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Abstract. Selecting conformations for side-chains is an important sub-
task in building three-dimensional protein models. Side-chain placement
is a difficult problem because of the large search space that has to be ex-
plored. We show that the side-chain placement problem can be expressed
as a CLP program in which rotamer conformations are used as values
for finite domain variables, and bad atomic clashes involving rotamers
are represented as constraints. We present a new side-chain placement
method that uses a series of automatically generated CLP programs to
represent successively tighter side-chain packing constraints. By using
these programs iteratively our method produces side-chain conformation
predictions whose accuracy is comparable with that of other methods.
The resulting system provides a testbed for evaluating the quality of pro-
tein models obtained using different domain enumeration heuristics and
side-chain rotamer libraries.

1 Introduction

Proteins are large biomolecules that are found in all living organisms where they
perform a variety of biochemical functions. For example, proteins are essential
for growth, metabolism, the immune and nervous systems, and for catalysing
chemical reactions. Knowing the three-dimensional structure of a protein is vital
to having a full understanding of its function. Since the experimental determi-
nation of a protein’s structure can be a slow and difficult process, there is a
demand to be able to generate hypothetical 3D protein models.

A significant sub-task in constructing a 3D model of a protein, and the focus
of this paper, is side-chain placement. In the following section we describe the
protein side-chain placement problem, and introduce relevant biochemical con-
cepts and terminology. In section 4 we show how the protein side-chain placement
problem can be modelled as a CLP problem. In section 5 we present the results
of using our method to model several proteins, and we compare results obtained
with several “rotamer libraries” (see section 3) and domain enumeration heuris-
tics. Finally we summarise the main features of our approach, and the main
conclusions that can be drawn from our results.
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2 Proteins and Side-Chain Modelling

Each protein contains at least one polypeptide chain, which is typically made up
of hundreds of amino-acid residues; two such residues are shown in Figure 1. All
residues have a common configuration of atoms in their backbone (or main-chain)
part with a nitrogen atom (N), a central carbon atom (the alpha-carbon, or Cα)
and a carboxyl group (atoms C and O). Attached to the Cα of each residue is
a side-chain. There are twenty different side-chain types (listed in Table 1) in
natural proteins, and these differ from one another in size, charge, and various
other properties.
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Fig. 1. The backbone and the side-chains of two residues are shown. The amino group
consists of the nitrogen atom labelled N, and the carboxyl group consists of atoms C
and O. The side-chains are attached to the main-chain at the Cα atoms. The χ angles
are a measurement of the “twist” around rotatable side-chain bonds (as defined in
[14]). These angles define the conformation of each rotamer.

Proteins that have evolved from a common ancestor will have similar (or
homologous) amino acid sequences. The sequence of amino acid residues in a
protein chain, which is always listed from the N-terminus to the C-terminus
of the protein chain, can be determined relatively easily. If two protein chains
have a similar sequence of amino acid residues in their chains, then these will
generally have very similar 3D structures, with amino acid residues common to
both sequences usually expected to occupy the same positions in the model and
the known structure. The process of constructing a model of a protein based on
predicted similarity to a protein whose structure has been determined previously
is called homology modelling [5,12,18]. Early protein modelling studies were done
using physical wire models (e.g. [3]), however today protein models are usually
constructed by computer.
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In homology modelling it is common to first construct a model of the entire
protein backbone, and then to add side-chains to this backbone, adjusting the
conformations of the side-chain by rotating their internal chemical bonds (la-
belled χ1, χ2, etc. outward along the side-chain, away from the Cα atom) so
that no side-chain clashes with either the protein backbone or with any other
side-chain. To achieve this we consider each atom to be a sphere with a radius
(the van der Waals radius) determined by the atom’s type, and we require that
the centres of two atoms that are not covalently bonded to one another should
be further apart than the sum of their van der Waals radii. The van der Waals
radius of each atom is approximately 2.5 times larger than the radius of the
spheres in ball-and-stick representation in Figure 1, and the resulting protein
model is usually extremely well packed with atoms entirely filling the internal
volume of the protein. Indeed, side-chain placement has been compared to a
complex 3D jigsaw puzzle [27].

