Macromolecular structure determination by X-ray crystallography

Arjan Snijder Bioinformatics III Department of Chemistry and Bioscience Molecular Biotechnology arjan.snijder@chembio.chalmers.se Macromolecular structure determination by X-ray crystallography

Overview of X-ray structure determination Protein data-bank coordinate files Structure quality

Structural Biology

- Insight in biological processes
- Three-dimensional structure of biomacromolecules

- NMR spectroscopy
- AFM
- Electron microscopy
- X-ray crystallography

Basis of X-ray crystallography

Irradiation of electrons with X-ray wave
Electrons emits X-rays
Interference

Basis of X-ray crystallography

- Interference
- Structure dependent
- Scattering related to number of electrons

Crystals

- Weak diffraction from single molecules
- •Crystals are regular arrangements of molecules
- Interference by molecules
- Amplification of signal in certain directions
- Signal strong enough to measure

Crystals. Strength and Weakness

Crystallization: controlled decrease of solubility

Parameters: Salt concentration, type of salts, kinetics, pH, protein concentration, additives, protein purity, temperature

Protein crystals

Dimensions 0.1 x 0.05 x 0.05 mm^3

Solvent content: 20% to 80%

Diffraction experiment

Crystal rotates during data collection

The X-ray diffractometer

X-ray diffraction image

Reflection against planes

Reflection against planes

Miller indices for three types of cubic lattices.

Fourier synthesis

Structure Factors

http://www.embl-hamburg.de/~tilo/sfapplet/bigframe_direct.html

Phases

Method	Principal	Requirement
lsomorphous Replacement	Scattering difference of extra added electrons is exploited to obtain phases	Specific binding of heavy atoms
Multiple-wavelength Anomalous Dispersion	Wavelength dependent scattering of heavy atoms results in phases	Anomalous scatterer, synchrotron radiation
Molecular Replacement	Phases calculated from highly homologous protein with known structure.	Homologous structure
Direct Methods	Phases are calculated without further information than amplitudes	High obs/parameter ratio

Isomorphous differences

Isomorphous differences

Calculate electron density using amplitudes and phases By Fourier Transformation

Sequence

QEATVKEVHD APAVRGSIIA NMLQEHDNPF TLYPYDTNYL IYTQTSDLNK EAIASYDWAE NARKDEVKFQ LSLAFPLWRG ILGPNSVLGA SYTQKSWWQL SNSEESSPFR ETNYEPQLFL GFATDYRFAG WTLRDVEMGY NEDENGRSDP TSRSWNRLYT RLMAENGNWL VEVKPWYVVG NTDDNPDITK YMGYYQLKIG YHLGDAVLSA KGOYNWNTGY GGAELGLSYP ITKHVRLYTO VYSGYGESLI DYNFNQTRVG VGVMLNDLF

Refinement

Refinement: Adjustment of the model for better agreement with experimental data and stereo-chemical restraints

Initial density —— Initial model

Refinement

Minimization:
$$E_{total} = (1-w_x)E_{geometry} + w_x E_{Xray}$$

 w_{x} weighting term depending on data resolution

$$E_{Xray} = \Sigma_{hkl} (|F_{obs}(hkl)-k|F_{calc}(hkl)|)^{2}$$

$$E_{geometry} = E_{bond} + E_{bond angle} + E_{torsion angle} + E_{dihedral} + E_{chirality} + E_{van der Waals}$$

