from client n.
assoc oldSP newSP cache req

where
oldSP ans = -- The answer was found in the cache.
putSP (Right (n,(req,ans))) $
cacheSP cache pending
newSP = —- A new request, send it to the server, and

-- add the client to the pending list.
if req ‘elem’ map snd pending
then cont
else putSP (Left req) cont
where
cont = cacheSP cache ((n,req):pending)

answerFromServerSP ans@(req,) =

-- The server delivered an answer to request req,
-- save it in the cache,
-- forward it to waiting clients and remove them from
-- the pending list.

putsSP [Right (n,ans) | (n,)<—ready] $

cacheSP (ans:cache) pending’

where
(ready,pending') = part ((==req).snd) pending

Figure 89. The fudget cacheF.

192 32 WWWBrowser — a WWW client

32.5 Discussion

A drawback with WWWBrowser, as compared to other modern browsers, is
that it does not display documents incrementally as they are received from the
network. This is due to several facts:

e The current design of urlFetchF does not output anything until it has
received the complete document.

e Even if urlFetchF was changed to output chunks as they are received, you
would have to concatenate all the pieces before you apply the function
parseHtml to it.

e The fudget htmlDisplayF is implemented with graphicsF. When graphicsF
receives a new drawing to display, it computes its size and adjusts the
window size accordingly before it draws anything in the window. This
means that it needs the complete drawing before it can display anything.

One way of achieving incremental display of received documents would be to let
urlFetchF output a response containing the document as a lazy list of characters
as soon as it begins receiving it from the server. This would allow you to apply
the parser and the drawing function immediately and send the resulting drawing
to graphicsF. The parser parseHtml and drawing function drawHtmIDoc must be
carefully constructed to be lazy enough to produce some output even when only
an initial fragment of the input is available. You would also have to change
graphicsF so that it does not start by computing the size of the drawing. It
should instead lazily compute drawing commands (see Section 27.2) to send
to the window system. The size of the window should be adjusted regularly
according to where the drawing commands generated so far have drawn.

The above solution seems to require the introduction of some mechanism for
indeterministic choice, since while the drawing commands for the document are
being computed and output, the program should to continue to react to other
input.

However, the trend in I/O systems for functional languages goes towards
making I/O operations more explicit. Even the Fudget library has abandoned
the representation of streams as lazy lists in favour of a simpler deterministic
implementation. Using a lazy list for input as above is thus a step in the
opposite direction. However, to program indeterministic systems on a high level
of abstraction, streams as lazy lists seem to be useful.

One can of course think of ways of achieving incremental display without
doing input in the form of lazy lists.

e We could let urlFetchF output chunks of characters as they become avail-
able.

e We could create a parsing library that creates parsers in the form of stream
processors. The type of the function parseHtml would then be SP String
Html instead of String —> Html. However, we will not achieve incremental
display if we continue to output the syntax tree of whole document in
one message. We would instead have to output a sequence of document
fragments.

32.5 Discussion 193

e The input of the fudget htmlIDisplayF would be document fragments in-
stead of complete document. We are thus moving one step in the direction
of an HTML editor instead of a simple display.

But it does not seem like good software engineering to have to create a differ-
ent parsing library just because we want to use the constructed parsers in an
interactive program, but sticking to the philosophy behind the Haskell I/0, it
seems that this is what we would have to do.

The conclusion we draw from this is that the current I/O system in Haskell
does not integrate well with laziness.

194 33 Alfa — a proof editor for type theory

1 lusersicsihallgrentete/ Alfa/Library/Ex/satslogikExermpd™i=l B3

pen ===

[G] Give in English = ; [
m et import satslogik

[Tl Trivial let Sample Natural Deduction style proofs of some statements in the

[c] case
Ml —Eec(A,BePFrop,abe
01 vE=(A,B,C eProp,ao

propositional calculus
The commutativity of conjunction:

[An2] nE2 (A, B e Prop,ab e andCommut (A, B eFrop,ba esBrnAleAnE
[An] ~El (A, B e Prop,ah mba .
[Ab] LE=(AecProp,absel) AE2 o
= I
A B "

I I
|.?2?eB |

Figure 90. Window dump of Alfa, illustrating the construction of a simple proof
in natural deduction style.

33 Alfa — a proof editor for type theory

Alfa is a WYSIWYG proof editor. It allows you to, interactively and incre-
mentally, define theories (axioms and inference rules), formulate theorems and
construct proofs of the theorems. All steps in the proof construction are imme-
diately checked by the system and no erroneous proofs can be constructed. The
logical framework used is one of Thierry Coquand’s versions of Per Martin-Lof’s
Type Theory.

Alternatively, you can view Alfa as a syntax-directed editor for a small purely
functional programming language with a type system that provides dependent
types. The editor immediately checks that programs you enter are syntactically
correct and type correct.

Alfa is largely inspired by Window-Alf [AGNvS94], implemented by Lena
Magnusson and Johan Nordlander, and has a similar user interface.

The plan is that Alfa should improve on Window-Alf by

e allowing the user to define how proof terms should be presented on the
screen (and on paper). This includes simple things like argument hiding
and infix operators, but also more advanced mathematical notation and
natural deduction style proof trees and other representations of proofs.
Alfa should also allow you to produce documents where explanatory text
and proof fragments are interleaved.

e using ideas from hypertext and Web browser to allow the user to efficiently
navigate through large proofs and libraries.

Some of this has been implemented. As shown in Figure 90, proofs can be
presented in natural deduction style.

Whereas Window-Alf was implemented in Standard ML (proof engine) and
C++ & Interviews (user interface), Alfa is implemented entirely in Haskell,
using Fudgets for the user interface. At the time of writing, the source code
consists of about 8000 lines, distributed as follows:

195

i1 Alfa Text Input

72 =

|zuce Jsuce zerad

1°l [got ¥ but expected one of

Figure 91. The smiley indicates whether there is a syntactic error in the input.

e The proof engine by Thierry Coquand. 2700 lines. This includes a parser
and parser combinators (480 lines).

e Extensions and improvements of the Fudget library. 1900 lines. The
largest part of this is the new fudgets for displaying structured graphics
(described in Chapter 27) and syntax-directed editing. It also includes
a new file-selection window and a string-entry window with immediate
syntax checking and feedback via a smiley (see Figure 91). Although the
development of these were prompted the Alfa project, they are general
enough to be used in other contexts.

e The Alfa User Interface. 3400 lines. The largest parts are the implementa-
tion of the WYSIWYG style editing operations (1000 lines) and the code
for drawing/building abstract syntax trees used by the syntax-directed
editor fudget (800 lines).

In addition, Aarne Ranta has supplied 2100 lines with support for natural lan-
guage. Some of this code had been integrated in Alfa, but this work was in a
rather experimental stage.

More detailed and up-to-date information on Alfa is available on the WWW
[Hal97].

196 34 Humake — a distributed and parallel make tool for Haskell

1 Humake =] B3
Update m|| [Sort By le De y Graph |
——status: ok
@ AllFudgets —-location: fDependency Graph
@ BufferButtonF ——dates: FileDates { sourceDate = (At 199
import Moculelds
(D EEr = impart Int Set
@ CDmP'IBF ; import Modules
@ ContinuationlO import File Mames
O DependencyF import Int hap
@ Dependency Graph Imparted by:
@ DialoguelO mﬂéef LstF
oclule Lis
QO ULEUSEEIS Dependency F
@ FileNames Toda Graph
@ Fudgets
@ GetEnv -
#HO . Update
2 waiting: TodoGraph
localhozt compiling ModulelistF

Figure 92. The user interface of Humake.

34 Humake — a distributed and parallel make
tool for Haskell

Humake is a tool for compiling Haskell programs. It allows independent mod-
ules to be compiled in parallel, possibly on different computers. It has a graph-
ical user interface (see Figure 92) where the progress of the compilation can
be monitored and information on individual modules can be obtained. The
module-dependency graph is automatically extracted from the source code. The
dependency graph, file-modification dates and other module information is re-
tained between compilations and can be dynamically updated when a module is
changed, to minimise the work required to start a recompilation and thus make
the edit-compile-test development cycle faster. In the current version, the user
interface shows

a module list where the status of each module is indicated by a colored
lamp. The color is green if the module is up-to-date, yellow if it is be-
ing compiled or waiting to be compiled (because it is out of date with
respect to its source code or the interface of an imported module), red if
compilation of the module failed and blue if the module was taken from
a pre-compiled library. A menu allows you to choose from a number of
different sorting orders.

a module information window, which shows imported modules, modules
that import this module, file location and modification dates.

an update button which makes Humake re-read the module information
after it has been changed. Humake can also receive change notifications
directly from a text editor. This has been implemented for Emacs.

a list showing which modules are currently being compiled and how many
modules are currently waiting to be compiled.

34.1 Implementation 197

main = fudlogue $ shellF "Humake" humakeF

humakeF =
loopLeftF ((modulelnfoF >+ <parallelCompileF) >==< dependencyF)
>==< editorInterfaceF

--- GUI fudgets:
statusDisplayF = ... --the bottom part of the window
modulelnfoF = ... -- the module list, module info and the update buttons

--- Non-GUI fudgets:

parallelCompileF =
filterRightSP >~ ~=< (statusDisplayF>+<idF) >==
loopThroughRightF (absF ctrISP) (parServerF hosts compileF)
where
ctrISP = ...

parServerF :: [id] —> (id—>F req resp) —> F req resp
parServerF ids serverF = ... -- essentially as in Figure 88

compileF :: String —> F CompilerReq CompilerResp
compileF host = ... -- a compilation server

editorInterfaceF :: F a String
editorInterfaceF = ... -- outputs the name of a file when it is saved

Figure 93. Implementation of Humake.

34.1 Implementation

The structure of the implementation is sketched in Figure 93. Most of the work
is handled by the fudget dependencyF. It traverses the modules to extract the
module-dependency graph and builds a representation of it. It also maintains a
data structure representing the status of the compilation process. This structure
is chosen so that when a compilation completes, or a module is updated, a new
compilation can be started as quickly as possible.

The source is about 1200 lines long.

198 35 Space Invaders — real-time and simulation

Space Invaders

Figure 94. Space Invaders — a typical interactive real-time game.

35 Space Invaders — real-time and simulation

This section illustrates how the Fudget system can be used to write real-time
interactive games. This shows that the Fudgets GUI toolkit is not limited
to traditional, fairly static, graphical user interfaces, but also allows you to
construct interfaces with lots of animated objects. By structuring the program
with one concurrent process (one fudget) per animated object the program can
be seen as a model that simulates some real-world objects and the way they
communicate.

35.1 Space Invaders

We start with a brief description of the classical game Space Invaders. Only
the most fundamental parts of the game have actually been implemented. In
this game, an army of invaders from outer space is approaching the earth. The
player must shoot them all down before they reach the surface. Some points
are added to the player’s score for each invader that is shot down. The player
controls a gun, which can be moved horizontally at the bottom of the screen
(the surface of the earth) and which can fire vertically. The invaders initially
move from left to right. When the right-most invader reaches the right edge
of the screen all invaders first move downwards a small distance, then move
horizontally again until the left-most invader reaches the left edge, and so on.

35.2 Structure of the Space-Invaders implementation

In this section we describe an implementation of Space Invaders, where the each
object is implemented as a fudget. The objects are:

35.2 Structure of the Space-Invaders implementation 199

Int Point Point XEvent

spacelnvadersF =

scoreF invadersF torpedoF gunF spaceF

InvaderMsg

Point+Tick Point

invadersF =

listF [invaderF n | n<- ...] shoutSP tempoF

Figure 95. The processes and their interconnection in the Space-Invaders im-
plementation.

1. spaceF: the space fudget. This is the black background in which all the
other objects move around.

2. gunF: the gun.
3. torpedoF: the torpedoes fired by the gun.
4. invaderF: a number of invaders

There is also scoreF, which displays the current score and a high-score. gunF
and torpedoF use timers internally to control the speed of their motion. To
coordinate the motion of the invaders, they are controlled by a common timer
which is located in a windowless fudget called tempoF. There is also an abstract
fudget called shoutSP, which broadcasts timer alarms and other input to all
invaders.

Section 35.2 illustrates how the fudgets are interconnected. The information
flow is as follows: the space fudget outputs mouse and keyboard events to gunF.
(This allows the user to place the mouse pointer anywhere in the window to
control the gun.) The gun responds to these events by starting or stopping its
movement, or by firing a torpedo. When the gun is fired, it outputs its current
position to the torpedo fudget. The torpedo then starts moving upwards from
that position. When it hits something, it outputs its current position to the
invaders. Each invader then checks if the hit is within the area it occupies on
the screen and, if so, it removes its window and dies.

Below, we take a closer look at invaderF. The other fudgets are just variations
on a theme, so we will not discuss them further.

The fudget invaderF maintains an internal state consisting of the following
parts: the current position (a Point), the current direction (left or right), if it
is time to turn (i.e., move downward at the next timer alarm, and then change
directions).

200 35 Space Invaders — real-time and simulation

The invaders speak the following language:
data InvaderMsg = Tick | Turn | Hit Point | Death (Int,Int)

When an invader hears a Tick, it moves one step in the current direction. It
also checks if it has reached an edge, in which case it outputs Turn, which is
received by all invaders. When an invader hears a Turn it remembers that it is
time to turn at the next Tick. When a torpedo has hit something at position
p, all invaders receive Hit p, and check if p is within their screen area. If so, it
outputs Death n, where n is the identity of the invader. This identity is recorded
by shoutSP, so that it does not have to shout to dead invaders. It is also used
to determine how many points to add to the score.

The fact that all objects are implemented as group fudgets means that each
object has its own X window. To move an object you move its window. No
drawing commands need to be output.

How does the torpedo know if it has hit something? The torpedo is a window
which moves behind all other windows. This means that it becomes obscured
when it hits something. The X server sends a VisibilityNotify event when this
happens. This causes the torpedo to stop and send its current position to the
invaders. (Nice hack, isn’t it? But isn’t there a timing problem? And what if
the torpedo is obscured by some other application window? We leave it to the
reader to ponder over this.)

35.3 About the efficiency of the Space-Invaders implemen-
tation

One major point of the Fudget system (and of functional programming in gen-
eral) is to simplify and speed up program development. But it is of course also
important that the efficiency of the resulting program is acceptable.

We have measured the CPU time consumption of the Space-Invaders imple-
mentation described above running on a Sparcstation IPX in a situation where
55 invaders move twice per second, the gun and the torpedo move every 30ms.
The average CPU load was approximately 60%. 10% of this was consumed by
the X server. As a comparison, the program xinvaders, a C program imple-
mented directly on top of Xlib, consumes less than 5% CPU time in a similar
situation.

As usual, programming on a higher abstraction level results in a less effi-
cient solution. Part of the inefficiency comes from the use of Haskell and the
Fudget system. The load on the X server comes from the fact that the mov-
ing objects are represented as windows. Not surprisingly, moving a window is
a more expensive operation than just drawing an image of the same size. But
using techniques outlined in the next section, it is possible to rewrite the Fudget
program to draw in a single window, like the C program, and still keep the same
nice program structure, i.e., one process per moving object.

Above, we compared the efficiency of a high-level implementation (using the
Fudget system) of the game with a low-level implementation. It would also be
interesting to compare other user interface toolkits, e.g. Motif and Interviews,
to the Fudget system.