3 Side-Chain Rotamers

The principal problem encountered when modelling side-chains is the extremely
large number of possible combinations of side-chain conformations — infinite if
we consider side-chain bonds to be continuously variable. For practical purposes
the search space can be discretised by considering a finite set of possible torsion
angles for each side-chain. However, this can still result in an enormous search
space: if we were to consider a rotational step size of 10◦, then a protein with
100 amino acid residues, with 2 rotatable bonds per residue would yield a search
space of (36 × 36)100 possible side-chain combinations [19].

The discovery that the distribution of side-chain conformations fell into sta-
tistically significant clusters [23], known as rotamers, has brought notable ad-
vances in side-chain modelling [24,7,10]. Rather than considering regular torsion
angle increments for each rotatable bond, one can instead choose from a much
smaller set of torsion angles representing the most common side-chain conforma-
tions observed in experimentally determined protein structures. Thus the vast
combinatorial search space can be greatly reduced.

Rotamer libraries [23,28,8,7,21] typically contain up to 30-50 rotamers for
side-chains with four rotatable bonds like Lys and Arg, and about three rotamers
for side-chains with only one rotatable bond like Ser, Cys and Thr. An exception
is the very extensive rotamer library developed by Dunbrack et al. [8,7] which
has separate rotamer conformations listed for different backbone configurations.
This reflects observations that have shown a correlation between residues’ main-
chain and side-chain conformations. The backbone dependent library (BBDEP)
is based on Bayesian statistics and typically contains three angular conformations
per rotatable side-chain bond, resulting in 81 rotamers for Lys and Arg.

Side-chain modelling methods typically consist of a potential energy function
to describe the interactions of the side-chains represented by rotamers. This
energy function plays an important role in discriminating between possible side-
chain combinations since it is generally accepted that as the potential energy
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is lowered the protein model becomes more accurate. In a review of side-chain
modelling [30], Vasquez states that most side-chain modelling algorithms use
comparatively simple energy functions. These functions, based mainly on van
der Waals interactions, can give excellent results for residues in hydrophobic
cores, however the results for surface and buried polar residues can be poor, and
very little difference is made by adding terms for electrostatics and hydrogen
bonding [30].

Various algorithms have been used to search through the energy landscape
generated by the potential energy function’s description of different rotamer com-
binations [31,11,16,9,15]. Optimisation methods include Monte Carlo algorithms
[11,12], genetic algorithms [29] and dead end elimination (DEE) [6,17].

4 Expressing Side-Chain Placement as a CLP Problem

Side-chain modelling is essentially the task of searching through a large combina-
torial space of possible side-chain conformations to find a mutually consistent set
— a problem for which CLP is well suited. In the modelling method presented
here the main determinants of side-chain conformation are:

1. avoiding atomic clashes;
2. using the most common rotamer conformation whenever possible.

Our method starts by placing the complete set of rotamers from a rotamer
library onto the protein backbone as shown in Figure 2. We assume that we
already have a modelled backbone, and in testing our method we consider the
extreme situation in which all side-chains have to be placed.

1.Fixed backbone         2. All rotamers placed onto backbone       3. Solution of the constraints      

  Atomic 
 overlaps
represented
    as 
constraints

Fig. 2. The CLP method begins with a given backbone. For every residue, all rotamers
in the library are placed onto the backbone. CLP selects a single rotamer for each
residue.
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4.1 Domain Variables

CLP domain variables are used to represent amino acid residue positions along
the folded protein chain. A variable’s finite domain is the set of rotamers corre-
sponding to possible conformations of that residue’s side-chain.

In the rotamer libraries used in this paper, each rotamer has a stored proba-
bility value indicating how common the conformation is for that type of residue.
We have ordered the each variable’s domain so that the most common rotamer
conformations are at the start of the domain i.e. value 1 is the most common
rotamer. Thus, the CLP solver will initially try to assign the most common
rotamer to a residue.

4.2 Constraints

A C program is used to generate a constraint-based description of atomic pack-
ing by calculating clashes between rotamers and the backbone, and between
rotamers of different residues. These constraints model the physical forces that
prevent any clashes (or steric overlap) occurring between atoms i.e. no two atoms
can occupy the same space. This need to avoid atomic clashes can be expressed
using two types of constraint:

1. rotamers cannot be involved in any steric overlaps with the fixed backbone;
2. rotamers cannot be involved in any steric overlaps with rotamers from other

residues.

