
Presentation at SSDBM 2001

These slides are from the presentation given

by Peter Gray at the Thirteenth International

Conference on Scienti�c and Statistical Database

Management, George Mason University, Fair-

fax, Virginia, USA.

� Kemp, G.J.L., Gray, P.M.D. and Sj�ostedt,

A.R. (2001) Rewrite Rules for Quanti�ed

Subqueries in a Federated Database. In

Kerschberg, L. and Kafatos, M. (eds.), Pro-

ceedings Thirteenth International Confer-

ence on Scienti�c and Statistical Database

Management, IEEE Computer Society Press,

pp 134-143.

1

Rewrite Rule Application

Orig Query

for each u in undergrad such that

some c1 in takes(u) has code(c1) = 'C_331'

print(forename(u), surname(u));

Rewritten Query

for the u in takes_inv(the c2 in course such that

code(c2) = 'C_331')

print(forename(u), surname(u));

The query now uses

� an index on code for direct access

� a system-maintained inverse takes inv of

the takes function;

� thus avoiding enumeration.

2

Rewrite Rule Syntax

with common

s in string

rewrite

u in undergrad such that

some c1 in takes(u) has code(c1) = s

into

takes_inv(the c2 in course such that

code(c2) = s);

The ZF-expression (comprehension) in ICode

is:

u <- undergrad;

Exists{c1 | c1 <- takes(u); code(c1) = s}

u <- takes_inv({c2 | c2 <- course;

code(c2) = s})

� one or more common variables stand for well

formed expressions denoting atomic values

3

(strings, integers, reals, booleans(predicate

values)) or entity values (object identi�ers).

� rewrite precedes a Daplex expression, usu-

ally denoting a set of objects, that can be

described by a ZF-expresssion.

� rules are stored internally in P/FDM as

Prolog term structures, uni�ed by shared

variables.

� rules are Horn-Clause rules based on uni�-

cation and substitution, working top-down.

� assumes strati�ed rules

Rewrite for Distributed Execution

Used to split the work up sensibly between

two sites, and not send many penny packet

queries. Assume course info on site 1 and

undergrad info on site 2.

Original Slow Version

for each u in undergrad such that

some c1 in course such that

pred(c1) has level(c1) = year(u)

print(forename(u), surname(u));

Rewritten Distributed Version:

[Q1] print(level(c1 in course such that pred(c1)))

for each u1 in undergrad such that

year(u1) in {RESULT OF Q1 e.g.{1,4,..}}

print(forename(u), surname(u));

Here Q1 need execute once only. This can be

extended to more than 2 sites.

4

Rewrite Rule Examples

Implemented by Uni�cation in Prolog.

with common u in undergrad

rewrite (some c1 in course such that pred(c1))

has level(c1) = year(u)

into year(u) in

level(c1 in course such that pred(c1))

Note that the rewritten expression denotes a

predicate value and that the common expres-

sion denotes an undergrad entity.

with common i in integer

rewrite r in residue such that pos(r) = i

into absolutepos(chain, i)

with common r in residue,

st in integer,

�n in integer

rewrite some i in st to �n has pos(r) =i

into (pos(r) >= st) and (pos(r) =< �n)

5

Combination of rewrites

We can use the generic rules that atten

nested quanti�ers, in combination with other

domain speci�c rules, such as those that use

indexes. Rewrite rules are used to replace

iteration over residues by direct access.

with common i in integer

rewrite r in residue such that pos(r) = i

into absolutepos(chain,i);

We can then transform the following nested

query:

for each c in structural_cdr such that

name(c) = "L1"

and some r in residue has

name(r) = "CYS"

and c in structural_cdr_domain_inv(

ig_domain_chain_inv(

residue_chain(r)))

and pos(r) = start(c)

print(protein_code(domain_structure(

structural_cdr_domain(c))));

6

as if it was written:

for each c in structural_cdr such that

name(c) = "L1"

and some r in absolutepos(chain,start(c)) has

name(r) = "CYS"

and c in structural_cdr_domain_inv(

ig_domain_chain_inv(

residue_chain(r)))

print(protein_code(domain_structure(

structural_cdr_domain(c))));

Generic Rewrites syntax extension

Allows Variables to denote Predicate,

Function or Class names (recognised by a

capital initial letter or an underscore)

rewrite

U1 in ClassU such that

some C in Rel(U1) has Prop(C) > Val

and (some U2 in Rel2(C) has

Prop2(U2) < Val2)

into

U1 in ClassU such that

some C in Rel(U1) has Prop(C) > Val

and Prop2(Rel2(C)) < Val2;

Set-Theoretic Rules (Jarke and Koch)

rewrite

E1 in Class1 such that

all E2 in Class2 such that Pred(E2)

have Fun1(E1) > Fun2(E2)

into

E1 in Class1 such that

Fun1(E1) > maximum(Fun2(E2 in Class2

such that Pred(E2)));

7

Use of Where Clause in Rewrites

We can state applicability of rewrite rules by

where clauses which test metadata about

names in the ontology.

where

function KeyFn is the key function

of class Class and

function RelInv is the inverse

of function Rel

rewrite

Instance in Class such that

some X in Rel(Instance)

has KeyFn(X) = KeyValue

into

RelInv(the X in RelClass such that

KeyFn(X) = KeyValue)

Example Instance: Rel=takes, RelInv=takes inv,

KeyFn=code, Class=undergrad.