The CPU time consumption figures above do not say much about the real-
time behaviour of the two implementations. The fact is that the C program

35.4 Replacing fudgets with stream processors for efficiency 201

meets the real-time deadlines, but the Fudget program does not. As a response
to a Tick from tempoF, all 55 invaders should move one step. Computing and
outputting 55 MoveWindow commands unfortunately takes longer than 30ms,
which means that the MoveWindow commands for the gun and the torpedo will
be output too late, resulting in a jerky motion. This problem can be solved
in at least two different ways: manually, by not moving all 55 invaders at the
same time and thus not blocking output from other fudgets for longer than
30ms; automatically (from the point of view of the application programmer),
by introducing parallel evaluation and some kind of fair, indeterministic merge
of the output from different fudgets. The latter solution is of course the more
general one, and we hope to improve the Fudget system in this direction.

35.4 Replacing fudgets with stream processors for efficiency

Above, we outlined a program structure where each moving object on the screen
is represented as fudget with an associated window on the screen. It is of course
possible to use fudgets for other kind of simulations where the objects do not
correspond to user interface elements.

The behaviour of a single fudget is usually implemented as a sequential
program by using the stream-processor operators putSP, getSP and nullSP. To
increase the efficiency of our space invaders implementation, we can instead
structure the program as one fudget whose behaviour is described by some
composition of stream processors. This increases the efficiency in two ways:

e The communication between stream processors is cheaper (less tag-
ging/untagging).

e The number of windows is reduced. This means that conversions between
paths and window identifiers in fudlogue (Section 22.2.2) will be somewhat
cheaper, and that the load on the X server is reduced (since windows will
not be moved).

In Section 35.2 the input to the invaders is broadcast to all invaders. We im-
plemented this using listF (tagged parallel composition) and a separate stream
processor shoutSP. Some overhead can be avoided by using untagged parallel
composition of stream processors instead:

—%x— = SPab->SPab->SPab

This also makes it easy to write stream processors that dynamically split into
two or more parallel processes. One of the processes in a parallel composition
can terminate without leaving any overhead behind, since

nullSP —x— sp == sp —x— nullSP == sp

Doing the same with processes represented as fudgets would not give you the
same efficiency advantage since the low-level streams remain tagged even in
untagged parallel compositions. Thus when one process in a parallel composition
terminates, some tagging overhead will remain.

The fact that parallel compositions can reduce to nullSP gives us an oppor-
tunity to make use of the sequential composition operator seqSP (Section 16.4)
in an interesting way. Suppose that all that is needed to start a new level in

202 35 Space Invaders — real-time and simulation

the game is the creation of a new army of invaders. Then the behaviour of the
game could be programmed in the following way:

playGameSP = playLevelSP 1
playLevelSP level = startNewLevelSP level ‘seqSP* playLevelSP (level+1)
startNewLevelSP level = invaderArmySP level

invaderArmySP level = ... -- creates a parallel composition of invaders

When the last invader in the invader army dies, the parallel composition will be
reduced to nullSP, which causes seqSP to invoke the next level.

203

36 FunGraph

FunGraph is a prototype implementation of a typed visual programming envi-
ronment, inspired by the commercial product ProGraph.

A screen dump of FunGraph is shown in Figure 96. Basically, FunGraph is a
free-form spread sheet with types, where the user can place and connect objects
such as cells, sliders and graphs at will. The objects have input connectors on
top, and output connectors below.

FunGraph was developed before the fudget graphicsF of Section 27.5.1 was
implemented. Instead, graphics where implemented with fine grained fudgets,
so to speak. Each object is implemented with a number of fudgets. So each pin
is a separate fudget, for example. The objects reside in a dynListF placed in a
group window which controlled the wires. All messages from the output pins of
the objects are routed by the group window’s kernel and looped back into the
dynListF, so that the values seem to follow the wires.

204 36 FunGraph

& FunGraph 2
Hew | 0pen...| Quit! |

Unnamed 3]

(m]

0.0 1 5.0] [o.0] JD 5.0

N

o o
[Fhdl=r#s intAzsd)] |
[m]

!
YAY,

Figure 96. A screen dump of the program FunGraph. Two sliders controls
amplitude and frequency of a sine function defined in a cell. This function is then
visualised in a graph. The bubble window (implemented by bubbleRootPopupF)
shows the type of the pin that the user points at for the moment, which happens
to be the left input pin of the graph object. It has the type Num —> Num, which
is the type of the functions that the graph object can display.

The cell also shows the visual effect of one of the filter fudgets in the library,
which is called the shapeGroupMgr. The cell is currently being selected, which
is indicated by a yellow, glowing border around it. This effect is achieved by
wrapping a shaped window whose border tightly follows the fudgets inside it (in
this case three pin fudgets and one stringF). The border of the shaped window
is yellow, and its width is set to zero when the object is deselected, or a couple
of pixels as is the case with our cell. The shapeGroupMgr ensures that the shape
of the yellow-border window tightly follows the contour of the wrapped fudgets
by analysing the ConfigureWindow commands that they output.

205

Figure 97. The user interface of the protocol prototyping tool.

37 A mobile data communication protocol proto-
typing tool

In collaboration with Carlstedt Research & Technology AB and Eritel AB, we
developed a prototyping tool for testing and modelling communication protocols
in the mobile data network Mobitex. A screen dump of the tool is found in
Figure 97, and shows a configuration with three radio base stations, each which
covers a triangular area. The small circular objects are mobile users. Roaming
of the users between base station areas is simulated using the drag-and-drop
feature from Chapter 25.

206 38 Two board games

11 Explode _ (O]]|

*
®
®

o

Figure 98. The Explode game.

38 Two board games

We have implemented two board games, Explode (Figure 98) and Othello (Fig-
ure 99) using Fudgets.

The two games use the same underlying combinators for implementing the
board. The first is a button that can display changing graphics:

boardButtonF :: (ColorGen bgcolor, Graphic gfx) =>
bgcolor —> Size —> F gfx Click
boardButtonF bg size =
buttonF" (setBgColor bg) (g (blankD size)) >="< Left . setLabel . g

where buttonF" is the dynamically customisable (see Section 30.3) version of
buttonF and setLabel is a customiser that changes the button label.
The second combinator is boardF,

type Coord = (Int,Int)

boardF :: Coord —> (Coord —> F a b) —> F (Coord,a) (Coord,b)
boardF (w,h) squareF =

placerF (matrixP w) $

listF [((x,y).sqF (x,y)) | y<—[0..h—1] x<—[0..w—1]]

which, given the size of the board and a function from the coordinates of a
square to a fudget implementing that square, creates a parallel composition of
square fudgets with the appropriate layout. The square fudgets are addressed
with their coordinates.

38.1 The Explode Game 207

11 Othello _ (O]]|

|Balance: 1 |

Hew Game |

Figure 99. The Othello game.

38.1 The Explode Game

Before the 1995 GUI Festival in Glasgow, a workshop on graphical user-interface
toolkits and functional programming [Car95], a number of progamming chal-
lenges were distributed to the participants. One of the challenges was to imple-
ment the Explode game.

In the Explode game, two players take turns placing stones, or atoms, in
the squares of a board. A player can not place atoms in a square that already
contains atoms from the opponent. When a square is full, that is, contains
as many atoms as it has neighbours, it explodes, sending one atom to each
neighbour. All atoms of the invaded square change color to the invading atom’s
color. Invaded squares may become full and explode in turn. When the board
has settled, a new move can be entered. When the board starts to get full of
atoms, placing a new atom may cause an infinite chain reaction. When this
happens, the game is over and the player who caused it is the winner.

38.1.1 The Fudgets implementation of the Explode game

The Fudgets implementation of the Explode game was done as shown in Fig-
ure 100. Comments:

e The loop on the top level together with routeSP allow all square fudgets to
communicate with each other. However, each square knows its coordinates
and send messages only to its neighbours. The actual communication
structure is thus not directly reflected in the program structure.

e routeSP also acts as a referee. It keeps track of whose turn it is, to be
able to discard illegal moves. This is also where you would put a test for

208 38 Two board games

main = fudlogue (shellF "Explode" explodeBoardF)

explodeBoardF =
loopF (absF routeSP >==< boardF boardSize boardSize atomsSquareF)
where
routeSP = concatMapAccumlISP route White
route side (src,msg) =
case msg of
ClickedWhileEmpty —> (otherSide side, [(src,side)])
ClickedWithColor side’ —>
if side’==side
then (otherSide side, [(src,side)])
else (side, []) -- illegal move
Explode dsts side’ —> (side, [(dst,side")|dst<—dsts])

atomsSquareF :: Coord —> F AtomColor (SquareEvent Coord)
atomsSquareF (x,y) =
loopThroughRightF (absF ctrlSP) atomsButtonF
where
ctrlSP = concatMapAccumlSP ctrl (0,Nothing)
ctrl s@(oldcnt,oldside) msg =
case msg of
Left Click —> (s,[Right (case oldside of
Just side —> ClickedWithColor side
Nothing —> ClickedWhileEmpty)])
Right side —>
let cnt=oldcnt+1
in if cnt>=size
then become (cnt—size) side (explodemsgs side)
else become cnt side]

become cnt side msgs = ((cnt,optside),Left (cnt,side):msgs)
where optside = if cnt==0 then Nothing else Just side

size = length neighbours

explodemsgs = (:[]) . Right . Explode neighbours

neighbours = filter inside2d [(x—1,y),(x+1.y),(x,y—1),(x,y+1)]

inside2d (x,y) = inside x && inside y

inside x = 0<=x && x<boardSize

atomsButtonF :: F (NumberOfAtoms,AtomColor) Click
atomsButtonF = boardButtonF bgColor sqsize >="< drawAtoms

drawAtoms (count,color) = ... -- 20 lines

Figure 100. Fudgets implementation of the Explode game.

38.1 The Explode Game 209

explosions involving all squares (which should end the game). Otherwise,
all the work is done by the squares themselves.

e Square fudgets receive input when they are invaded by an atom. Square
fudgets produce output in the type SquareEvent:

data SquareEvent dest
= ClickNoColor
| ClickColor AtomColor
| Explode [dest] AtomColor

where the messages mean

— ClickNoColor "I was clicked and I was empty". routeSP then replies
with an atom of the appropriate color (depending on whose turn it
is).

— ClickColor color: "I was clicked and my color was color". If the color
matches with color of the current player, routeSP replies with an atom
of that color, otherwise the message is ignored (some indication of an
illegal move could be produced).

— Explode square color: "I explode and invade square with color".
routeSP forwards the message to the square at square. 2-4 messages
of this kind are sent when a square explodes.

The square fudgets also communicates with the internal atomsButtonF.

e The auxiliary function drawAtoms in atomsButtonF produces the appro-
priate graphical image for a square, using the types FlexibleDrawing and
Drawing described in Chapter 27.

38.1.2 A comparison of the Fudgets and Gadgets versions of the
Exlode Game

The submitters of the Explode challenge also provided a solution using Gadgets
(see Section 41.3.1). Their solution (see section 6 in [NR95]) is similar to ours
in that the effects of the users’ moves are computed by message passing between
processes representing the squares of the board. In both solutions, there is a
separate referee process that, for example, keeps track of whose turn it is to
move.

In the Fudgets solution, the squares are in effect connected to all other
squares, whereas in the Gadgets solution, each square process is connected
through wires only to its neighbours. As noted in [NR95], combining fudgets to
achieve exactly this connectivity would be difficult, and it would probably also
be difficult to add new processes to such a solution.

As described above, in the current Fudgets solution, each square fudget
knows its coordinates and computes the coordinates of its neighbours. It would
of course be possible to parameterise the square fudgets by an abstract repre-
sentation of the neighbours instead,

atomsSquareF :: [address] —> F AtomColor (SquareEvent address)

210 38 Two board games

and let routeSP compute the concrete addresses of the neighbours. This perhaps
makes the communication pattern more visible in the program text and prevents
errors in the implementation of atomsSquareF from breaking the pattern.

Since the Gadgets system uses indeterministic process scheduling, it is nec-
essary to explicitly keep track of when an explosion is in progress and when the
board is stable, since moves are allowed to be entered only when the board is
stable. The implementation of Fudgets is deterministic and internal communi-
cation has priority over external communication, so user input is automatically
queued until an explosion has subsided.

38.2 The Othello Game

The fudgets version of the game Othello allows a human player to play against
the computer or another human player. It was implemented by reusing an
existing implementation from 1990 with a TTY-based user interface. 388 of
584 lines were reused without changes. About 100 new lines were added for the
new graphical user interface. This demonstrates that the separation of user-
interface-specific code and application-specific code is good.

In the implementation of the Explode game, we used a distributed solution:
the work of computing the effects of the users’ moves is handled almost en-
tirely by the square fudgets. In the implementation of Othello, we have taken
the opposite approach: the board fudget only displays the board and receives
user input. The checking of the validity of a move and computation of its
effect is handled by a stream processor attached in the typical way with the
loopThroughRightF combinator (see Section 18.2). The structure of the pro-
gram is:

main = fudlogue (shellF "Othello" ottoF)

ottoF =
displayF
>==< loopThroughRightF (absF newGameSP) ottoBoardF
>==< buttonF "New Game"

ottoBoardF :: F BoardReq Coord
ottoBoardF = ...

newGameSP = playSP (reptree moves startpos)

playSP :: GameTree —> SP (Either Coord Click) (Either BoardReq String)
playSP current position = ...

The function reptree (lazily) computes a game tree which has startpos as the root
node and where the children of a node are obtained by applying the function
moves to it.

The stream processor playSP checks the current position for whose turn it is
to play, and then either waits for the user to enter a move or computes a good
move for the computer using standard alfa-beta game-tree search.

V1 Discussion

212 39 Efficiency and program transformations

39 Efficiency and program transformations

Efficiency considerations are of course important when building software li-
braries. Below, we discuss some efficiency aspects of stream processors that
have attracted our attention while working on the Fudget library.

We can distinguish two kinds of efficiency:

e execution efficiency: programs should run reasonably fast.
e programmer efficiency: programs should be easy to write.

While execution efficiency was, and to a large extent still is, a weak point of
functional language implementations (as compared to C, for example), program-
mer efficiency is a strong point, and one of the reason why functional languages
are interesting in the first place. There is often a trade-off between the two.

In the following section, we will discuss, in the context of the Fudgets system,
how we obtain reasonable execution efficiency. We have not tried to quantify
programmer efficiency in a way that permits further comparison or judgement.

39.1 Execution efficiency

Two factors that influence how fast fudgets program run are:

e the efficiency of the interface to the window system X Windows, in par-
ticular efficiency of event processing.

e the efficiency of the fudget combinators.

39.1.1 Efficiency of the interface to the window system

The efficiency of the interface to the window system was a concern right from
the start of the work on fudgets. The initial implementation used conventional
text I/O to talk to a C program which called routines in Xlib and returned the
results (see Section 22.3.1). The C program also forwarded events from X to
the functional program. This was not a very efficient implementation and hence
we tried to minimise the amount of data passed between the window system
and the functional program. Although this was done to avoid problems caused
by slow execution of functional programs, an additional positive effect is that
fudget programs perform well when using a low bandwidth connection (e.g.,
modem connection) between the X server and the application. Some figures to
back up this statement are given in Figure 101. (One can not draw any general
conclusions on performance from these, of course.)