Engh&Huber parameters

Small molecule crystallography

Structures

Structural and functional analysis, biochemical and biomedical implications

Protein coordinate file

Header	HEADER TITLE COMPND COMPND	MEMBRANE PROTEIN 09-JUL- OUTER MEMBRANE PHOSPHOLIPASE A FROM ESCHERICHIA MOL_ID: 1; 2 MOLECULE: OUTER MEMBRANE PHOSPHOLIPASE (OMPLA)	99 1QD6 COLI										
	COMPND COMPND COMPND COMPND	3 CHAIN: A, B; 4 FRAGMENT: RESDIUES 33-45; 5 ENGINEERED: YES; 6 MOL_ID: 2;	CHAIN: A, B; FRAGMENT: RESDIUES 33-45; ENGINEERED: YES; MOL_ID: 2;										
Coordinates hetero atoms End	CRYST1 ORIGX1 ORIGX2 ORIGX3 SCALE1 SCALE2 SCALE3 ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	80.067 84.038 95.245 90.00 90.00 P 1.000000 0.000000 0.000000 0.00000 0.00000 0.000000 1.000000 0.000000 0.00000 0.000000 0.000000 1.000000 0.00000 0.012490 0.000000 0.000000 0.00000 0.000000 0.011899 0.000000 0.00000 0.000000 0.010499 0.00000 0.00000 1 N ALA 13 -20.453 8.418 34.649 1 2 CA ALA 13 -19.548 8.788 36.956 1 4 O ALA 13 -19.548 8.787 36.535 1 5 CB ALA 13 -22.027 8.797 36.535 1 6 N VAL 14 -19.319 9.713 37.892 1 7 CA VAL 14 -18.259 9.678 38.920 1 8 C VAL 14 -17.035 10.508 38.525 </th <th>21 21 21 .00 64.99 .00 66.50 .00 65.58 .00 65.60 .00 66.84 .00 64.40 .00 62.17 .00 59.47</th>	21 21 21 .00 64.99 .00 66.50 .00 65.58 .00 65.60 .00 66.84 .00 64.40 .00 62.17 .00 59.47										
	CONECT 4 MASTER END	157 3104 4154 301 0 4 10 30 0 6 4220	4 42										

Header

 DBREF 1QD6 D 30 269 SWS P00631 PA1_ECOLI 50 289

 SEQRES 1 A 13 ALA VAL ARG GLY SER ILE ILE ALA ASN MET LEU

 GLN GLU

 SHETNAM HDS 1-HEXADECANOSULFONIC ACID

 FORMUL 5 CA 2(CA1 2+)

 HELIX 10 10 SER D 248 TYR D 252 5

 SHEET 15 B15 TYR D 33 PRO D 34 -1 O TYR D 33 N ALA D 74

 LINK CB SER D 144
 O3S HDS D 144

 CISPEP 1 ASP C 149 PRO C 150
 0
 1.48

Protein coordinates

The unit cell is composed of asymmetric units (asu). Application of symmetry operators to the asymmetric unit generate the unit cell. The pdb-coordinates describe the contents of the asymmetric unit

		a	ł	2 D	С		alpha	beta	gamma	spaces	group	asu
CRYST1	80.	067	84	.038	95.2	245	90.00	90.00	90.00	P 21 2	21 21	8
ORIGX1		1.000	0000	0.0	00000	0.	000000		0.0000			
ORIGX2		0.000	0000	1.0	00000	0.	000000		0.0000			
ORIGX3		0.000	0000	0.0	00000	1.	000000		0.0000			
SCALE1		0.012	2490	0.0	00000	0.	000000		0.00000			
SCALE2		0.000	0000	0.0	11899	0.	000000		0.00000			
SCALE3		0.000	0000	0.0	00000	0.	010499		0.00000			
ATOM	1	N	ALA	A 1	3	-20).453	8.418	34.649	1.00	64.99	
ATOM	2	CA	ALA	A 1	3	-20	0.653	9.129	35.951	1.00	66.50	
ATOM	3	С	ALA	A 1	3	-19	9.548	8.788	36.956	1.00	65.58	
ATOM	4	0	ALA	A 1	3	-18	3.956	7.710	36.890	1.00	65.60	
ATOM	5	CB	ALA	A 1	3	-22	2.027	8.797	36.535	1.00	66.84	
ATOM	6	N	VAL	A 1	4	-19	.319	9.713	37.892	1.00	64.40	
ATOM	7	CA	VAL	A 1	4	-18	8.259	9.678	38.920	1.00	62.17	
ATOM	8	С	VAL	A 1	4	-17	7.035	10.508	38.525	1.00	59.47	

Protein coordinates

The coordinates are given in Ångström, scale cards give a matrix to convert coordinates to fractional coordinates

		a	k	2	C	2	alpha	beta	gamma	space	group	asu	
CRYST1	80.	067	84.	038	³ 95.	245	90.00	90.00	90.00	P 21	21 21	8	
ORIGX1		1.00	0000	-0-	.000000) 0.	000000		0.0000	C			
ORIGX2		0.00	0000	1	. 000000) 0.	000000		0.0000	0 040	2400	4/0	0.007
ORIGX3		0.00	0000	0	. 000000) 1.	000000		0.0000	U.U1⊿	2490 :	= 1/ 8	0.067
SCALE1		0.01	2490	0	.000000) 0.	000000		0.0000	C			
SCALE2		0.00	0000	0	.011899	0.	000000		0.0000	C			
SCALE3		0.00	0000	0	.000000	0	010499		0.0000	Ç			
ATOM	1	N	ALA	Α	13	-20	.453	8.418	34.649	1.00	64.99		Ν
ATOM	2	CA	ALA	Α	13	-20	0.653	9.129	35.951	1.00	66.50		С
ATOM	3	С	ALA	Α	13	-19	0.548	8.788	36.956	1.00	65.58		С
ATOM	4	0	ALA	Α	13	-18	8.956	7.710	36.890	1.00	65.60		0
ATOM	5	CB	ALA	Α	13	-22	2.027	8.797	36.535	1.00	66.84		С
ATOM	6	N	VAL	Α	14	-19	.319	9.713	37.892	1.00	64.40		N
ATOM	7	CA	VAL	Α	14	-18	3.259	9.678	38.920	1.00	62.17		С
ATOM	8	С	VAL	Α	14	-17	.035	10.508	38.525	1.00	59.47		С
	\mathbf{X}							•		. 🗡			_
/			\		\sim		<u> </u>	\sim		/			-
				· · · ·					•				