Rotamers that overlap with the fixed backbone will be eliminated from their
residue’s finite domain. Two rotamers that overlap with each other cannot both
be part of the solution, and so if one of the pair is part of the solution, then the
other must be eliminated from its residue’s finite domain.

To illustrate how the domain variables and constraints are expressed in SIC-
Stus Prolog syntax [4], Figure 3 shows a mini-example CLP program for a chain
containing the amino acid residues Val-Lys-Tyr-Gln-Gly-Ser. When modelling
full proteins, the CLP programs generated are much larger than this.

If r1 and r2 are the position vectors of the centres of two atoms, then the C
program uses the following rule to decide whether those atoms overlap:

|r1 − r2| ×
(
1 +

�radius
2.5

)
< ConDist

Here, ConDist is the minimum allowed interatomic distance, and �radius is
the difference in the atomic radii of the atoms being considered: all carbon
and sulphur atoms are assumed to have the same radius, nitrogen atoms are
0.2Å smaller, and oxygen atoms are another 0.2Å smaller. Thus if a carbon and
an oxygen atom are being considered, �radius = (0.0 + 0.4).



484 M.T. Swain and G.J.L. Kemp

%
% Predicate to solve the constraints using
% the most constrained [ffc] heuristic.
%
solve_constraints :-

constraints(ResiduePositions),
labeling([ffc], ResiduePositions).

%
% SICStus Prolog CLP syntax for
% constraints on side-chain placement
%
constraints([VAL1, LYS2, TYR3, GLN4, GLY5, SER6]) :-

% Finite domains for variables, e.g.
% VAL1 has 3 rotamers, LYS2 has 81 rotamers
%
VAL1 in 1..3,
LYS2 in 1..81,
TYR3 in 1..4,
GLN4 in 1..10,
GLY5 in 1..1,
SER6 in 1..3,

% Clashes with the backbone, e.g.
% VAL1 cannot be rotamer 2
%
VAL1 #\= 2,
TYR3 #\= 3,
TYR3 #\= 4,
GLN4 #\= 1,
GLN4 #\= 5,

% Clashes between rotamers, e.g.
% if VAL1 is rotamer 1 then TYR3 cannot be rotamer 1
%
VAL1 #= 1 #=> TYR3 #\= 1,
VAL1 #= 1 #=> LYS2 #\= 1,
VAL1 #= 1 #=> LYS2 #\= 2,
SER6 #= 1 #=> LYS2 #\= 2,
SER6 #= 1 #=> GLN4 #\= 2,
SER6 #= 1 #=> GLN4 #\= 8,
true.

Fig. 3. SICStus Prolog syntax for declaring CLP variables, finite domains and con-
straints. Programs like this are generated automatically by our system; the typical size
of such programs is from 3000 to 8000 lines.
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4.3 Search Strategy Used by the CLP Solver

The SICStus Prolog labeling predicate shown in Figure 3 has search options to
control the order in which variables are selected and assigned a rotamer. When
the variables are listed in the order in which the residues occur in the protein
chain, the biological interpretations of the five alternative labeling options are
as follows:

leftmost: residues are selected in order from the N-terminus towards the C-
terminus.

min: the residue closest to N-terminus with the smallest lower bound, i.e. with
a constraint on its most probable rotamer, is selected first.

max: the residue closest to N-terminus with the greatest upper bound, i.e. with
a constraint on its most improbable rotamer, is selected first.

ff: the residue closest to N-terminus with the least number of rotamers is se-
lected first.

ffc: the residue closest to N-terminus with the least number rotamers and with
the most constraints suspended on it is selected first.

A comparison of these different enumeration heuristics is given in section 5.1.

4.4 Problems with Unsatisfiable CLP Programs

An unfortunate characteristic of a single CLP side-chain placement program is
that it either works, or it doesn’t — if the value of ConDist is too high, variables
will be over-constrained, and a model cannot be produced. This failure to find
even a poor solution for an over-constrained system is a disadvantage of using
CLP to model side-chains, since even a poor solution with known weaknesses
can still provide scientists with useful information about a protein’s structure,
and can serve as a starting point for further structural refinement.