When it comes to event processing, we naturally wanted to to minimise the
number of events that has to be handled by the functional program. Fortunately,
the X Windows system can do a lot of event processing for the application. By
setting event masks and button grabs appropriately, you can often eliminate all
insignificant events, i.e., all events that are sent to the application program carry
some meaningful information. In simpler window systems, the application has
to deal with every little mouse move and button/key presses/releases by itself.

39.1 Execution efficiency 213

Two tiny programs:

The Fudgets counter example from Section 9.4: 13s
The Motif counter example from Figure 112: 14s

Some small programs:

The Fudget calculator from Section 9.8 with 15 buttons: 13s
The Fudgets calculator Cla with 28 buttons: 16s
The calculator xcalc with 40 buttons, from X Windows distribution: 18s

Some larger programs:

The Fudgets WWW browser from Chapter 32: 22s
Mosaic 2.6: 75s

Netscape 3.0: 137s

Netscape 4.04j2: 313s

Figure 101. Comparing the startup times of some programs when running via
a 16.8kbps modem connection.

As an example, consider the implementation of a command UP |

button. It should behave as follows:

e When the pointer is over the area of the screen occupied by
the button and the user presses the mouse button, the button image should
be changed to look depressed (that is, pressed down, not discouraged!). If
the mouse button is released when the button appears depressed, the
button command is triggered.

e If the mouse pointer leaves the button image, it should revert to its normal
(raised) appearance (indicating that nothing will happen if the user now
releases the mouse button). If the user returns the pointer to the button
image, without releasing the mouse button, the button should return to
its depressed appearance.

The following type of events are thus of interest to the program:

e Mouse button presses (but only if the pointer is within the command
button).

e Mouse button releases (but only if the mouse button has been pressed
while the pointer was inside the command button).

e Mouse motion (but only if the mouse button has been pressed while the
pointer was inside the command button and only if the pointer crosses the
border of the screen area occupied by the command button).

In the X windows system a button grab, (see XGrabButton() in the Xlib manual)
with an event mask that selects button presses/releases and enter/leave window
events (each GUI element is a window), can be used to select exactly these
events, with only one small exception: if the mouse pointer enters the button

214 39 Efficiency and program transformations

area, the mouse button is pressed, the pointer leaves the button area and the
mouse button is released, the program will receive an insignificant button re-
lease event. The important thing is that no unnecessary motion events will be
received.

39.1.2 Efficiency of the Fudget combinators

39.1.2.1 Efficiency of different representations of stream processors
Two of the stream-processor representations presented above have been used in
practice. Early versions of the Fudget library used list functions and synthetic
oracles (Section 20.4.1). We later changed to the continuation-based represen-
tation (Section 20.4.2) since it proved to be slightly more efficient with the
compiler we used (HBC [Aug97]).

We also tried a third representation,

data SP i o = StepSP [o] (i—>SP i o)

which was slightly less efficient than the continuation-based representation.
In the discussion below, we assume the continuation-based representation
(although some of the ideas can be carried over to other representations).

39.1.2.2 Program transformations for efficiency Using loopThroughRight
(Section 18.2) is a general way to adapt an existing stream processor for use in
a new context. Another simple and common way to adapt a stream processor
is by mapping a function on the elements of the input or output stream:

sp —==— mapSP g
mapSP f —==— sp

For example, tagged parallel composition of fudgets, >+<, can be defined like

fudl >+< fud2 =
mapSP post —==— (fudl —+— fud2) —==— mapSP pre

where pre and post are the appropriate re-tagging functions. However, if imple-
mented directly, such a definition has a rather high overhead.

By transforming >+< to a form not involving —==—, —+— and mapSP, but
instead recursion and pattern matching on the stream-processor constructors, a
more efficient solution can be obtained.

Programs transformations of this kind are tedious to do by hand, but it could
still be worthwhile if the resulting code is to be included in a library. The above
described transformation has been done by hand in the Fudget library. We
measured the effect on a communication intensive fudget program containing
a parallel composition of 50 fudgets (the Space Invaders program described in
Chapter 35). The transformation reduced the CPU time consumption by over
35%. Encouraged by this result, we also transformed some more combinators
(for example >"~=< and >="< discussed in Section 13.1) in the same way.

It would of course be nicer to have these transformations done automati-
cally, especially when they are needed in application programs. The kind of
automatic transformation that would be useful here is deforestation [Wad90],
which eliminates intermediate data structures (applications of PutSP and GetSP
in this case) by using certain unfold/fold transformations.

39.1 Execution efficiency 215

39.1.2.3 A practical semi-automatic transformation Between the man-
ual and fully automatic implementations of the above program transformation
is a semi-automatic alternative. It is interesting because it requires less work
than the manual solution and it is more likely to be supported by a compiler
than the fully automatic solution.

The manual work required in this solution is located in the library. The
application programmer need not be aware of it. The automatic work required
is inlining (unfold) by the compiler. It actually works even without inlining, but
the efficiency gain is not as big.

The expressions we wish to optimise are of the kind illustrated above: a
stream-processor combinator applied to mapSP f, for some f. The trick is to
make mapSP a constructor in the stream-processor data type:

data SP a b = PutSP b (SP a b)
| GetSP (a —> SP a b)
| MapSP (a —> b)

| NullSP

Since the type is abstract, adding constructors to it like this will not be visible
to application programmers.

Now that MapSP is a constructor, the implementation of serial composition
(as shown in Figure 45) can be extended to handle the case when one or both
arguments are applications of MapSP in a more efficient way. This means that
an expression like

MapSP f —==— MapSP g
can evaluate to
MapSP (f . g)

With inlining, this step can be taken by the compiler and the composition f .
g can then be optimised further. Without inlining, we have at least eliminated
a use of —==—_ and thereby reduced the number of generated applications of
the PutSP and GetSP constructors.

We have not tested the above ideas in the Fudget library.

39.1.2.4 Performance measurements To get some idea of how high the
communication overhead is in the fudgets system, we performed some simple
measurements.

The first test measures the efficiency of serial composition and compares
the operators >==<, >~ "=< and —==—. We measured the time it took to
send around 5000 messages through a serial composition of a varying number of
identity fudgets (or identity stream processors). The program used is shown in
Figure 102. It was compiled with HBC and run on a Pentium Pro 200Mhz under
NetBSD 1.2 [Neta]. The results are shown in Figure 103. We can see that the
time grows roughly linearly with the length of the composition and that serial
composition of fudgets is much more expensive than serial composition of stream
Processors.

The last table in Figure 103 shows the performance of the function composi-
tion map id map id. It is more efficient than the other serial compositions.

216 39 Efficiency and program transformations

import Fudgets
main = fudlogue mainF
mainF = nullF >==< tstF >==< concatSP >""~=< stdinF
tstF = case argReadKey "comb" 1 of
1 —> nest (idF>==<) idF depth
2 —> nest (idSP>""~=<) idF depth
3 —> absF (nest (idSP —==-) idSP depth)

nestfz0=z
nest f zn = f (nest f z (n—1))

depth = argReadKey "depth" 0

Figure 102. A program to measure the efficiency of serial composition.

The second test measures the efficiency of parallel composition. We mea-
sured the time it took to send about 70000 messages through one of the fudgets
in a parallel composition of identity fudgets. The program used is shown in
Figure 104. The parallel compositions were created by listF,

listF :: (Eqa) => [(a, Fbc)] —> F (a, b) (a, ¢)

which internally constructs a balanced binary tree of parallel compositions and
a table for translating the addresses of the fudgets to positions in the tree. The
results are shown in Figure 105. The depth of the tree, and hence the time
it takes to send a message to a particular fudget in tree grows logarithmically
with the size of the parallel composition. However, since all that is known about
the address type is that it is an instance of the Eq class, the table lookup has
to be implemented as a linear search and hence the lookup time varies linearly
with the position in the list. From the results we see that the time of the table
lookup soon becomes the dominating factor. This suggests that it would be a
good idea to provide alternative combinators to listF, which require the address
type to be an instance of the Ord class, or even the Ix class, to reduce the time
complexity of the table lookup time to logarithmic or constant, respectively.

39.1.3 Space efficiency

A problem that almost inevitably occurs at some point when developing pro-
grams in lazy functional languages is space leaks. In early versions of the Fudget
library, streams were represented as (potentially infinite) lists. As discussed in
Section 20.4.1, this gave us problems with streams being retained indefinitely,
eventually causing programs to run out of memory. This problem was first
solved by changing the way the compiler (HBC) treats pattern bindings, as de-
scribed in [Spa93]. Later, the switch to the continuation-based representation
of stream processors also eliminated the problem.

39.1 Execution efficiency 217

time ./Internal <testinputl —S —h8M — —depth n

—comb 1 (idF >==< idF >==< ... >==<idF):
n User time GCs GC time Max heap Max stack
0 0.080u 0 0.00
50 4.173u 40 0.10 62432 836
100 8.475u 80 0.25 95840 1410
200 18.418u 163 0.95 159884 3042
400 44.521u 334 3.35 288020 3768

—comb 2 (idSP >~ =< idSP >""=< ... >~"=< idF):

n User time GCs GOC time Max heap Max stack

0 0.100u 0 0.00
50 0.755u 8 0.01 35712 210
100 1.452u 15 0.03 42270 272
200 2.869u 30 0.08 53504 642
400 5.706u 59 0.18 76976 1218
—comb 3 (idSP —==— idSP —==— ... —==—idSP):
n User time GCs GC time Max heap Max stack
0 0.076u 0 0.00
50 0.411u 4 0.01 32524 171
100 0.812u 7 0.00 35840 348
200 1.574u 15 0.04 41956 651
400 3.047u 30 0.07 54924 1260
map id . map id map id

n User time GCs GC time Max heap Max stack

0 0.000u 0 0.00
50 0.094u 2 0.00 3956 98
100 0.203u 4 0.00 5616 275
200 0.434u 8 0.00 9712 566
400 0.906u 16 0.01 17616 473

Figure 103. The efficiency of serial composition.

218 39 Efficiency and program transformations

import Fudgets

main = fudlogue mainF

mainF = nullF >==< tstF >==< concatSP >""=< stdinF
tstF = listF [(i,idF) | i<—[1..size]] >="< (,) sel

size = argReadKey "size" 1
sel = argReadKey "sel" 1

Figure 104. A program to measure the efficiency of parallel composition.

time ./Internal2 <testinput2 — —size n —sel &
k=1
n 2logn time GCs GC time max heap
1 0 1.352u 0.198s 11 0.02 29908
32 5 21791 0.149s 18 0.03 34924
256 8 2.457u 0.198s 22 0.07 66744
2048 11 2.989u 0.248s 27 0.31 317776
n=256
k 2logn time GCs GC time max heap
64 8 4.640u 0.179s 33 0.11
127 8 7.001u 0.238s 44 0.12
128 8 6.801u 0.288s 44 0.16
256 8 11.126u 0.278s 67 0.24 87880

Figure 105. The efficiency of parallel composition of fudgets.

219

40 Comments on Haskell and other language de-
sign issues

For the most part, we have found Haskell to be a pleasant language to work
with, but there are a small number of features that we are not so pleased with.
We discuss them below.

Through experiences with other languages, we have also realised that some
languages features not currently supported by Haskell would be useful to have.

40.1 The annoying monomorphism restriction

One of the most annoying features of Haskell, when trying to program in a
combinatorial style, is the monomorphism restriction. It means that a definition
that is not syntactically a function is not allowed to be overloaded, unless an
explicit type signature is provided.

As a simple example, say that you are going to use the function show a lot
and want to introduce a shorter name, s say. Because of the monomorphism
restriction, you can not write

s = show
There are two solutions: you can provide a type signature

s :: Show a => a —> String
s = show

or you can eta-expand the definition
s X = show x

In the Fudget library, we have used the eta expansion trick whenever possible,
since the inclusion of explicit type signatures just entail extra maintenance work
when the library is changed. For example, when a type is renamed or a function
is made more general, an arbitrary number of type signatures may need to be
updated.

Unfortunately, the eta expansion trick can not always be used, because not
all overloaded values are functions. For example, fudgets are not functions, so
in case you want to introduce a short name for displayF, you have to use a type
signature:

dF :: (Graphica) =>F ab
dF = displayF

Even more unfortunately, there are cases when it is not possible to express the
type signature. This occurs when the definition is local to another definition
which is polymorphic. It can happen that the local type depends on type vari-
ables in the outer definition, but Haskell has no mechanism for expressing such
types explicitly. Although these cases turn out to be rare in practice, it is a
principal flaw of the language.

220 40 Comments on Haskell and other language design issues

40.2 The Haskell string + class system anomaly

An inelegance of Haskell is that you can not directly make the type String an
instance of a class. This is due to the combination of two facts:

e String is not a data type, but a synonym for [Char].

e Instance definition can only be made for uninstantiated type constructors,
i.e., you can make instances for Char, and for lists in general, but you can
not make a particular instance for [Char]. (See [JJM97] for a discussion of
class system design choices.)

This has affected the classes Graphic, ColorGen and FontGen presented in Chap-
ter 27, and FormElement in Section 29.2. At one point during the development,
we avoided the problem by defining a data type that was used instead of strings,

newtype Name = Name String

but since this required the use of the constructor Name in a lot of places, we
later resorted to the same hack that is used for the Haskell classes Show and
Read, i.e., we added extra methods for dealing with lists to the classes. This
allow the methods for strings to be defined in the instance declarations for Char.
This means that instead of getting an instance for String, you get instances for
Char, String, [String], [[String]] and so on. For our classes it was not too difficult
to invent a meaning for the extra instances: Char was treated as one-character
strings. For the Graphic class, (nested) lists of strings are drawn by drawing all
the strings using some layout chosen by the layout system. For the ColorGen
and FontGen classes, lists were taken to mean spare alternatives: you can write,
e.g., ["midnightblue","black"] to provide one nice color and a safe fallback color.
Empty lists can give run-time errors, but are also likely to cause typing problems
(making the overloading unresolvable) which are discovered at compile time.

40.3 Existentially quantified types

Existentially quantified types [LO92| provide a very nice language feature, in
particular in conjunction with Haskell’s type classes [Ldu94]. We feel that this
feature should have been made part the Haskell standard a long time ago. As
it is now, existentially quantified types are provided as a language extension by
some Haskell compilers (at the time of writing, only HBC [Aug97], as far as we
know).

We have found existential types useful in several contexts: the implementa-
tion of Gadgets in Fudgets (Chapter 31), the combinators for syntax-oriented
manipulation (Chapter 28) and the datatypes for graphics (Chapter 27).

Since existential types are not part of the Haskell standard, we have tried
to keep their use away from core machinery of the Fudget library. Instead we
use them on the side to provide a nice feature as an additional bonus. This has
affected how we used them in the graphics data types. For example, since leaves
of drawing usually are of type Gfx, we could have used existential quantification
directly in the Drawing type,

data Drawing bl
= Graphic leaf => AtomicD leaf

40.4 Dependent types 221

eliminating the need for the type Gfx. We could also have defined the GCSpec
type as

data GCSpec
= (ColorGen c, FontGen f) => SoftGC [GCAttributes c f]
| HardGC GCtx

allowing you to write for example
SoftGC [GCForeground "red"]
instead of

SoftGC [GCForeground (colorSpec "red")]

40.4 Dependent types

The Fudget library provides two combinators for tagged parallel composition of
fudgets: the binary operator >+< and the list combinator listF:

>+< :: Fab —>Fcd —> F (Either a ¢) (Either b d)
listF :: (Eqa) => [(a, Fbc)] —> F (a, b) (a, ¢)

The former allows the composed fudgets to have different types, but composing
a large number of fudgets make addressing the individual fudgets clumsy: you
use compositions of the constructors Left and Right.