atom number, atom-type, residue type, chain, residue number, x, y,z, occupancy and B-factor, atom

Judging quality

Not one parameter can describe the quality

- Resolution 3.5Å ~0.6 Å
- Overall B-factor
- Data quality
- Model quality

pdb-headers contain information to judge the quality of the structure

- Some statistics on data collection
- Model quality report

Resolution: Reflection against planes

1-D Fourier synthesis of square

Resolution/coordinate error

atomic coordinates can be determined with an accuracy greater than the resolution because of knowledge of chemical architecture

B-factors or temperature factors

		a	ł	C	C	alpha	. beta	gamma	spacegroup	asu	
CRYST1	80.	067	84	.038	95.2	245 90.00	90.00	90.00	P 21 21 21	8	
ORIGX1		1.00	0000	0.0	00000	0.00000		0.0000)		
ORIGX2		0.00	0000	1.0	00000	0.00000		0.0000)		
ORIGX3		0.00	0000	0.0	00000	1.000000		0.0000)		
SCALE1		0.01	2490	0.0	00000	0.00000		0.0000)		
SCALE2		0.00	0000	0.0	11899	0.00000		0.0000)		
SCALE3		0.00	0000	0.0	00000	0.010499		0.0000)		
ATOM	1	N	ALA	A 1	3	-20.453	8.418	34.649	1.00 64.99		N
ATOM	2	CA	ALA	A 1	3	-20.653	9.129	35.951	1.00 66.50		С
ATOM	3	С	ALA	A 1	3	-19.548	8.788	36.956	1.00 65.58		С
ATOM	4	0	ALA	A 1	3	-18.956	7.710	36.890	1.00 65.60		0
ATOM	5	CB	ALA	A 1	3	-22.027	8.797	36.535	1.00 66.84		С
ATOM	6	N	VAL	A 1	4	-19.319	9.713	37.892	1.00 64.40		N
ATOM	7	CA	VAL	A 1	4	-18.259	9.678	38.920	1.00 62.17		
ATOM	8	C	VAL	A 1	4	-17.035	10.508	38.525	1.00 59.47		

- •B-factors: indicates how "smeared" the electron density is.
- •X-ray scattering by a crystal temperature dependent vibrational motion.
- •Atoms in unit cells not at exactly the same position.
- •Reduce scattering particular at high resolution.
- •B related to atomic vibration B = 8 $\pi^2 x < u^2 >$
- B expressed in Å² ranges from ~2-100Å²

(root mean square displacement ~0.3-1.99Å

B-factors or temperature factors

High B-factors correlate with flexible loops.

core regions, lower B-factors

Water, ions, small molecules

Header

Coordinates

ATOM	4114	OXT	PHE	D	269
TER	4115		PHE	D	269
HETATM	4116	CA	CA		1
HETATM	4117	CA	CA		2
HETATM	4118	C1	HDS	С	144
HETATM	4119	C2	HDS	С	144
HETATM	4120	C3	HDS	С	144

-12.967	4.388	10.176	1.00	42.79
17.541	-0.885	29.854	1.00	2.32
18.918	17.071	18.829	1.00	10.71
11.063	0.452	28.241	1.00	38.03
9.650	-0.100	28.331	1.00	35.97
8.775	0.483	27.240	1.00	28.66

Water molecules spherical density with options for hydrogen bonding

Resolution better than 2.5Å

lons: large spherical density with coordination

Water, ions, small molecules

Water molecules crucial role in activity or have structural roles

Waters on protein surface

Not completely occupied waters

(Steiner et al. 2001 Acta D)

Alternative conformations

Protein residues or regions may have two or more discrete conformations which, depending on the resolution, can be modelled (Side chains on surfaces)