The advantage of using the ConDist parameter when calculating steric over-
laps is that it can be varied easily, tightening or loosening the constraints, in
order to achieve a solution. The largest value of ConDist that produces a solu-
tion can vary greatly between proteins. Typically, small proteins, with less than
100 residues, can be modelled with a ConDist of about 2.4 Å. Larger proteins,
with over 200 residues, can be modelled with a ConDist of only 1.6 Å — a value
that represents some very severe steric overlaps.

The severe steric overlaps present in the models created using CLP highlight
some of the problems experienced by approximating continuous side-chain con-
formations by fixed rotamers. In side-chain modelling methods that use explicit
energy functions such close contacts lead to very high van der Waals terms that
approach infinity as the distance shrinks to zero. This has led some researchers
to fix the van der Waals term to a certain value for small interatomic distances
[19,12,15,13].

When ConDist is at a value small enough to produce a solution, the con-
straints on many residues will be so weak that they will be poorly modelled. To
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achieve greater modelling accuracy high values of ConDist are needed to place
constraints on loosely packed residues, while low values of ConDist are needed
for residues that are more tightly packed. A method embracing these apparently
conflicting requirements is described in section 4.6.

4.5 Null Rotamers

One method of identifying variables that are likely to be over-constrained is
to use null values (or null rotamers). In doing this, we add an extra value to
the end of each variable’s finite domain, after the least common rotamer, that
corresponds to “no (real) value found”. When this value is part of the solution it
means that no rotamer can be placed for the corresponding residue. Because the
null rotamer has no physical representation, no constraints can be placed upon
it. No matter how tight the constraints on a variable may be, there will always be
a solution that contains the null rotamer. Thus, under very tightly constrained
conditions, the residues in the core of the protein may be over constrained and
allocated null rotamers, whereas those under-constrained residues found towards
the surface of the protein will be allocated real rotamers.

4.6 An Iterative Implementation of the CLP Method

The simple CLP method for side-chain placement described above has been
modified to make use of null rotamers. The basic idea is that ConDist is increased
iteratively from zero to around 3.2 Å in steps of 0.4 Å so that at each iteration
a CLP program is created with successively tighter packing constraints.

When ConDist is low a solution will be found easily, and this solution is
stored for later use. As ConDist is increased to relatively high values, residues will
become over-constrained and cause the CLP solver to fail. When this happens
the CLP program is rewritten automatically, with null rotamers in the domains
of all residue variables. The solution to this program will allocate null rotamers to
some of the over-constrained residues. These over-constrained residues are set to
the rotamer that was part of the solution solved (and stored) under the previous
iteration. They are now considered to be fixed like the backbone, and do not
take part in any constraints. Now another CLP program is created without null
rotamers. If this program fails then null rotamers are used again, and the process
repeated, until a solution is found for a program that does not use null rotamers.
When this occurs the rotamers chosen are stored, and ConDist is increased.

The CLP solver will not backtrack when null rotamers are used. This is not
a serious problem because our method only uses null rotamers to identify over-
constrained residues. Once all the residues causing the CLP solver to fail have
been identified, null rotamers are no longer used and the CLP solver is once
more able to backtrack.

An outline of the improved CLP side-chain placement algorithm is shown in
Figure 4.
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find close inter-atomic distances between rotamers
ConDist = 0

while ConDist < 3.2 Angstroms

turn off null rotamers
automatically write CLP program for current value of ConDist
try to solve constraints with CLP

if no solution exists

turn on null rotamers
automatically write CLP program for current value of ConDist
solve constraints with CLP (success guaranteed)
relace any null rotamers previously recorded solution

else CLP found a solution

store the set of rotamers that is the solution
evaluate model
ConDist := ConDist + 0.4

end else

end while

Fig. 4. Pseudo-code description of the iterative CLP side-chain placement algorithm.