The latter makes it easy to compose many fudgets, but they must all have
the same type.

The use of dependent types would allows us to define a combinator that
combines the advantages of >+< and listF. In type theory [NPS90], there are two
forms of dependent types: dependent products (function types), and dependent
sums (pairs). The second form is the one we need here. It allows us to construct
pairs, where the type of the second component depends on the value of the first
component.

Using a Haskell-like notation, we write

(t:a, bt)

for the pair type where the first component is of type « and the second compo-
nent is of type b ¢, where ¢ is the value of the first component. Note that b is a
function returning a type.

By viewing ¢ as a tag, we can form lists of tagged values of different type,
and define a variant of listF with the following type:

dListF :: Eqa => [(t::a, F(it) (ot))] —> F (tza,it) (t:a, ot)

222 41 Related work

41 Related work

We start by giving a brief overview of combinators for sequential I/O in Sec-
tion 41.1. Section 41.2 discusses stream processing and combinations of concur-
rency with functional programming. Section 41.3 presents other GUI toolkits
written in functional languages, and Section 41.4 presents some functional GUI
libraries written on top of imperative toolkits. Section 41.5 discusses toolkits
which are not GUI toolkits in the traditional sense, but can be used to write
interactive programs with (animated) graphics. Finally, Section 41.6 presents
two imperative GUI toolkits.

41.1 Combinators for sequential I/O

As noted in Chapter 4, the stream I/O model allows us to write interactive
programs in a pure, lazy functional language. The model does not impose any
specific way of composing subprograms into larger programs.

Sequential composition is useful for structuring textual user interfaces, where
the interaction can be seen as a dialogue between the computer and the user,
that is, a linear sequence of input and output actions. In the following we
give a brief overview of combinators for sequential composition of effects. More
developed reviews can be found in Noble’s and Gordon’s theses [Nob95][Gor92].

41.1.1 Dialogues

The dialogue combinators by O’Donnell [0’D85] allow stream I/O programs
being built from components using sequential composition, and were used to
build a programming environment. Programs are assumed to input a stream of
Events and output a stream of Commands. The type of the components is:

type Dlg state = state —> [Event] —> ([Command], state, [Event])

The idea is that a component consumes an initial segment of the input stream
and returns some commands to be output and the remainder of the input stream.
It may also use and modify some global state information.

Sequential composition is defined as

join :: Dlg state —> Dlg state —> Dlg state
join dlgl dlg2 statel eventsl = (cmdsl++cmds2,state3,events3)
where
(cmdsl,state2,events2) = dlgl statel eventsl
(cmds2,state3,events3) = dlg2 state? events2

Input and output operations can be defined as:

put :: Command —> Dlg state
put cmd state events = ([cmd],state,events)

get :: (Event —> Dlg state) —> Dlg state
get edlg state (event:events) = edlg state event events

41.2 Streams and process programming 223

41.1.2 Interactions

A refinement of the dialogue combinators is Thompson’s interactions [Tho90].
The idea is much the same, but instead of manipulating a global state, interac-
tions input a value of some type and output a value of another type:

type Interaction a b = a —> [Event] —> ([Command], b, [Event])
The type of the sequential composition operator is
sq :: Interaction a b —> Interaction b ¢ —> Interaction a ¢

and the definition is the same as for join above. (Neither the type of join nor
the type of sq is the most general type of this function.)

41.1.3 Monads

Monads provide an even more general approach to I/O, and have also been
used for process programming, something we will see in later sections. Monads
were first a vehicle for giving denotational semantics for imperative program-
ming languages [Mog91], but the concept was then carried over to practical use
[Wad95][PJW93]. The same kind of structure had then already been used in
the KAOS project as a refinement of Thompson’s interactions [Tur87, Cup89),
and by Gordon [Gor89.

Monads for I/O build on a type 10 e—which represents I/O effects that
return a value of type a, when carried out—and the bind operation >>=, which
is used for sequential composition. The bind operation also binds the return
value of the first I/O operation to a variable so that it can be used in further
operations in the sequence:

>>=u:10a->(@—->10b)—>10b

The bind operation comes with an identity, called return, which simply returns
a value without any I/O.

return :: a —> 10 a

The 10 type can be seen as a function that transforms the world regarded as a
state, and also returns a value:

type 10 a = WorldState —> (a,WorldState)

41.2 Streams and process programming

As noted in the introduction, the idea of stream processors as such is not new.
However, in most previous work where stream processors are used, streams are
assumed to be represented as lists and stream processors as functions from lists
to lists. Moreover, the cons operation is usually strict, or even hyper-strict, in
its first argument, i.e., values can not be transferred between processes without
being evaluated first. This is in contrast to the stream processors defined here,
which allow unevaluated values to be communicated between stream processors.
This makes communication operationally on a par with argument passing and
let binding.

224 41 Related work

The idea of using demand-driven scheduling appears in [KM77], which uses
streams as a lazy data structure in an imperative process language. The lan-
guage also permits a functional notation where the output port from one process
is connected to the input port of another process, without the need to declare
the intermediate stream.

In purely functional languages there is a problem with indeterministic choice,
since this is not a pure function. In some work [Tur90a], this is solved by
moving the indeterministic choices to a box (the sorting office [Sto84]) outside
the functional program. In other work [JS89], a indeterministic merge operator
is added to the languages, which then is not purely functional anymore. By
using oracles [Bur88|, indeterministic choice can be added without breaking
the purely functional nature of a language. This is the solution we suggest for
indeterministic stream processors.

Concurrent Haskell [FGJ96] is an extension of a lazy functional language
with primitive monadic operations for creating processes and communicating via
value carrying semaphores. The implementation is based on a parallel reduction
machinery.

There is a number of functional languages with support for concurrent pro-
cesses and communication, both in lazy and strict functional languages. An
early example is PFL [Hol83]. Later examples are Amber [Car86], Concurrent
ML (CML) [Rep91b] and Facile [TLP*93]. CML and Facile are both based on
Standard ML [Sto97]. Concurrency abstractions on top of lazy functional lan-
guages have been implemented by Scholz [Sch95], Achten [Ach96], and Claessen.
Most of these systems use side effects in the implementations. The exceptions
are PFL and Achten’s system, which have purely functional schedulers, which
at some point go outside the type system, just as our Gadgets scheduler does
Chapter 31.

There are also functional languages aimed at utilising parallel hardware to
speed up computations. Examples of such languages are Id [Nik95|, SISAL
[Sis96]. This kind of parallelism does not support a concurrent programming
style, though.

Other work worth mentioning include: the language Omelett [Nor94]—a two-
level language with reactive objects on the top level and pure lazy functional
expression language; H [Tru94]—a concurrent pure lazy functional language
with support for indeterministic merge of input streams on the top level; CBS
[Pra91]—the Calculus of Broadcasting Systems which has an implementation in
Haskell.

41.3 Functional GUI toolkits

There are a number of GUI toolkits written in functional languages which im-
plement widget sets on top of X Windows. In the following, we review Gadgets,
Haggis, BriX and eXene, but first we want to mention an early example of func-
tional GUI programming by Dwelly, although it was not a presented as a GUI
toolkit [Dwe89]. Dwelly’s work was based on the dialogue combinators, with the
addition of a recursive type Object, to capture dynamic evolution of dialogues:

data Object t s = O t (Cond s) ([Object t s] —> Dlg s)
type Conds =s —> [Event] —> Bool

41.3 Functional GUI toolkits 225

The type Object t s represents a potential dialogue. An object value O ¢ ¢ k has
a tag t, and a condition predicate ¢, which signals if the continuation dialogue
k is applicable in the current state of the program. Among other things, the
conditions predicates were used to test if the user had clicked within the area
that a button occupied. If the predicate c is true, k is applied to a list of active
objects to get a dialogue. This is done by the function treeCase, which takes a
list of active objects as an argument, and schedules the first object with a true
condition predicate:

treeCase :: [Object t s] —> Dlgts

The continuation k can do some I/O, and then again calls treeCase, with a
manipulated list of active objects, thus allowing a new set of possible dialogues.
In the manipulation, the tags are used as pointers into the list.

41.3.1 Gadgets

Noble has implemented a GUI library called Gadget Gofer [Nob95], where Gad-
get stands for generalised fudget. The motivation for this name is that gadgets
are processes that communicate via typed, asynchronous channels (called wires),
thus allowing a gadget to have an arbitrary number of input and output “pins”.
As a proof that gadgets are more general than fudgets, Noble implemented the
basic fudget combinators using gadgets. (For an implementation of Gadgets in
Fudgets, see Chapter 31.)

Noble implemented process scheduling and channel communication in the
runtime system of Gofer [Jon91], and added primitives for communication with
X Windows. A feature of Gadgets is that it only uses the most basic drawing
operations in the Xlib interface in one single X window. On top of this, Noble
has implemented a functional window system, complete with a window manager.

The gadget in Figure 106 implements the up/down counter, except that it
uses a bar graph to display the value. The counter gadget uses the following
library gadgets:

button’ :: Change ButtonAttributes —> Out a —> a —> Gadget
bargraph :: [In (Int —> Int)] —> Gadget
wrap' .2 Change WrapAttributes —> Gadget —> Gadget

Gadgets uses the same mechanism for default parameters as described in Chap-
ter 15, so button” and wrap' are customisable versions of button and wrap. The
button gadget button o a will send the value a on the wire output end o, when-
ever it is clicked. The gadget bargraph is waits for input functions on any of the
wire input ends in is, and when such a function arrives, it is used to update the
level of the bar graph. Note how the wire w is used to connect the two buttons
to the bar graph. The layout of the three gadgets is specified to be vertical us-
ing the operator <|>. The example shows how the specifications of layout (by
gadget combinators) and dataflow (by wires) are separated in Gadgets. Finally,
the wrap' gadget puts some space around the three gadgets.
The button parameter picture is used to specify up and down arrows:

uparrow, downarrow :: DrawFun

The type DrawFun roughly corresponds to the FlexibleDrawings in Section 27.3.

226 41 Related work

main = go [(counter,"Up/Down")]

counter :: Gadget

A
counter =
wire § \w —>
let bl = button’ (picture uparrow) (op w) (+1)
b2 = button’ (picture downarrow) (op w) (+(—1))
\4

g = bargraph [ip w] in
wrap' (border 20) (bl <|> g <|> b2)

Figure 106. The Gadget up/down counter.

41.3.2 Haggis

Just like Gadgets, Haggis [FP96] is based on a process extension of a functional
language, namely Concurrent Haskell.

The separation between user interface and application code can be explained
by studying the type of a couple of common GUI element, namely push buttons
and labels:

button :: Picture —> a —> DC —> 10 (Button a, DisplayHandle)
label :: String —> DC —> 10 (Label, DisplayHandle)

The monadic expression button p v d creates a button which will show the
picture p. The button’s value is v, and d is an environment, or display context
which carries default values (Haggis uses this for customisation, instead of the
default parameter mechanism in Fudgets and Gadgets). The monadic expression
returns an application handle of type Button, and a display handle. The GUI
element label does also return a display handle, but its application handle has a
different type. The display handles are pointers to the GUI elements, and can
be combined with other display handles with layout combinators, for example
hbox:

hbox :: [DisplayHandle] —> DisplayHandle

The application handles can be used to modify various aspects of the GUI
elements, depending on their type:

setButtonLabel :: Button a —> Picture —> 10 ()
disableButton :: Button a —> 10 ()
enableButton :: Button a —> 10 ()

setLabel :: Label —> String —> 10 ()

The most important feature of the button handle is the possibility to wait for
it to be clicked:

41.3 Functional GUI toolkits 227

counter :: DC —> 10 ((Label, Button (Int—>Int)), DisplayHandle)
counter env =

label (show start) env >>=\(lab,Idh) —>

button (text "Up") (+1) env >>= \(inc,idh) —>

button (text "Down") (+(—1)) env >>= \(dec,ddh) —>
combineButtons [inc,dec] >>= \btn —>

return ((lab,btn), hbox [Idh, idh, ddh])
start = 0

main =
wopen ["sxname: Counter"] counter >>= \((lab,btn),) —>

let count n = getButtonClick btn ~ >>=\f —>
letn'=fnin
setLabel lab (show n") >>

) count n'

in

count start

Figure 107. The Haggis up/down counter.

getButtonClick :: Buttona —> 10 a

When getButtonClick b is called in a process, it will be suspended until the
user clicks b, and then the button’s value is returned. Internally, this uses a
trigger (which can be seen as value carrying condition variable), one of several
synchronisation abstractions that Haggis provides on top of Concurrent Haskell’s
value carrying semaphore type MVar.

The type Picture corresponds somewhat to the Drawing type in Section 27.4,
and permits advanced structured graphics to be defined. Haggis pictures are
described further in [FJ95].

In Figure 107, we see a version of the the up/down counter in Haggis. The
function counter defines the user interface. It returns a display handle, and
handles to the label and a combination of the two buttons, created by

combineButtons :: [Button a] —> 10 (Button a)

This combination has the desirable property that a call to getButtonClick waits
for any of the push buttons to be clicked.
In main, the counter function is passed to wopen,

wopen :: [String] —> (DC —> 10 (a,DisplayHandle))
—> 10 (a,Window)

which creates the user interface in a shell window. The first argument to wopen
can contain default values for the display context. The example indicates that
the format for these values are similar to the resource data base in X [SG86].
In the example, it is used to set the window title. The application handles

228 41 Related work

in counter are returned as they are from wopen, which also returns a window
handle which can be used to manipulate the shell window.

The rest of main defines the application behaviour of the program by defining
a loop which waits for button clicks, and then updates the label. In this example,
the loop comes right after the initialisation of the interface in the main process,
but in general, control loops are spawned as separate processes.

41.3.3 BriX

The toolkit BriX [Ser95] is built on top of X11 as part of the Bristol Haskell
System [HDD95], which aims at building concurrent and distributed systems
in a strictly deterministic manner. BriX inherits this deterministic view of the
world, and indeterministic merge is avoided by propagating information about
events through parallel compositions. This has similarities with the synthetic
oracles used in an early version of the stream processors (Section 20.4.1).

41.3.4 eXene

The toolkit eXene, by Reppy and Gansner [RG91, GR91], is an X Windows
toolkit written in a strict functional language, namely Standard ML of New
Jersey [SML]. It is written on top of Concurrent ML (CML) [Rep91lal, and is
thus multi-threaded. eXene pushes the functional border further: even Xlib is
thrown out, and the communication with X is written in ML.

Events from the X server and control messages between widgets are dis-
tributed in streams (coded as CML event values) through the window hierar-
chy, where each window has at least one CML thread taking care of the events.
Drawing is done by calling imperative drawing procedures. High-level events are
reported either imperatively or by message passing: when a button is pressed,
a callback routine is called, or a message is output on a CML channel.