	Merionar	Duniedo OMPLA		
	CF*	5002+	10.0	
Speci gou i	P	23,21	$P_{1}T_{1}$	
Resolution (A)	30 2.6 (161-265 Å)	24-3.3 (2.4-3.3 \)	37,928 (2.9) 2.74 10	
Unvertell (a, b, c) (Å)	72.53, W.53, 100.63	VEAE, V868, 101 28	81.54, 84.97, 95.60	
Reflections	47 201	20,753	53 984	
Unique reflections	1995	5793	14.611	
Completeness (%)	19.2 817.71	973 (51.2)	41.5 (57.5)	
Completeness of Friedel pairs (%)	· · · · · · · · · · · · · · · · · · ·	91.0 (71.3)		
diz(m	64.0 (11.030)	141 (16)	进于(7 55)	
$R_{\rm sym}$ (%)	3.1 (8.1)	5.3 (10.5)	12.1 (28 6)	

Table 1. Data collection and refinement statistics

number of reflections: actual number of intensitys of diffracted X-rays measured unique reflections, reflections in the asymmetric unit of the reciprokal lattice redundancy: number of reflections/number of unique reflections completeness: number of unique reflections/ theoretical number of unique reflections

I/sigma: Intensity of the reflections/noise level

R sym: indicates how accurate identical reflections are measured

 $\mathsf{R}_{sym} = \sum_{hkl} \sum_{i} ||\mathsf{F}_{i}(hkl)| - \langle |\mathsf{F}_{i}(hkl)| \rangle | / \sum_{hkl} \sum_{i} |\mathsf{F}_{i}(hkl)|$

(values in brackets indicate the highest resolution shell)

Data collection

REMARK	200	NUMBER OF UNIQUE REFLECTION	ONS	:	28336		
REMARK	200	RESOLUTION RANGE HIGH	(A)	:	2.100		
REMARK	200	RESOLUTION RANGE LOW	(A)	:	20.300		
• • •							
REMARK	200	OVERALL.					
REMARK	200	COMPLETENESS FOR RANGE	(응)	:	74.1		
REMARK	200	DATA REDUNDANCY		:	2.690		
REMARK	200	R MERGE	(I)	:	0.07700		
REMARK	200	R SYM	(I)	:	NULL		
REMARK	200	<i sigma(i)=""> FOR THE DATA</i>	SET	:	10.9000		
REMARK	200						
REMARK	200	IN THE HIGHEST RESOLUTION	SHELL.				
REMARK	200	HIGHEST RESOLUTION SHELL,	RANGE	H	HIGH (A)	:	2.10
REMARK	200	HIGHEST RESOLUTION SHELL,	RANGE	I	LOW (A)	:	2.17
REMARK	200	COMPLETENESS FOR SHELL	(응)	:	66.7		
REMARK	200	DATA REDUNDANCY IN SHELL		:	NULL		
REMARK	200	R MERGE FOR SHELL	(I)	:	0.26500		
REMARK	200	R SYM FOR SHELL	(I)	:	NULL		
REMARK	200	<i sigma(i)=""> FOR SHELL</i>		:	NULL		

• • •

-	Monomarie OMPL/	E §
Spece groups Reputition (Å) One cell (a, b, c) (Å) Refluences Unique reflections	94,91 30 2.6 (181 2.60 Å) 79 53, 97 53, 100 51 47 201 1975 19 2 47 20	Protein atoms: parameter observation ratio <i>xyzB</i> 8376/9975 = 0.84
Completeness (%) Completeness of Friedel pairs (%) (27)(a) 2	1977年1月 1月1日 3月1日日	Geometric restrains
Refinement Profeir acons R-factor (%)	Monomaric OMPLA (2014 22.2 (33.6) 10.1 (26.5)	Model calculated structure factors:
Z-factor (Å [*]) Non-protein anons Error estimato (Å) r.ma.d. bond length: (Å)	45:9 51 0.4 0.008	$\begin{aligned} R &= \Sigma_{hkl} \; Fobs(hkl) \text{-} k F_{calc} \\ (hkl) /\; \Sigma_{hkl} \; F(hkl) \end{aligned}$
r.m.s.d. dibedráls (deg.) r.m.s.d. improper dihedrals (deg.)	25.4 1.23	Rfree, test set not used in refinement

Table 1. Flata collection and refinement statistics.