5 Results and Discussion

We have used the iterative CLP method described in section 4.6 to investigate
the accuracy of models constructed using different enumeration options and ro-
tamer libraries, and we have compared the accuracy of our CLP method with
other side-chain placement algorithms. In this study we have modelled a set of
forty-three proteins 1 collated from those modelled by Keohl and Delarue [15],
Shenkin et al. [25], and Holm and Sander [12]. All of these structures are high
quality, with a resolution value less than or equal to 2.0 Å. Comparing side-chain
modelling methods is complicated by the different criteria used by authors to as-
sess the accuracy of their predictions [25,26]. Predicted side-chain conformations
are commonly compared to the X-ray structures obtained from the Protein Data

1 The Protein Data Bank [1] codes of the proteins are: 1BP2, 1CA2, 1CCR, 1CRN,
1CTF, 1HOE, 1LZ1, 1MBA, 1PAZ, 1PPD, 1PPT, 1R69, 1RDG, 1UBQ, 256B 2CAB,
2CDV, 2CGA, 2CI2, 2CTS, 2I1B, 2LYZ, 2LZT, 2MLT, 2OVO, 2RHE, 2UTG, 3APP,
3GRS, 3LZM, 4HHB, 4LYZ, 4PEP, 4PTI, 4TNC, 5CYT, 5PCY, 5PTI, 5RXN,
6LDH, 6LYZ, 7RSA, 8DFR. The number of amino acid residues in these proteins
ranges from 36 to 574, with an average of 165.
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Bank [1] by calculating the root mean square distance (RMSD) of the side-chain
atoms (excluding hydrogens), or by comparing side-chain dihedral (χ) angles (as
defined in [14]).

5.1 Enumeration Option Comparison

Figure 5 shows the accuracy of the modelling method when using the different
CLP variable enumeration heuristics. Both the ffc and ff search options per-
form very similarly. The leftmost and min options also give similar predictions
to each other, and the max is the least successful. We have used the ffc heuristic
to obtain the results given in this paper.
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Fig. 5. The average side-chain atom RMSD, including Cβ atoms, of forty-three models
built using the CLP method, with five different enumeration heuristics, and ConDist
parameter increasing from 0.4 Å to 3.2 Å.

We believe that the first fail options options place the smaller side-chains
first and, having determined those conformations, they propagate constraints
onto the larger, more flexible side-chains. Thus the larger side-chains are packed
around the smaller ones. This is the opposite to what happens when the max
option is used: more flexible side-chains are placed first, and propagated con-
straints eliminate the most common conformations for small side chains with
fewer rotamers.

The results presented in Figure 5 were obtained using the CULL2 library,
described in Section 5.2. Tests with other rotamer libraries give similar results.
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5.2 Reducing the Variables’ Domain Sizes

Since each variable’s domain has been ordered with the most common rotamers
first, the CLP solver will try to find a solution with these rotamers before it tries
the less common rotamers. In the BBDEP library rotamers are included for every
region of backbone torsion space [7]. Some of these rotamers are very uncommon,
have large internal clashes, and are unlikely to be genuinely observed [21]. When
the rotamers of two residues are involved in a clash, the CLP solver will backtrack
through the least probable rotamers of the first residue before trying a different,
more common conformation of the second residue. By culling very improbable
rotamers from the rotamer library we build models with only the most common
rotamers. Although the maximum theoretical accuracy of the rotamer libraries
has decreased because they contain fewer side-chain conformations (the complete
BBDEP library covers 97% of χ1 conformations, whereas the CULL1 version
covers 93%), the accuracy of the models created tends to increase, as is shown
in Figures 6 and 7.

In Figures 6 and 7 we compare the accuracy of the CLP method when used
with different rotamer libraries, and show that reducing the size of the rotamer
library can lead to more accurate side-chain placement. These libraries have been
created by removing all rotamers with probabilities less than a certain minimum
value.2 In addition we added some extra rotamers to CULL1 and CULL2. For
these libraries, CULL1X and CULL2X, rotamers with χ2 angles differing by
±10◦ were added. These extra rotamers are intended to alleviate the slight steric
overlaps that the most common rotamers may be involved in although, as can
be seen in Figures 6 and 7, the gain in accuracy is relatively small.