41.4 Interfaces to existing toolkits

A number of interfaces for functional languages have been built on top of exist-
ing imperative toolkits. Early examples include Lazy Wafe by Sinclair [Sin92],
XView/Miranda by Singh [Sin91] and MIRAX by Tebbs [Teb91]. More recent
examples are Taylor’s Embracing Windows (using Hugs and Windows 95), and
TkGofer [VTS95]. The latter offers a monadic interface in Gofer to the popular
toolkit Tk [Ous94]. Application programs are written using a combination of
functional abstractions and a traditional imperative style with callbacks that
mutate variables or modify widgets.

TkGofer was further developed and improved in [CVM97], by using Gofer’s
expressive class system to provide a typed means of specifying parameters for
the widgets, similar to the dynamically customisable fudgets in Section 30.3.
The result is that most dynamic aspects of the Tk widgets can be controlled in
a type-safe way. For example, the button widget has type

button :: [Conf Button] —> Window —> GUI Button

and since the type Button is instance of both HasText and HasCommand, its
label and callback function can be configured with the following members:

41.4 Interfaces to existing toolkits 229

counter :: 10 ()
counter = start $
do w <— window [title "Up/Down Counter"]
e <— entry [initValue 0, readOnly True] w

let my button t f = button [text t,
command (modifyEntry e f)] w

u <— my_button "Up" (+1)
d <— my_button "Down" (+(—1))
pack (u "=~ e ~—"d)
modifyEntry :: Entry Int —> (Int —> Int) —> GUI ()
modifyEntry e f =

do x <— getValue e

setValue e (f x)

Figure 108. The TkGofer counter.

text :: HasText a => String —> Conf a
command :: HasCommand a => GUI () —> Conf a

An up/down counter written with Gofer’s do-notation (syntactic sugar for mon-
ads) is found in Figure 108.

41.4.1 Concurrent Clean

Concurrent Clean is an efficient implementation of a lazy functional language,
which was originally developed for Macintosh [Pv96]. It comes with an I/O
library which permits portable development of GUI programs that interface to
the GUI toolkits on Macintosh, Windows’95/NT and XView or OpenLook.
I/0 in Clean is carried out using the world-as-value paradigm [Ach96], which
means that an abstract value, representing the state of the world (or parts of
it), is passed around as an extra parameter in the program. The type system is
extended with a mechanism to guarantee that the world parameters are passed
in a single-threaded way throughout the program. It is this parameter thread-
ing that specifies the order in which I/O operations are performed; no explicit
sequencing combinator is used in the world-as-value style. However, Clean pro-
grams have a syntactic abbreviation for nested let expressions, which is used
when specifying sequences statements. Using this style, the monadic definition

f=
do T <—C
Ty <— C2
return e

is written (roughly)

230 41 Related work

f
#(n,8)=c1 s

(z2,8) = c2 s
= (e)

The world-as-value paradigm can be seen as programming in an unfolded vari-
ant of the 10 monad in Section 41.1.3. A disadvantage is that state and er-
ror handling becomes explicit, something which clutters the programs. On
the other hand, different kinds of state parameters can be handled—possibly
simultaneously—without the need of defining new combinators.

A Clean version of the up/down counter is shown in Figure 109. The first
lines in initcounter show the use of the nested-let sugar, and allocate unique
identifiers to be used in the data structure dialog, which specifies the GUI. This
data structure also relates the callback function upd to the push buttons, and
the initial local state.

41.5 Functional interactive graphics
41.5.1 Pidgets

The idea behind Pidgets, by Enno Scholz [Sch96], is to combine pictures with
widgets, to allow arbitrarily shaped objects to be sensitive to input and to
change dynamically. Definitions of pictures and some auxiliary types of values,
for example, numbers, vectors and colors, can refer to mutable variables. When
a variable is changed, and a picture that depends on it is visible in a window,
the window is automatically updated.

Pictures are described in the PostScript model [Ado90] for graphics. A
picture can made sensitive to input by associating it with a handler. The handler
is called if an input event, such as a mouse button press, occurs while the mouse
pointer is over the screen area covered by the picture. The handler returns a
value of type 10 () and can thus have arbitrary I/0O effects, including changing
a mutable variable that the picture depends on.

Pidgets is based on an imperative approach to dynamically changing graph-
ical objects. Monads are used to provide a purely functional interface to the
imperative machinery. Mutable variables are made part of the I/O monad. A
new monad Expr is defined for expressions (that is, values whose interdependen-
cies are described by a directed acyclic graph) that can depend on the values of
mutable variables.

In part, the purpose of Pidgets is similar to that of the fudget graphicsF
discussed in Chapter 27. An interesting experiment would be to see how Pidgets
could be used to implement combinators for syntax directed editors.

41.5.2 Fran

Fran (Functional Reactive Animation) by Elliott and Hudak [EI97] is a Haskell
library which supports a declarative specification of 2D and 3D animation, as
well as sound. The basic datatypes in Fran are behaviours and events. Be-
haviours can be viewed as values that vary with time, which is continuous.
A behaviour value that specifies a picture is the basic animation mechanism.

41.5 Functional interactive graphics 231
:: NoState = NoState
Start :: *World —> *World
Start world = startlO NoState NoState [initcounter] [] world
where
initcounter ps
(windowid, ps) = accPIO openld ps
(displayid, ps) = accPIO openld ps
(_.ps) = openDialog NoState (dialog windowid displayid) ps
= ps
where

dialog windowld displayld
= Dialog "Counter"
{ newLS = init

, newDef = EditControl (toString init) dwidth dheight
[ControlPos (Center,zero)
, Controlld displayld

, ControlSelectState Unable
]
:+: ButtonControl "-"
[ControlPos (Center,zero)
, ControlFunction (upd (—1))
]
:+: ButtonControl "+"
[ControlFunction (upd 1)
]
}
[WindowClose (noLS closeProcess)
, Windowld windowld

]

where

dwidth = 200
dheight = 1
init =0

upd :: Int (Int,PSt .l .p) —> (Int,PSt | .p)
upd dx (n,ps) =
(n1,appPlO (setWindow
windowld
[setControlTexts [(displayld,toString n1)]]) ps)
where nl = n+dx

Figure 109. Up/down counter in Clean.

232 41 Related work

Events can be external (for example, a button press), or calculated (for example,
two objects that collide), and are associated with the time at which they occur.

The reactivity is achieved by combinators that allow a behaviour to be re-
placed by another at the occurrence of an event. There are also combinators
for building complex behaviours and events from simpler ones. The behaviour
combinators can be seen as parallel composition of processes, allowing a number
of behaviours to act concurrently.

The primary goal for Fran is to specify multimedia and animation, which
it does in an elegant and declarative way. It might be possible to use Fran for
building complete GUI toolkits as well.

41.6 Imperative toolkits
41.6.1 Java

In the object-oriented programming language Java [GJS96], graphical user in-
terfaces can be programmed using the class library AWT (Abstract Window
Toolkit) [AWT]. Figure 110 shows how the up/down counter is defined as a
subclass of the Frame, which is used to construct top-level windows. The con-
structor method UpDown creates two button objects and a label object, and
adds so called action listeners (high-level event handlers) to the buttons, as
anonymous classes. These play the role of callbacks, and modify the counter
variable and the display.

The last lines in the constructor method defines the layout and adds the
buttons to the frame.

41.6.2 Pizza

The Java extension Pizza [OW97] allows the programmer to write polymorphic
code and use first-class functions. Of course, the AWT library can be used
directly in Pizza, but the Pizza programmer may also use a style which more
resembles functional /imperative toolkits like TkGofer, using callback functions
instead of classes. We exemplify this by defining a PizzaButton and a Pizzalabel.
The PizzaButton is a Button where we define the action as a callback function
directly in the constructor:

class PizzaButton extends Button {
public PizzaButton(String s, final () —> void action) {
super(s);
addActionListener(
new ActionListener() {
public void actionPerformed(ActionEvent e) {
action();
}
3);
}
}

The Pizzalabel is a polymorphic Label with methods for getting or setting the
value, and applying a function to it.

41.6 Imperative toolkits

233

public class UpDown extends Frame {

public UpDown() {
int count = 0;

Label display = new Label();
display.set Text(""+count);

Button up = new Button("Up");
up.addActionListener(
new ActionListener() {
public void actionPerformed(ActionEvent e) {
display.set Text(""+ ++count);

}
b3k

Button down = new Button("Down");
down.addActionListener(
new ActionListener() {
public void actionPerformed(ActionEvent €) {
display.set Text(""+ ——count);

}
b

setLayout(new FlowLayout());
add(up);

add(display);

add(down);

}

public static void main(String args[]) {
UpDown a = new UpDown();
a.setTitle("Up/Down Counter");
a.pack();
a.show();
}
}

Figure 110. Up/down counter in Java.

234 41 Related work

class Pizzalabel<T> extends Label {
private T value;

public PizzaLabel(T i) { super("" + i);
value = i;

public T get() { return value; }

public void set(T i) { value =i

setText("" + i); }

public void modify((T) —> T f) { set(f(value)); }
}

The Pizza up/down counter in Figure 111 is almost the same as the Java counter,
except that it does not use a local variable, and uses callbacks instead of action
listeners for the buttons.

41.6.3 C and Motif

For C-programmers, the toolkit Motif [You90] has been a popular choice. An
implementation of the counter example in C using Motif is shown in Figure 112.
The program starts with creating a shell widget called top, which will be the
root of the widget tree. The rest of the tree is created with repeated calls of
XtCreateManagedWidget, where the arguments specify what kind of widget to
create, and where to put it in the tree. The widgets are:

e row, a layout widget which put all its children in a row or in a column.
e display, which shows a string which will be the count.

e button, a button that the user can press. Whenever this happens, an
associated callback routine is called.

When the widget tree is created, the display is reset to show zero, and the
C-function increment is registered as a callback routine for the button widget.
increment increments the counter and updates the display widget.

41.6 Imperative toolkits

235

public class UpDown extends Frame {

public UpDown() {
Pizzalabel<int> display = new Pizzalabel(0);

Button up =
new PizzaButton("Up",
fun() —> void {
display.modify(fun(int x)—>int {
return x+1;
});
});

Button down =
new PizzaButton("Down",
fun() —> void {
display.modify(fun(int x)—>int {

return x—1;
});
});
setLayout(new FlowLayout());
add(up);
add(display);
add(down);

}

public static void main(String args[]) {
UpDown a = new UpDown();
a.setTitle("Up/Down Counter");
a.pack();
a.show();
}
}

Figure 111. The Pizza up/down counter.

236

41 Related work

#include <stdio.h>

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xm/Xm.h>
#include <Xm/Label.h>
#include <Xm/PushB.h>
#include <Xm/RowColumn.h>

static int count = 0;

static void SetDisplay(Widget display, int i)

char s[10];
Arg wargs[1];
int n = 0;

sprintf(s, "%d", i);
XtSetArg(wargs[n], XmNlabelString,

XmStringCreate(s, XmSTRING _DEFAULT _CHARSET)); n++;
XtSetValues(display, wargs, n);

static void increment(Widget b, Widget display, XtPointer call data)

count++;
SetDisplay(display, count);

int main(int argc, char xargv[])

Widget top, row, display, button;

top = Xtlnitialize("counter", "Counter", NULL, 0, &argc, argv);
row = XtCreateManagedWidget("row", xmRowColumnWidgetClass,

top, NULL, 0);
display= XtCreateManagedWidget("display", xmLabelWidgetClass,
row, NULL, 0);
button = XtCreateManagedWidget("button", xmPushButtonWidgetClass,
row, NULL, 0);

SetDisplay(display, count);

XtAddCallback(button, XmNactivateCallback,
(XtCallbackProc)increment, (XtPointer)display);

XtRealizeWidget(top);

XtMainLoop(); /* does not return */

Figure 112. The up/down counter in C and Motif.

237

42 Evaluation and conclusions

In this thesis, we have presented stream processors to support a concurrent pro-
gramming style in pure functional languages. Stream processors allow programs
to be built in a hierarchical structure of concurrent processes with internal state.
They thus support modular design of large programs.

With the stream processors defined here, we abstract away from the streams.
We define a number of combinators for stream processors, but no operations on
the streams themselves. We have considered a number of different implementa-
tions of stream processors, some of which are deterministic and work in a pure,
sequential functional language without any extensions, and some of which take
advantage of parallel evaluation and indeterministic choice (Chapter 20).

We have also presented a library of combinators for constructing applica-
tions with graphical user interfaces (Part II) and typed network communication
(Chapter 26). Together with a range of applications, the library has demon-
strated that the stream-processor/fudget concept is scalable; it can be used to
program not only toy examples, but more complex applications, like WWW-
browsers (Chapter 32) and syntax-oriented proof editors (Chapter 33). A key
combinator here is loopThroughRightSP (Section 18.2), which allows existing
stream processors/fudgets to be reused in a style that resembles inheritance in
object-oriented programming.

The library also demonstrates that pure functional programming languages
are suitable for these tasks, something which was not clear when this work
started. Although GUI fudget programs do a fair amount of I/O, response
times can be kept sufficiently low (Section 27.5.3).

Since we represent I/O effects by data constructors sent as messages, we
have been able to write higher order functions that manipulate I/O effects of
fudgets (Chapter 24), which provide a possibility for modifying the behaviour of
existing fudgets. A caching mechanism (Section 24.1) and a click-to-type input
model (Section 24.2) has been implemented with this method.

The default parameter mechanism (Chapter 15 and 30) demonstrates how
Haskell’s class system and higher order functions can be combined to simu-
late a missing language feature. Later, two other GUI libraries, Gadgets (Sec-
tion 41.3.1) and TkGofer (Section 41.4), have adopted this mechanism.

The fudget graphicsF in Chapter 27 shows that the task of displaying and
manipulating graphics can be handled efficiently in a purely functional way.
It has been used both in the web browser in Chapter 32, and in the proof
editor Alfa in Chapter 33. On top of graphicsF, we have also implemented a
set of combinators that allow syntax-oriented editors to be built in a high-level
style, resembling combinator parsers (Chapter 28). Our experience with these
combinators is limited sofar, but we believe that they can be employed in a
future version of Alfa.

Although most stream processors we have shown are programmed in a CPS
style, other styles can be used. Simple stream processors can be programmed
by using concatMapAccumlISP and a state transition function. A monadic style
can also be used, as is demonstrated in Chapter 31.

As the related work shows in Chapter 41, a number of elegant libraries
and interfaces have emerged for GUI programming in pure functional languages
during the last years. Is it possible to evaluate and compare all these libraries
and the Fudget library? This has been done to some extent in the review in

238 42 Evaluation and conclusions

[Nob95]. We will not give any further comparison here, but simply point out
some distinguishing features of fudgets and stream processors in general:

e Stream processors offer a simple concurrency concept which can be imple-
mented in any pure functional language. Of the other toolkits, Concurrent
Clean also provides a purely functional process concept, but it has a rather
complex implementation [Ach96].

The fudget concept has been implemented on top of a number of GUI
toolkits [Nob95][Tay96][RS93][CVM9I7], something which also gives evi-
dence that fudgets are easy to implement.

e Stream processors come with a special programming style. Since no ex-
plicit streams, channels, or wires are used, the routing of information be-
tween processes must be specified by using combinators. This can be seen
as a limitation of the paradigm, and some people indeed find it difficult to
adopt. On USENET, this has been formulated as: “...you could use some-
thing like Fudgets to build a GUI, but that’s less fun than having teeth
pulled” [O’S96]. An example of the typical amount of routing necessary is
shown in the implementation of somF in (Section 28.4, Figure 81), which
has a stream processor handling three output and three input streams.
An extreme example is the top-level fudget of Alfa (Chapter 33), whose
controlling stream processor defines 15 routing functions, to handle five
levels deep messages of Either type. By using routing functions defined
in one place, adding new subfudgets to the top-level fudget has become a
manageable task. It still requires a bit too much of mechanical work and
there is a need for some new set of combinators or some other solution to
simplify this programming task further.