N.B.: we do not use a \with common" clause

to introduce KeyValue since we do not want to

put a restriction on its type.

8

Rewrite Rules for AMOS II

A P/FDM mediator can generate queries for

an AMOS mediator (Risch-Uppsala). This

uses AMOSQL -like OSQL or SQL-3.

AMOS II usually recalls the compiler to

re-plan nested queries. We can rewrite the

query to avoid this.

ZF expression version:

{name(u1) | u1 <- undergrad;

Exists {c | c <- takes(u1); level(c) > 3;

Exists {u2 | u2 <- enrolled(c);

age(u2) < 19} } }

9

Equivalent nested AMOSQL:

SELECT name(u1)
FROM undergrad u1
WHERE some(

SELECT c
FROM course c
WHERE c = takes(u1)
AND level(c) > 3
AND some(

SELECT u2
FROM undergrad u2
WHERE u2 = enrolled(c)
AND age(u2) < 19

)
);

Flattened AMOSQL:

SELECT name(u1)
FROM undergrad u1
WHERE some(

SELECT c
FROM course c, undergrad u2
WHERE c = takes(u1)
AND level(c) > 3
AND u2 = enrolled(c)
AND age(u2) < 19

);

Rewrite Rule (ICode version);

Exists{x | x <- generator; P(x);

Exists{y | y <- h(x); Q(x,y)}}

=

Exists{x | x <- generator; P(x);

y <- h(x); Q(x,y)}

� We depend on the AMOSQL optimiser to

use the join predicates and selections con-

cealed within P and Q to avoid a simplis-

tic iteration over the Cartesian product of

x(course) and y(undergrad).

� Otherwise the rule could actually worsen

performance for a very selective P !

� Shows the importance of knowledge about

the remote query evaluation.

10

Pragmatic need for Rewrites in Wrappers

We introduce a �nal phase of rewriting that is

target speci�c, as part of the mediator.

Accommodates known restrictions on remote

DBMS optimisers, which may be given

expressions they are not used to!

A common side-e�ect of query transformation

and mapping between heterogeneous systems

- very important in practise (O(N)� > O(1)).

11

Comparison with Kleisli and TAMBIS

Both use comprehensions via the Collection

Programming Language CPL(Buneman,

Davidson et. al.)

� Kleisli works directly on Monad Composi-

tion form of queries (like ICode but more

generic).

� Kleisli has impressive data integration ap-

plications in Bioinformatics through a vari-

ety of customised wrappers.

� Plans in TAMBIS follow the built-in Clas-

si�cation Hierarchy

� our plans follow Relationships in users SQL3-

like queries.

12

Common Functional Approach

� Our rules have a functional Syntax but a

Semantics based on Uni�cation

� We all depend on referential transparency

for consistency of substitution.

13

Readability of Rules:

Can Users Maintain Them ??

� Kleisli functions are currently built into the

optimiser but are extensible by the imple-

mentors.

� TAMBIS depends on user to extend the

Classi�cation Hierarchy

� Kleisli rules/functions are relatively few and

very generic.

� Our Rules are more domain-speci�c - we

want user to maintain them.

14

Readability - Genericity Tradeo�

Problem There is a trade-o� between

readability and degree of abstract

parametrisation.

� Rules that refer to very domain-speci�c sit-

uations involving speci�c named attributes

are much easier to read and maintain.

� One way to extend this could be to in-

clude carefully formatted speci�c instances

of generic rules as comments, for ease of

understanding.

� We need to guard against users making

rules more general than intended by not

putting enough checks in the where-clause

of a rule.

15

Conclusions

� We advocate the use of an object data

model with a high level declarative language

including quanti�ers that does not tie us

either to relational or object storage.

� We have introduced a simple but powerful

rewrite language that includes FOL quan-

ti�ers and allows a very general form of

parametrisation, whichsuits uni�cation in

Prolog.

� rewrite rules provide a great deal of exi-

bility. They can implement:

1. the set-theoretic rules given by Jarke

and Koch;

2. rewrites based on data semantics (J.J.

King);

16

3. opportunities to replace iteration by in-

dexed search;

4. unnesting and other transformations to

assist remote optimisers;

5. rewrites that change the relative work-

load between two processors in a dis-

tributed query

6. many combinations, without our having

to foresee them and code them individ-

ually

� This is essential in an Internet environ-

ment, where data sources with di�erent

data management systems continue to

be added!