Refinement

REMARK	3	DATA USED IN REFINEMENT.
REMARK	3	RESOLUTION RANGE HIGH (ANGSTROMS) : 2.10
REMARK	3	RESOLUTION RANGE LOW (ANGSTROMS) : 20.30
REMARK	3	DATA CUTOFF (SIGMA(F)) : 0.000
REMARK	3	DATA CUTOFF HIGH (ABS(F)) : 100000.000
REMARK	3	DATA CUTOFF LOW (ABS(F)) : 0.0000
REMARK	3	COMPLETENESS (WORKING+TEST) (%) : 74.1
REMARK	3	NUMBER OF REFLECTIONS : 28947
REMARK	3	
REMARK	3	
REMARK	3	FIT TO DATA USED IN REFINEMENT.
REMARK	3	CROSS-VALIDATION METHOD : THROUGHOUT
REMARK	3	FREE R VALUE TEST SET SELECTION : RANDOM
REMARK	3	R VALUE (WORKING SET) : 0.226
REMARK	3	FREE R VALUE : 0.283
REMARK	3	FREE R VALUE TEST SET SIZE (%) : 8.300
• • •		
REMARK	3	ESTIMATED COORDINATE ERROR.
REMARK	3	ESD FROM LUZZATI PLOT (A) : 0.27
REMARK	3	ESD FROM SIGMAA (A) : 0.300

. . .

Model quality

 Does the model reflect our chemical knowledge location of water molecules biochemical evidence comparison with homologous proteins Refinement with geometrical constraints bond lengths, angles, dihedrals etc. high resolution, unrestrained refinement Indicators not used in refinement Ramachandran plot

- Violations
- Electron density quality

Ramachandran plot

Violations

REMARK	500	TH	e sti	ĽRE	COCHEI	MICAL	PA	ARAMI	CLEI	RS OF	THE FO	OLLOW.	ING RES.	LDUES
REMARK	500	HAY	VE VA	JLA	JES WI	HICH I	DEV	/IATE	C FI	ROM E	XPECTE	D VAL	UES BY N	IORE
REMARK	500	TH	AN 63	*RN	ISD (I	M=MODI	ΞL	NUME	BER	; RES	=RESID	UE NAI	ME; C=CH	HAIN
REMARK	500	IDI	ENTIE	FIE	ER; SS	SEQ=SI	EQT	JENCI	E NU	JMBER	; $I = IN$	SERTI	ON CODE).
REMARK	500													
REMARK	500	ST	STANDARD TABLE:											
REMARK	500	FOI	RMAT	: ((10X,	I3,1X,	, 2	(A3,1	LX,Z	Al,I4	,A1,1X	,A4,32	X),F6.3)
REMARK	500													
REMARK	500	EXI	PECTI	ED	VALUI	ES: EI	NGI	I ANI	о ні	JBER,	1991			
REMARK	500													
REMARK	500	М	RES	CS	SSEQI	ATM1		RES	CSS	SEQI	ATM2	DEVI	ATION	
REMARK	500		MET	А	22	CE		MET	А	22	SD	-0.1	17	
REMARK	500		MET	В	22	CE		MET	В	22	SD	-0.0	65	
• • •														
REMARK	500	М	RES	CS	SSEQI	ATM1		ATM2	2	ATM3				
REMARK	500		LEU	С	71	Ν	_	CA	-	С	ANGL.	DEV.	= -7.4	DEGREES
REMARK	500		LEU	С	88	Ν	_	CA	_	С	ANGL.	DEV.	=-10.2	DEGREES
REMARK	500		LEU	С	158	Ν	_	CA	_	С	ANGL.	DEV.	= -7.6	DEGREES
• • •														
REMARK	500		LEU	D	71	Ν	_	CA	_	С	ANGL.	DEV.	=-10.0	DEGREES
REMARK	500		LEU	D	88	Ν	_	CA	_	С	ANGL.	DEV.	= -9.8	DEGREES
REMARK	500		LEU	D	120	Ν	_	CA	_	С	ANGL.	DEV.	= -7.7	DEGREES

Missing atoms

REMARK 470 MISSING ATOM

REMARK 470 THE FOLLOWING RESIDUES HAVE MISSING ATOMS(M=MODEL NUMBER;

REMARK 470 RES=RESIDUE NAME; C=CHAIN IDENTIFIER; SSEQ=SEQUENCE NUMBER;

REMARK	470	I=INSERTION CODE	:):
REMARK	470	M RES CSSEQI	ATON
REMARK	470	SER C 144	OG
REMARK	470	SER D 144	OG

Model quality programs

Procheck

What if

- MD programs
- SF-Check
- O (Xray model building program)Oops

Crystals, structure and interpretation