One could argue that the combinator plumbing of messages imposes a
degree of structure on programs which could be healthy. Having explicit
identifiers for streams spread over a program results easily in a goto-like
spaghetti. The functional language FP by John Backus [Bac78] is entirely
based on the use of combinators instead of named variables.

e The stream processor concept also offers support the manipulation of mi-
grating processes, with the special feature that when a process is moved,
it is completely detached from all streams in its old context (Chapter 25).
We are not aware of anything similar in any other toolkit or process cal-
culus. In addition, since stream processors are pure values (in particular,
they do not use imperative variables), they can readily be cloned at any
time.

As shown in the Chapter 25, the migration mechanism can be applied to
fudgets and used to implement drag-and-drop of GUI fudgets.

42.1 Frequently Asked Questions

How important was lazy evaluation in Fudgets library and program-
ming? Could Fudgets be implemented in ML?

When the work on Fudgets started, Haskell used the stream-based I/O model
and stream processes were represented as list functions. Nowadays, the

42.1 Frequently Asked Questions 239

continuation-based representation of stream processors is used and Haskell has
switched to a monadic I/O system, both of which would work in a strict lan-
guage. So, lazy evaluation is no longer essential.

A problem with stream-based I/0O is the danger of getting “out of
synch” and reading one result too many or too few. Did this happen
to you in practice?

For a while, when we used the list based representation and that representa-
tion was visible to the programmer, the programmer had to be aware of the
“fudget law”, that is, the one-to-one correspondence between input and output
messages (see Section 20.4.1). We sometimes made mistakes. When the stream
processor type was made abstract, the fudget law became built-in and the pro-
grammer was relieved from thinking of it. Also, we started doing low level I/O
through functions like doStreamlOK (Section 21.4), which effectively removed
all problems of this kind.

Haskell has moved from stream-style I/O to monad-style I/O. Your
operations are CPS-style, but they could equally be monad style.
Did you make that choice consciously? Why?

The monadic programming style had not become popular when we introduced
the CPS style combinators, so we did not make a conscious choice between CPS
style and monadic style.

Did you come across any situations where Haskell’s type system
prevented you doing the Right Thing?

Yes. For example, the type XCommand is supposed be an interface to X Win-
dows, but we have added various “pseudo commands” that are handled within
the Haskell program and never output to the window system. It would have
been nice to define the proper commands as a subtype of all commands. Making
this distinction in Haskell would require an extra level of tagging, which we felt
was not justified. Analogously, the type XEvent contains some “pseudo events”.

240 43 Future work

43 Future work

43.1 Towards a calculus for stream processors

Certainly, the implementation of stream processors used in the Fudget library
could serve as a semantic base for formal reasoning about stream processor
and fudget programs. But we might want to use a more abstract semantics
of stream processors, which would also capture truly parallel-evaluating and
indeterministic stream processors. Suppose that we have an implementation
for indeterministic stream processors. Would the Fudget library still work?
Or are we relying on some subtle ordering of messages that today’s sequential
implementation gives us, thus avoiding tricky race problems? The answer is
probably that most of the library would still work, but at some points, we
implicitly rely on implementation details. As one example, consider two identity
stream processors in parallel:

p :: SP (Either a b) (Either a b)
p = idSP —+— idSP

When using the implementation from the Fudget library, p is nothing but the
identity stream processor for type Either ¢ b. But if we were to use indeter-
ministic stream processors, we cannot be sure that message order would be
maintained through p. If we first send Left a immediately followed by Right b
to p, why should there be a guarantee that it will output these messages in the
same order?

Naturally, the Fudget library does not have a lot of identity stream processors
in parallel. Fudgets, on the other side, are abundant in the library, and they
very often sit in parallel. One example where implicit assumptions exist about
message order output from parallel fudgets is in the radio group fudget radioF.
Another, more explicit, assumption was made in the implementation of the
Explode game in Section 38.1.1. In Explode, it is crucial that the internal
communication after a explosion has priority over external communication. This
is what the continuation-based implementation of stream processors gives.

In order to reason formally about indeterministic stream processors, we
present the stream-processor calculus (SP-calculus).

43.1.1 Basic stream processors

There are seven basic ways of forming a stream processor. We let the letter z
denote a variable, and s, ¢, ... stream processors.

z (Variable)
st (Put)
z?s (Get)
s<-t (Feed)
s K t (Serial composition)
s+t (Parallel composition)
£s (Loop)

For the reader who has used stream processors in the Fudget library, these
operators should be familiar. The operator ! correspond to putSP, and ? can
be seen as a combination of abstraction and getSP: z ? sis the same as getSP (\z

43.1 Towards a calculus for stream processors 241

—> 5). The feed operator in s <- ¢ feeds the message t to the stream processor
s (similar to startupSP, which feeds a list of messages to a stream processor).
Serial composition corresponds to —==—, and parallel composition and loop
are untagged, corresponding to —x— and loopSP.

43.1.2 Congruence rules

Following the style of [BB90], we define a bunch of congruence rules which can
be used freely to find reaction rules to apply.

s+t = t+s (Commutativity of +)

s+t +u = s+ (t+w (Associativity of +)
Kty = sK(t<Ku) (Associativity of <)

s (tlu) = < H<Ku (Internal communication in <)

(s+t) < u = (s<-uw+(t< u (Distributivity of <- over +)

(slt)y<-u = s!(t< u) (Output from <)

(sl u = s!(t<Ku) (Output from <)

(x?s)<-t = st/q (Substitution)

43.1.3 Reaction rules

Whereas the congruence rules in the last section can be freely used in any direc-
tion without changing the behaviour of a stream processor, the reaction rules
are irreversible, and introduce indeterminism. The reason is that by applying a
rule, we make a choice of how message streams should be merged. There are two
places where merging occur, in the output from a parallel composition, and in
the input to a loop.

(s't)+u — s!'(t+w ((Output from +))

We can derive a symmetric rule by using the commutativity of 4+, but when it
comes to the loop, we need two rules.

L(s!'t)y — s!el(t<-s) (Internal input to £)
Ls)y<-t — £L(s<-t) (External input to £)

As an example of these rules, consider the stream processor (s! t) + (u ! v), which
can react to s ! (¢ + (u ! v)), but also to u ! ((s! ¢) + v), using commutativity.
Similarly, the loop (€ (s ! ¢)) <- w can react to both s! £ (¢ <- s) <- u and
L(s!t< u).

43.1.4 The M-calculus embedded

The SP-calculus is more expressive than the A-calculus, and we can define a
translation from the A-calculus into the SP-calculus.

[¢] = = (Variable)
[Ne.M] = z?[M] (Abstraction)
[MN] = [M]< [N] (Application)

The substitution rule for the SP-calculus correspond to the beta-rule of A-
calculus. However the eta-rule, which would correspond to z ? (s <- z) = s,
does not hold in general, something that we will see after having defined equiv-
alence of stream processors.

242 43 Future work

Having the power of A-calculus, we can define some familiar stream proces-
sors, such as the identity stream processor and the null stream processor.

fix = f?7(x?7f< (x< %)< (x?f< (x< %))
id = fiz<- (f?7x?7x!f)
0 = fiz< (f7x7f1)

43.1.5 Equivalent stream processors

We can define an equivalence ~ as the greatest equivalence relation satisfying:
s ~ sy if and only if:

e For all 0o; and s’ that s; can output and become, there must exist an
02 and s that s> can output and become. Furthermore, 0y ~ 0 and
s’ ~ s’ must hold.

e For all input ¢, s; <- t ~ $5 <- t must hold.

From this definition, we can see that z ? (s <- z) ~ s does not hold if s can
output something. The left-hand side is blocked, waiting for input, and could
not match the output from s.

43.1.6 Future work

More investigation is needed to turn the SP-calculus into an operational seman-
tics for stream processors:

e Check that we have exactly the congruence/reaction rules we need.

o Check that the congruence rules form a decidable relation. It must be
possible to find all possible reactions in a stream processor.

e The equivalence relation is good, but we really want to find a congruence
relation.

e Relate the SP-calculus to other calculi so that we can reuse their theory.

43.2 Stream processors as Internet agents

The interest in the Internet has resulted in a focus on new features in program-
ming languages. The information exchange over Internet has exploded, and
there is a need to exchange not only text, graphics and sound in a smooth way,
but programs. For program exchange to be smooth, the receiver of a program
must be certain that it does not do nasty things with his computer. This can
be achieved by accepting programs in a typed language, where the type should
give information about everything that the program can do, including all kinds
of side effects and communication. This is a property that stream processors
have, they can do nothing but outputting messages in a known type.

There is also an interest in having programs running for a while at one site,
then moving on to other sites, while gathering information etc. Such programs
are often called mobile agents. As we have seen in Chapter 25, the necessary ma-
chinery for mobile agent programming is already there in the stream-processor
concept. However, we need support in the underlying language implementation
so that values that are closures can be exchanged between computers.

A Online resources

A.1 The Fudgets Home Page
The address of the Fudgets Home Page is
http://www.cs.chalmers.se/Fudgets

On the home page you can find out how to download fudgets and install them,
what Haskell compiler to use and where to get it, what platforms are supported.
You can also browse and search the Fudget Library Reference Manual.

A.2 Supported platforms, downloading and in-
stallation

At the time of this writing, fudgets run under the X Windows system on a
number of Unix platforms, such as NetBSD, FreeBSD, Linux, SunOS 4.1, SunOS
5.x (Solaris 2.x), Digital Unix, IRIX, ...

The Fudget library is available in precompiled form for some of the above
mentioned platforms. The library is also available in source form.

To compile the Fudget library (in case you can not use a precompiled dis-
tribution) and fudget applications, you need a Haskell compiler. The current
version of the library works only with HBC [Aug97], since the library makes use
of existential types, which is an extension of Haskell currently supported only
by HBC, as far as we know. Earlier versions of the library work with NHC and
GHC as well.

The Fudget library and HBC are available for download from

ftp:/ /ftp.cs.chalmers.se/pub/haskell /chalmers
Read the README files and, if you get the precompiled version of the Fudget
library, make sure that you get matching versions of the compiler and the library.
A.3 Compiling Fudget programs

Fudget programs are easy to compile. Assuming the program is stored in a file
called Hello.hs, the command line to compile the program is

hbcxmake Hello

244 A.3 Compiling Fudget programs

Even if the program consists of several modules, invoking hbcxmake with the
name of the main module is enough to compile it. hbcxmake calls hbcmake, an
automatic make utility supplied with HBC.

B Fudget library quick
reference guide

This is an brief index of the Fudget library, listing the things that have appeared
in the examples throughout the text.

A more complete description of the contents of the Fudget library is provided
in the reference manual, which is available on-line via

http://www.cs.chalmers.se/Fudgets/Manual/

B.1 Top level, main program

fudlogue :: Fab —> 10 (), used on the top level to connect the main fudget
to the Haskell I/O system.

shellF :: String —> Fab —> F ab, creates shell (top-level) windows. All GUI
programs need at least one of these.

These functions are discussed further in Section 10.1.

B.2 GUI building blocks (widgets)

labelF :: (Graphic a) => a —> F b ¢, creates static labels.

quitButtonF :: F Click a, creates quit buttons.

intinputF :: F Int Int, creates integer-entry fields.

intDispF :: F Int a, creates integer displays.

buttonF :: (Graphic a) => a —> F Click Click, creates command buttons.

More GUI elements are presented in Chapter 10, which also explains the
above fudgets in more detail.

B.3 Combinators, plumbing

==<: Fab—->Fca—->Fcb, serial composition.

>+<:: Fab—>Fcd —> F (Either a ¢) (Either b d), parallel composition of
two fudgets, which can be of different type.

246 B.6 Graphics

listF :: (Eq a) => [(a, Fbc)] —> F (a, b) (a, ¢), parallel composition of a list
of fudgets. All parts must have the same type.

loopThroughRightF :: F (Either a b) (Eithercd) —>Fca—>Fbd, a loop
combinator for encapsulation.

More combinators for plumbing are presented in Chapter 17 and 18.

B.4 Adding application-specific code
mapF :: (a —> b) —> F a b, constructs stateless abstract fudgets.

mapstateF :: (a —> b —> (a, [c])) —> a —> F b ¢, constructs stateful ab-
stract fudgets.

Abstract fudgets are discussed further in Chapter 12.

B.5 Layout

labLeftOfF :: (Graphica) =>a —> Fbc —> F bc, puts a label to the left of
a fudget.

placerF :: Placer —> Fab —> F a b, is used to specify explicitly the relative
placement of the parts of a composite fudget. The first argument is a
placer.

verticalP :: Placer, specifies vertical placement, top to bottom.

revP :: Placer —> Placer, used to place parts in the reverse order.

matrixP :: Int —> Placer, creates a matrix with the given number of columuns.

holeF :: F a b, creates holes, which can be used to fill unused slots in a matrix
of fudgets, for example.

Layout is discussed further in Chapter 11.

B.6 Graphics
filledTriangleUp :: FlexibleDrawing, a triangle pointing up.
filledTriangleDown :: FlexibleDrawing, a triangle pointing down.

Graphics is discussed further in Chapter 27.