5.3 Comparisons with Other Side-Chain Prediction Methods

In Table 1 we show the modelling predictions for all residues with one or more
rotatable side-chain bond in the set of 43 proteins, and compare our results with
those obtained using SCWRL [2] and confmat [15]. Implementations of SCWRL
and confmat were obtained via the web, and were tested using the same set of
proteins and evaluation methods as our CLP method. Our method compares
favourably with the other methods; with the CULL2 library it predicts just over
79% of χ1 angles correctly, an improvement of about 1% over SCWRL, and 6%
over confmat. The method presented here, which has not been optimised for
speed, took about 60 minutes to model the set of 43 proteins — 30 minutes
longer than SCWRL.
2 For the smallest library, CULL1, the amino acids Cys, Pro, Ser, Thr, Val had mini-
mum probabilities of 0.1, Asp, Asn, Ile and Leu had minimum probabilities of 0.075,
Arg, Gln, Glu, Lys, Met had minimum probabilities of 0.05, and Phe, Tyr, Trp, His
had minimum probabilities of 0.025. For CULL2 the minimum probabilities were
0.075, 0.05, 0.025 and 0.125 for each of the groups, and for CULL3 the minimum
probabilities were 0.05, 0.025, 0.0125 and 0. The rotamers in the BBDEP library
cover 97% of the χ1 angles in our set of 43 proteins; this decreases to 96%, 95% and
93% for the CULL3, CULL2 and CULL1 libraries.
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Fig. 6. The average side-chain atom RMSD, including Cβ atoms, of forty-three models
built using the CLP method, with ConDist parameter increasing from 0.4 Å to 3.2 Å.
Each curve represents a modification, described in the main text, to the BBDEP library
[7].
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Fig. 7. The average percentage of modelled side-chains with χ1 angles within 40o

of those in the forty-three X-ray structures. The models were built using the CLP
method, with ConDist parameter increasing from 0.4 Å to 3.2 Å. Each curve represents
a modification, described in the main text, to the BBDEP library [7].

The theoretical limit of side-chain prediction accuracy is set by the differences
in X-ray structures crystallised by different laboratories [20]. More recent side-
chain prediction algorithms approach this theoretical limit, modelling up to 85%
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of χ1 conformations correctly [22,32], improving on the results of the SCWRL
algorithm by up to 4%. However, these recent approachs are time-consuming,
taking hours rather than minutes to model a single protein.

Table 1. The percentage of χ1 angles correct, are shown for each residue when mod-
elled by the CLP side-chain method using the ffc enumeration heuristic and different
rotamer libraries. These values were taken when ConDist was equal to 2.8Å for the
BBDEP library, and 3.2Å for CULL2, and CULL2X.

Residue No. χ Number CLP CLP CLP SCWRL confmat
Angles BBDEP CULL2 CULL2X [2] [15]

Ala 0 - - - - - -
Arg 4 226 64 68 67 69 67
Asn 2 333 76 75 75 74 71
Asp 2 379 80 77 77 75 66
Cys 1 170 80 84 85 76 58
Gln 3 228 70 73 74 71 73
Glu 3 306 62 60 61 62 63
Gly 0 - - - - - -
His 2 127 78 80 81 83 84
Ile 2 303 86 91 90 88 85
Leu 2 490 81 85 85 84 84
Lys 4 432 67 67 68 67 67
Met 3 126 76 80 80 78 74
Phe 2 222 88 93 91 91 92
Pro 2 275 89 89 81 90 83
Ser 1 483 60 62 62 60 38
Thr 1 362 82 84 84 83 74
Trp 2 103 90 91 90 91 90
Tyr 2 219 92 94 94 89 93
Val 1 437 86 86 86 89 84

Overall 77.5 79.1 78.7 78.3 73.3

6 Conclusions

The side-chain placement problem can be expressed as a CLP program in which
rotamer conformations are used as values for finite domain variables, and bad
steric contacts involving rotamers are represented as constraints. We have de-
scribed an initial CLP method of side-chain placement that is fast and accurate.
Our method uses a series of automatically generated CLP programs to repre-
sent successively tighter side-chain packing constraints. By using these programs
iteratively our method predicts 79% of χ1 angles correctly.

We have presented results obtained using several different domain enumera-
tion heuristics, and have found those based on “first fail” to be the most success-
ful for this application. We have constructed several rotamer libraries based on
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the backbone independent library of Dunbrack et al. [7] and our results indicate
that discarding the least common rotamers from this library both improves the
accuracy of the predicted side-chain conformations, and reduces the size of the
combinatorial search space.
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