247

B.7 Alphabetical list

Roughly 200 of 720 identifiers defined in the Fudget library reference manual

have been used in the examples throughout the text. Here is an alphabetical

list of them:

—%— 1 SPab—->SPab—->SPab

—+—:SPab—>SPcd—> SP (Either a c) (Either b d)

—==—uSPab—->SPca—->5SPchb

>+< :: Fab —>Fcd —> F (Either a ¢) (Either b d)
==<:u:Fab->Fca—->Fcb

>="<u:Fab->(c—->a)->Fcb

>=""<:u:Fab->SPca—->Fcb

>"=<::(@a—>b)—>Fca—->Fchb

>""=<::SPab->Fca—->Fcbh

aleft :: Alignment

aTop :: Alignment

absF : SPab—->Fab

argKey :: [Char] —> [Char] —> [Char]

argReadKey :: (Read a, Show a) => [Char] —> a —> a
args :: [[Char]]

atomicD :: a —> Drawing b a

bgColor :: [Char]

bindSPm :: SPmabc—>(c—>SPmabd) —>SPmabd

border3dF :: Bool —> Int —> F a b —> F (Either Bool a) b

bottomS :: Spacer

boxD :: [Drawing a b] —> Drawing a b

buttonBorderF :: Int —> F a b —> F (Either Bool a) b

buttonF :: (Graphic a) => a —> F Click Click

buttonF’ :: (Graphic a) => Customiser (ButtonF a) —> a —> F Click Click
buttonF” :: (Graphic a) => Customiser (ButtonF a) —> a —> PF (ButtonF a)
Click Click

buttonGroupF :: [(ModState, KeySym)] —> F (Either BMevents a) b —> F a b
bypassF :: Faa —>Faa

centerS :: Spacer

colorSpec :: (Show a, ColorGen a) => a —> ColorSpec

compS :: Spacer —> Spacer —> Spacer

concatMapAccumlSP :: (a —>b —> (a, [c])) =>a —>SP bc
concatMapF :: (a => [b]) —> Fab

concatMapSP :: (a —> [b]) —>SP ab

concatSP :: SP [a] a

defaultFont :: FontName

deletePart :: Drawing a b —> [Int] —> Drawing a b

displayF :: (Graphica) => F ab

displayF' :: (Graphic a) => Customiser (DisplayF a) —> F a b
drawingPart :: Drawing a b —> DPath —> Drawing a b

dynF :: Fab —> F (Either (Fa b)a)b

248 B.7 Alphabetical list

dynListF :: F (Int, DynFMsg a b) (Int, b)
editorF :: F EditCmd EditEvt

fgD :: (Show a, ColorGen a) => a —> Drawing b ¢ —> Drawing b ¢
filler :: Bool —> Bool —> Int —> FlexibleDrawing

filterLeftSP :: SP (Either a b) a

filterRightSP :: SP (Either a b) b

filterSP :: (a —> Bool) —> SP a a

flipP :: Placer —> Placer

flipS :: Spacer —> Spacer

fontD :: (Show a, FontGen a) => a —> Drawing b ¢ —> Drawing b c
fontSpec :: (Show a, FontGen a) => a —> FontSpec

font_ascent :: FontStruct —> Int

font descent :: FontStruct —> Int

frame' :: Size —> FlexibleDrawing

fudlogue :: Fab —> 10 ()

g :: (Graphic a) => a —> Drawing b Gfx

getSP :: Cont (SP ab)a

getSPm :: SPmaba

getSPms :: SPmsabca

groupF :: [XCommand] —> K a b —> F ¢ d —> F (Either a c) (Either b d)

hAlignS :: Alignment —> Spacer

hCenterS :: Spacer

hFiller :: Int —> FlexibleDrawing

hMarginS :: Distance —> Distance —> Spacer
hScrollF :: Fab—>Fab

hboxD :: [Drawing a b] —> Drawing a b

hboxD’ :: Distance —> [Drawing a b] —> Drawing a b
holeF :: Fab

horizontalP :: Placer

hyperGraphicsF :: (Eq a, Graphic b) => Drawing a b —> F (Either (Drawing a b)
(a, Drawing a b)) a

idF :: Faa

idLeftF :: F a b —> F (Either c a) (Either c b)
idRightF :: F a b —> F (Either a c) (Either b c)
idSP :: SP a a

inputDoneSP :: SP (InputMsg a) a
inputLeaveDoneSP :: SP (InputMsg a) a
inputLinesSP :: SP [Char] [Char]

intDispF :: F Int a

intF :: F Int (InputMsg Int)

intlnputF :: F Int Int

isLeft :: Either a b —> Bool

issubset :: (Eq a) => [a] —> [a] —> Bool

labAboveF :: (Graphica) =>a —>Fbc—>Fbc

249

labLeftOfF :: (Graphica) =>a —>Fbc—>Fbc

labelD :: a —> Drawing a b —> Drawing a b

labelF :: (Graphica) =>a —>Fbc

leftS :: Spacer

linesSP :: SP Char [Char]

listF :: (Eq a) => [(a, Fbc)] —> F (a, b) (a, ¢)

loadSPms :: SPmsabcc

loop :: (a —>a) —> a

loopCompF :: F (Either (Either a b) (Either c d)) (Either (Either c e) (Either a f))
—> F (Either b d) (Either e f)

loopCompThroughLeftF :: F (Either a (Either b c)) (Either b (Either a d)) —> F
cd

loopCompThroughRightF :: F (Either (Either a b) c) (Either (Either c d) a) —> F
bd

loopF :: Faa—>Faa

loopLeftF :: F (Either a b) (Eitherac) —> F b ¢

loopLeftSP :: SP (Either a b) (Eitherac) —> SP b ¢

loopSP :: SPaa —>SPaa

loopThroughRightF :: F (Either a b) (Eithercd) —> Fca —>Fbd
loopThroughRightSP :: SP (Either a b) (Either cd) —> SPca —>SPbd

mapAccum|SP :: (a => b —> (a, ¢)) —>a —>SPbc

mapF :: (a =>b) —>Fab

mapFilterSP :: (a —> Maybe b) —> SP a b

maplLabelDrawing :: (a —> b) —> Drawing a ¢ —> Drawing b ¢
mapPair :: (a => b, c —=>d) —> (a, c) —> (b, d)

mapSP :: (a =>b) —>SPab

mapstateF :: (a =>b —>(a,[c])) —=>a—->Fbc

mapstateSP :: (a =>b —>(a, [c])) —>a —>SP bc

margin$S :: Distance —> Spacer

matrixP :: Int —> Placer

maybeDrawingPart :: Drawing a b —> DPath —> Maybe (Drawing a b)
menuF :: (Graphic a, Graphicc) =>a —> [(b,c)] —=> Fbb

moreF :: F [String] (InputMsg (Int, String))

moreFileF :: F String (InputMsg (Int, String))

moreFileShellF :: F String (InputMsg (Int, String))
moveDrawCommands :: (Functor a) => aDrawCommand —> Point —> aDraw-
Command

nullF :: Fab
nullK :: Kab
nullSP :: SPab

nullSPm :: SPmab ()
nullSPms :: SPmsa b c ()

origin :: Point
overlayP :: Placer

part :: (a —> Bool) —> [a] —> ([a], [a])
path :: Path —> (Direction, Path)

250 B.7 Alphabetical list

pickListF :: (a —> String) —> F (PickListRequest a) (InputMsg (Int, a))
placedD :: Placer —> Drawing a b —> Drawing a b

placerF :: Placer —> Fab —>Fab

popupMenuF :: (Graphic b, Eq b) => [(a, b)] —> F ¢ d —> F (Either [(a, b)] ¢)
(Either a d)

putSP :: a —>SPba —->SPba

putSPm :: a —> SPm b a ()

putSPms :: a —> SPms b a c ()

quitButtonF :: F Click a

radioGroupF :: (Graphic b, Eq a) =>[(a,b)] —>a —>Faa
radioGroupF" :: (Graphic b, Eq a) => Customiser RadioGroupF —> [(a, b)] —> a
—>Faa

readDirF :: F String (String, Either D_10Error [String])
readFileF :: F String (String, Either D_10Error String)
rectpos :: Rect —> Point

rectsize :: Rect —> Size

remove :: (Eqa) =>a —> [a] —> [q]

replace :: (Eq a) => (a, b) —> [(a, b)] —> [(a, b)]
replaceAll :: [a] —> TextRequest a

revP :: Placer —> Placer

rightS :: Spacer

rootGCtx :: GCtx

runSP :: SPab —> [a] —> [b]

scrollF : Fab—->Fab

serCompLeftToRightF :: F (Either a b) (Eitherbc) —> Fac
serCompRightToLeftF :: F (Either a b) (Eitherca) —> F b ¢
serCompSP :: SPab —>SPca—->SPchb

setBgColor :: (HasBgColorSpec b, Show a, ColorGen a) => a —> Customiser b
setLabel :: a —> Customiser (ButtonF a)

setPlacer :: Placer —> Customiser RadioGroupF

shellF :: String —>Fab—->Fab

simpleGroupF :: [WindowAttributes] —=> Fab —>Fab
splitSP :: SP (a, b) (Either a b)

standard :: Customiser a

startupF :: [a] —=> Fab—->Fab

startupSP :: [a] —>SPab —->SPab

stderrF :: F String a

stdinF :: F a String

stdoutF :: F String a

storeSPms :: a —> SPms b c a ()

stringF :: F String (InputMsg String)

stringlnputF :: F String String

string_rect :: FontStruct —> [Char] —> Rect

stripEither :: Eitheraa —> a

striplnputSP :: SP (InputMsg a) a

stripLeft :: Either a b —> Maybe a

stripLow :: Message a b —> Maybe a

251

stripRight :: Either a b —> Maybe b

throughF :: F a b —> F a (Either b a)

timerF :: F (Maybe (Int, Int)) Tick

toBothF :: F a (Either a a)

toggleButtonF :: (Graphic a) => a —> F Bool Bool
top$S :: Spacer

unitSPm :: a —=> SPmbca

up :: DPath —> DPath

updatePart :: Drawing a b —> DPath —> (Drawing a b —> Drawing a b) —>
Drawing a b

vAlignS :: Alignment —> Spacer

vCenterS :: Spacer

vFiller :: Int —> FlexibleDrawing

vMarginS :: Distance —> Distance —> Spacer
vScrollF :: Fab —>Fab

verticalP :: Placer

wCreateGCtx :: (Show b, FontGen b, FudgetlO e, Show a, ColorGen a) =>
GCtx —> [GCAttributes a b] —> (GCtx —> ecd) —> ecd

waitForSP :: (a —> Maybe b) —> (b —>SP ac) —>SPac

writeFileF :: F (String, String) (String, Either D__10Error ())

xcoord :: Point —> Int

ycoord :: Point —> Int

Production notes

This thesis was written in an extended version of Haskell, called HacWrite,
developed by the authors. The extension consists of a new string type, that
can wrap over many lines, and that can contain embedded Haskell code for
specification of mark-up. HacWrite consists of a preprocessor that converts
HacWrite source into Haskell, and a library of mark-up combinators, written in
HacWrite. The library also has back-ends for generating LaTeX and HTML.

Bibliography

[Ach96] Peter Achten. Interactive Functional Programs. PhD thesis,
Katholieke Universiteit Nijmegen, Feb 1996.

[Ado90] Adobe Inc. PostScript Language Reference Manual, second edition,
1990. Addison-Wesley.

[AGNvS94] Thorsten Altenkirch, Veronica Gaspes, Bengt Nordstrom, and
Bjorn von Sydow. A User’s Guide to ALF. Chalmers Univer-
sity of Technology, Sweden, May 1994. Available on the WWW
ftp://ftp.cs.chalmers.se/pub/users/alti/alf.ps.Z.

[AJ93] L. Augustsson and T. Johnsson. Lazy ML User’s Manual. Pro-
gramming Methodology Group, Department of Computer Sciences,
Chalmers, S—412 96 Goteborg, Sweden, 1993. Distributed with the
LML compiler.

[Ary94] Kavy Arya. A functional animation starter-kit. Journal of Func-
tional Programming, 4(1):1-18, January 1994.

[Aug97] Lennart Augustsson. The hbe compiler.
http://www.cs.chalmers.se/ augustss/hbc/hbc.html, 1997.

[AWT] The Abstract Window Toolkit. http://java.sun.com/products/jdk/awt/.

[BacT78] J. Backus. Can Programming be Liberated from the von Neumann

Style? A functional style and its algebra of programs. Communi-
cations of the ACM, 21:280-294, August 1978.

[BB9O| G. Berry and G. Boudol. The Chemical Abstract Machine. In ACM
Principles of Programming Languages, pages 81-94, San Francisco,
CA, January 1990.

[Bur75] W. H. Burge. Recursive Programming Techniques. Addison-Wesley
Publishing Company, Reading, Mass., 1975.

[Bur88] W. Burton. Non-determinism with Referential Transparency in
Functional Programming Languages. The Computer Journal, 31(3),
1988.

[Car86] Luca Cardelli. Amber. In Combinator and Functional Programming

Languages, number 242 in LNCS, pages 21-47. Springer Verlag,
1986.

254

Bibliography

[Car95]

[CH93a]

[CHO3b]

[CHO7]

[Cup89]

[CVM97]

[CWS5]

[Dwes9)

[E1197]

[Eng97]

[FGJ96]

[FJ95]

[FP96)

[GJS96]

[Gor89]

Magnus Carlsson. The Glasgow GUI Fest 1995.
http://www.cs.chalmers.se/ “magnus/GuiFest-95, July 1995.

M. Carlsson and T. Hallgren. Fudgets - Graphical
User Interfaces and I/O in Lazy Functional Languages.
Chalmers University. Anon. FTP: ftp.cs.chalmers.se:
/pub/cs-reports/papers/fudget-report/*, May 1993.

M. Carlsson and T. Hallgren. FUDGETS - A Graphical User In-
terface in a Lazy Functional Language. In FPCA 93 - Conference
on Functional Programming Languages and Computer Architecture,
pages 321-330. ACM Press, June 1993.

Magnus Carlsson and Thomas Hallgren. Fudget library reference
manual. http://www.cs.chalmers.se/Fudgets/Manual/, 1997.

J. Cupitt. A Brief Walk Through KAOS. Technical Report 58,
Computing Laboratory, University of Kent, Canterbury, UK, 1989.

Koen Claessen, Ton Vullinghs, and Erik Meijer. Structuring graph-
ical paradigms in TkGofer. In International Conference on Func-
tional Programming. ACM, June 1997.

Luca Cardelli and Peter Wegner. On Understanding Types, Data
Abstraction, and Polymorphism. Computing Surveys, 17(4):471-
522, December 1985.

A. Dwelly. Functions and Dynamic User Interfaces. In Proceedings
of ACM, pages 371-381, 1989.

Conal Elliott. Functional reactive animation. In Proc. International
Conference on Functional Programming 1997 (ICFP’97), Amster-
dam, The Netherlands, June 1997.

Arnoud Engelfriet. Wilbur - HTML 3.2.
http://www.htmlhelp.com/reference/wilbur/, 1997.

Sigbjorn Finne, Andrew Gordon, and Simon Peyton Jones. Concur-
rent Haskell. In 23’rd Conference on The Principles of Program-
ming Languages, pages 295-308, St Petersburg, Florida, January
1996.

Sigbjorn Finne and Simon Peyton Jones. Pictures: A simple struc-
tured graphics model. In Glasgow Workshop on Functional Pro-
gramming, Ullapool, 1995.

S. Finne and S. Peyton Jones. Composing the user interface with
Haggis. Lecture Notes in Computer Science, 1129, 1996.

James Gosling, Bill Joy, and Guy Steele. The Java Language Spec-
ification. Addison-Wesley, 1996.

Andrew Gordon. PFL+ : A kernel scheme for functional I/O.
Technical Report Technical Report 160, University of Cambridge
Computer Laboratory, February 1989.

255

[Gor92]

|GRO1]

[Hal90)|

[Hal97]

[HC95)

[HC97]

[HDDY5]

[Hen82]

[Hol83]

[Hol8s]

[HPF97]

[HPJWe92)

[7+97]

[1397]

Andrew D. Gordon. Functional Programming and Input/Output.
PhD thesis, King’s College, University of Cambridge, August 1992.

E.R. Gansner and J. Reppy. The eXene widgets man-
ual. Cornell University. Anon. FTP: ramses.cs.cornell.edu:
/pub/eXene-doc.tar.Z, June 1991.

T. Hallgren. Introduction to Real-time Multi-user Games Program-
ming in LML. Technical Report Memo 89, Department of Computer
Sciences, Chalmers, S—412 96 Goteborg, Sweden, January 1990.

Thomas Hallgren. Alfa home page.
http://www.cs.chalmers.se/"hallgren/Alfa/, 1997.

Thomas Hallgren and Magnus Carlsson. Programming with Fud-
gets. In J. Jeuring and E. Meijer, editors, Advanced Functional
Programming, pages 137-182. Springer Verlag, LNCS 925, 1995.

Thomas Hallgren and Magnus Carlsson. The Fudgets Home Page.
http://www.cs.chalmers.se/Fudgets/, 1997.

Ian Holyer, Neil Davies, and Chris Dornan. The Brisk Project:
Concurrent and Distributed Functional Systems. Technical Report
CSTR-95-015, Department of Computer Science, University of Bris-
tol, June 1995.

P. Henderson. Functional geometry. In Conference Record of the
1982 Symposium on LISP and Functional Programming, Pittsburgh,
PA, New York, NY, 1982. ACM.

Soren Holmstrom. PFL: A Parallel Functional Language and Its Im-
plementation. PMG Memo 7, Programming Methodology Group,
Chalmers University of Technology, Goteborg, 1983.

Soren Holmstrom. A Linear Functional Language. In Proceedings
of the 1988 Workshop on Implementation of Lazy Functional Lan-
guages, 1988.

Paul Hudak, John Peterson, and Joseph Fasel. A gentle intro-
duction to Haskell, version 1.4. http://haskell.org/tutorial,
March 1997.

Paul Hudak, Simon L. Peyton Jones, and Philip Wadler (editors).
Report on the programming language haskell, a non-strict purely
functional language (version 1.2). SIGPLAN Notices, Mar, 1992.

Simon Peyton Jones et al. The Glasgow Haskell Compiler.
http://www.dcs.gla.ac.uk/fp/software/ghc/, 1997.

P. Jansson and J. Jeuring. PolyP - a polytypic programming lan-
guage extension. In POPL ’97: The 2/th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 470—
482. ACM Press, 1997.

256

Bibliography

[JIMO7]

[INR97|

[Joh75]

[Jon91]

[Jon93]

[7989]

[Kar92]

[KM77]

[Kre96]

[Lan65]

[LO92]

[LPJ94]

[L&u94]

[McC67]

Simon Peyton Jones, Mark Jones, and Erik Meijer. Type Classes:
an exploration of the design space. In Proceedings of Haskell Work-
shop, Amsterdam, Holland, 1997.

Simon Peyton Jones, Thomas Nordin, and Alastair Reid. Green
Card: a foreign language interface for Haskell. In Proceedings of
Haskell Workshop, Amsterdam, Holland, 1997.

S. C. Johnson. Yacc—Yet Another Compiler Compiler. Technical
Report 32, Bell labs, 1975. Also in UNIX Programmer’s Manual,
Volume 2B.

Mark P. Jones. Release notes for Gofer 2.21. Technical report,
Department of Computer Science, Yale University, November 1991.
Included as part of the standard Gofer distribution.

Mark P. Jones. A system of constructor classes: overloading and
implicit higher-order polymorphism. In Functional Programming
and Computer Architecture, Copenhagen, Denmark, June 1993.

S.B. Jones and F. Sinclair. Functional programming and operating
systems. The Computer journal, 32(2):162-174, 1989.

Kent Karlsson. Another Look at Full Laziness. In Demand Analysis
and Compilation of Lazy Functional Programs. Goteborg, Sweden,
September 1992.

Gilles Kahn and David B. MacQueen. Coroutines and networks
of parallel processes. Information Processing 77, pages 993-998.
North-Holland, 1977.

Charles Kreitzberg. Managing for usability. In Antone F. Alber, ed-
itor, Multimedia: a management perspective. Wadsworth, Belmont,
CA, 1996.

P. J. Landin. A Correspondence between Algol 60 and Church’s
Lambda Notation: part 1. Communications of the ACM, 8(2):89—
100, 1965.

Konstantin Liufer and Martin Odersky. An Extension of ML with
First-Class Abstract Types. In Proc. Workshop on ML and its
Applications, San Francisco, June 1992. ACM SIGPLAN.

J. Launchbury and S. Peyton Jones. Lazy functional state threads.
In Programming Languages Design and Implementation, Orlando,
1994. ACM Press.

Konstantin Liufer. Combining Type Classes and Existential Types.
In Proc. Latin American Informatics Conference (PANEL), Mex-
ico, September 1994. ITESM-SEM.

J. McCarthy. A basis for a mathematical theory of computations.
In P. Braffort and D. Hirschberg, editors, Computer Programming
and Formal Systems, pages 33—70. North-Holland, 1967.

257

[Mil80] Robin Milner. A Calculcus of Communicating Systems, volume 92
of Lecture Notes in Computer Science. Springer-Verlag, 1980.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information
and Computation, 93(1):55-92, 1991.

[Mor94] A. Moran. Natural Semantics for Non-Determinism. Licentiate
Thesis, Chalmers University of Technology and University of Gote-
borg, Sweden, May 1994.

[Neta) The NetBSD Project. http://wuw.netbsd.org

[Netb] Netscape. http://home.netscape.com

[Nik95] R.S. Nikhil. The pHluid System.
www.research.digital.com/CRL/personal/nikhil/pHluid/home.htm,
June 1995.

[Nob95] Rob Noble. Lazy Functional Components for Graphical User Inter-
faces. PhD thesis, Dept. of Computer Science, University of York,
Heslington, York, Y01 55D, England, November 1995.

[Nor94] Johan Nordlander. OMELETT - A Language
for Reactive Programming. Licentiate Thesis,
Chalmers University of Technology, May 1994.
URL: http://www.cs.chalmers.se/ nordland/lic.ps.Z.

[NPS90] Bengt Nordstrom, Kent Petersson, and Jan M. Smith. Programming
in Martin-Lif’s Type Theory. An Introduction. Oxford University
Press, 1990.

[NR94] R. Noble and C. Runciman. Functional languages and graphical
user interfaces - a review and a case study. Technical Report YCS-
94-223, Dept. of Comp. Sci., Univ. of York, Heslington, York, Y01
55D, England, 1994.

[NR95] Rob Noble and Colin Runciman. Gadgets: Lazy functional compo-
nents for graphical user interfaces. In Manuel Hermenegildo and
S. Doaitse Swierstra, editors, PLILP’95: Seventh International
Symposium on Programming Languages, Implementations, Logics
and Programs, volume 982 of Lecture Notes in Computer Science,
pages 321-340. Springer-Verlag, Sept 95.

[Nye90] A. Nye. Xlib reference manual, volume 2. O’Reilly & Associates,
Tnc., 1990.

[O’D85] John T. O’Donnell. Dialogues: A Basis for Constructing Program-
ming Environments. SIGPLAN Notices, 20(7):19-27, 1985. Pro-
ceedings of the 1985 Symposium on Language Issues in Program-
ming Environments.

[Oka95] C. Okasaki. Simple and Efficient Purely Functional Queues and
Dequeues. Journal of Functional Programming, 5(4):583-592, 1995.

258

Bibliography

[07S96]

[Ous94]

[OW97]

[Pet97]

[PHO6)|

[PHO7a]

[PHO7D)

[PIW93]

[Pradl]

[Pv96]

[Rep91a]

[Rep91b]

[RGO1]

[R6j95a]

[R6j95D]

Bryan O’Sullivan. Re: Functional languages in software
engineering. Posted to comp.lang.functional. Message-ID:
<876822nvgd.fsf@serpentine.com >, Dec 1996.

J.K. Ousterhout. Tcl and the Tk toolkit. Addison Wesley, 1994.

Martin Odersky and Philip Wadler. Pizza into Java: Translating
theory into practice. In Proc. 24th ACM Symposium on Principles
of Programming Languages, January 1997.

John Peterson. The Haskell Home Page. http://haskell.org,
1997.

J. Peterson and K. Hammond. The Haskell 1.3 Report. Technical
Report YALEU/DCS/RR-1106, Yale University, 1996.

J. Peterson and K. Hammond. The Haskell Library Report, Version
1.4. Technical report, Yale University, 1997.

J. Peterson and K. Hammond. The Haskell Report, Version 1.4.
Technical report, Yale University, 1997.

S.LL Peyton Jones and P. Wadler. Imperative Functional program-
ming. In Proceedings 1993 Symposium Principles of Programming
Languages, Charleston, N.Carolina, 1993.

K. V. S. Prasad. A calculus of broadcasting systems. In Volume 1:
CAAP 91, volume 493 of LNCS. Springer Verlag, April 1991.

Rinus Plasmeijer and Marko van Eekelen. Concurrent Clean Lan-
guage Report, 1996. Avalible from the Concurrent Clean Home
Page: www.cs.kun.nl/"clean

J. Reppy. CML: A Higher-order Concurrent Language. In Pro-
ceedings of the SIGPLAN’91 Conference on Programming Language
Design and Implementation, pages 293-305, June 1991.

J. Reppy. Cml: A higher-order concurrent languages. In Proceedings
of the SIGPLAN’91 Conference on Programming Language Design
and Implementation, pages 293-305, 1991.

J. Reppy and E.R. Gansner. The eXene library man-
ual. Cornell University. Anon. FTP: ramses.cs.cornell.edu:
/pub/eXene-doc.tar.Z, June 1991.

Niklas Rojemo. Garbage collection, and memory efficiency, in lazy
functional languages. PhD thesis, Chalmers Tekniska Hogskola,
1995.

Niklas Rojemo. Highlights from nhc — a space-efficient Haskell com-
piler. In Proc. 7th Int’l Conf. on Functional Programming Lan-
guages and Computer Architecture (FPCA’95). ACM Press, June
1995.

259

[RR96a]

[RRI6D]

[RS93]

[Sch95]

[Sch96]

[SD96|

[Ser95]

[SGs6]

[Shn9g]

[Sin91]

[Sin92]

[Sis96]

[SML]

[Sol97]

Niklas Rojemo and Colin Runciman. Lag, drag, void and use - heap
profiling and space-efficient compilation revisited. In Proc. Inter-
national Conference on Functional Programming 1996 (ICFP’96),
1996.

Colin Runciman and Niklas Rojemo. Two-pass heap profiling: a
matter of life and death. In Proceedings of the workshop on the
Implementation of Functional Languages 1996, 1996.

A. Reid and S. Singh. Implementing fudgets with standard widget
sets. In Glasgow functional programming workshop, pages 222—-235.
Springer-Verlag, 93.

E. Scholz. Four Concurrency Primitives for Haskell. In Proc. Haskell
Workshop, pages 1-12, La Jolla, CA, 1995. Available as Yale Uni-
versity Research Report YALEU/DCS/RR-1075.

Enno Scholz. PIDGETS: Unifying Pictures and Widgets in a
Constraint-Based Framework for Concurrent Functional GUI Pro-
gramming. In Herbert Kuchen and S. Doaitse Swierstra, editors,
PLILP’96: FEighth International Symposium on Programming Lan-
guages, Implementations, Logics and Programs, number 1140 in
LNCS, pages 363-377, September 1996.

S.D. Swierstra and Luc Duponcheel. Deterministic, error-correcting
combinator parsers. In John Launchbury, Erik Meijer, and Tim
Sheard, editors, Advanced Functional Programming, volume 1129
of LNCS-Tutorial, pages 184-207. Springer-Verlag, 1996.

Pascal Serrarens. BriX - A Deterministic Concurrent Functional
X Windows System. Technical report, Department of Computer
Science, University of Bristol,, June 1995.

R.W. Scheifler and J. Gettys. The X Window System. ACM Trans-
actions on Graphics, 5(2), April 1986.

Ben Shneiderman. Designing the user interface: strategies for effec-
tive human-computer interaction. Addison Wesley, 3 edition, 1998.

S. Singh. Using XView/X11 from Miranda. In Heldal et al., editors,
Glasgow Workshop on Functional Programming, 1991.

D.C. Sinclair. Lazy Wafe - Graphical Interfaces for Functional Lan-
guages. Departement of Computing Science, University of Glasgow,
1992. Draft.

Sisal language project. http://www.1llnl.gov/sisal/, 1996.

Standard ML of New Jersey. http://cm.bell-
labs.com/cm/cs/what/smlnj/.

Solaris user’s guide. In Solaris 2.6 User Collection. Also at
http://docs.sun.com/ab2/coll.8.39/SSUG /@Ab2PageView/16217?,
1997.

260

Bibliography

[Spa93]

[Sto84]

[St097]

[Tay96]

[Teb91]

[Tho90]

[TLP+93]

[Tru94]

[Tur87]

[Tur90a]

[Tur90b]

[VTS95]

[Wad85]

[Wad90]

Jan Sparud. Fixing Some Space Leaks without a Garbage Collector.
In Proc. 6th Int’l Conf. on Functional Programming Languages and
Computer Architecture (FPCA’93), pages 117-122. ACM Press,
June 1993.

W.R. Stoy. A new scheme for writing functional operating systems.
Technical Report 56, Computer Laboratory, Cambridge University,
1984.

Chris Stone. On-line information about Standard ML.
http://foxnet.cs.cmu.edu/sml.html, 1997.

Colin J. Taylor. Embracing windows. Technical Report NOTTCS-
TR-96-1, Department of Computer Science, University of Notting-
ham, Nottingham, UK, October 1996.

M. Tebbs. MIRAX - An X-window Interface for the Functional
Programming Language Miranda. Technical report, School of En-
gineering and Applied Science, University of Durham, April 1991.

S. Thompson. Interactive Functional Programming. In Turner
[Tur90b].

B. Thomsen, L. Leth, S. Prasad, T.-S. Kuo, F. Kabe, and A. Gi-
acalone. Facile Antigua Release — Programming Guide. Technical
Report ECRC-93-20, European Computer-Industry Reserach Cen-
ter GmbH, 1993.

Staffan Truvé. An introduction to the functional programming lan-
guage H. www.cs.chalmers.se/ truve/hintro.ps, 1994.

David Turner. Functional Programming and Communicating Pro-
cesses. In J. W. de Bakker, A. J. Nijman, and P. C. Treleaven,
editors, PARLE ’87 Parallel Architectures and Languages Europe,
Volume 2: Parallel Languages, volume 259 of Lecture Notes in Com-
puter Science, pages 54-74, Findhoven, The Netherlands, June 15—
19, 1987. Springer, Berlin.

D.A. Turner. An approach to functional operating systems. In
Research topics in Functional Programming [Tur90b].

D.A. Turner, editor. Research topics in Functional Programming.
Addison-Wesley Publishing Company, 1990.

T. Vullinghs, D. Tuijnman, and W. Schulte. Lightweight GUIs for
functional programming. In Proceedings 7th International Sympo-
sium PLILP95, volume 982 of LNCS. Springer Verlag, September
1995.

P. Wadler. How to Replace Failure by a List of Successes. In Pro-
ceedings 1985 Conference on Functional Programming Languages
and Computer Architecture, pages 113-128, Nancy, France, 1985.

Philip Wadler. Deforestation: transforming programs to eliminate
trees. Theoretical Computer Science, 73:231-248, 1990.

261

[Wad92]

[Wad95]

[WBS9]

[You90]

P. Wadler. The essence of functional programming. In Proceedings
1992 Symposium on Principles of Programming Languages, pages
1-14, Albuquerque, New Mexico, 1992.

Philip Wadler. Monads for functional programming. In J. Jeuring
and E. Meijer, editors, Advanced Functional Programming, number
925 in LNCS, pages 24-52. Springer Verlag, May 1995.

P. Wadler and S. Blott. How to make ad hoc polymorphism less
ad hoc. In Proceedings 1989 Symposium Principles of Programming
Languages, pages 60-76, Austin, Texas, 1989.

D.A. Young. The X Window System : Programming and Applica-
tions with Xt. OSF/Motif Edition. Prentice Hall, 1990.

