Agda II – Take One

Ulf Norell

May 10, 2006

- * ロ ト * @ ト * ≧ ト * ≧ ト = - のへで

Motivation The Basics Features and Not

Introduction

- Motivation
- The Basics
- Features and Not
- 2 Not Yet Features
 - Pi in Set
 - Signatures and Structures
 - Inductive Families
- 3

Features

- Datatypes
- Definitions by Pattern Matching
- Implicit Arguments
- Module System

Conclusions

- 문

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

Motivation The Basics Features and Not

What's the point?

- of Agda II
 - Solid theoretical foundation (lacking in Agda)
 - Small well-defined core language with nice metatheory.
 - Transparent translation from the full language to the core language.
- of this talk
 - Present the (full) language from a user's perspective.

<ロ > < 同 > < 三 > < 三 > < 三 > <

æ

Motivation The Basics Features and Not

The Logical Framework

The Basic Language

(Terms)
$$s, t$$
 ::= $x \mid c \mid f \mid st \mid \lambda x \to t \mid \lambda(x : A) \to t$
(Types) A, B ::= $(x : A) \to B \mid A \to B \mid t \mid \alpha$
(Sorts) α, β ::= $Set_i \mid Set \mid Prop$

• Note: Set \neq Prop.

Example: polymorphic identity

 $id : (A : Set) \to A \to A$ $id = \lambda(A : Set)(x : A) \to x$

Motivation The Basics Features and Not

What's there and what's not

- Features
 - Inductive datatypes
 - Functions by pattern matching
 - Implicit arguments
 - Module system
- Not Yet Features
 - Π in Set
 - Signatures and structures
 - Inductive families

< □ > < □ > < □ > < □ > < □ > .

 Π in Set

• What does it mean?

We don't have

$$\frac{\Gamma \vdash A : Set \quad \Gamma, x : A \vdash B : Set}{\Gamma \vdash (x : A) \rightarrow B : Set}$$

Pi in Set

Signatures and Structures

Inductive Families

• Consequences:

We can't do

Rel $A = A \rightarrow A \rightarrow Prop$ apply : List (Nat \rightarrow Nat) \rightarrow List Nat \rightarrow List Nat

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

 Π in Set

Pi in Set Signatures and Structures Inductive Families

- Why don't we have it?
 - Ask Thierry... (The metatheory gets tricky when you combine η -equality and Π in *Set*.)
- What to do about it:
 - Get the metatheory straightened out (e.g. η -equality for datatypes).
 - Abandon η -equality.
 - Abandon Π in Set.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ .

-21

Pi in Set Signatures and Structures Inductive Families

Signatures and Structures

• What does it mean?

• In Agda you can say (something like)

```
Pair A B = sig fst : A
snd : B
p : Pair Nat Nat
p = struct fst = 3
snd = 7
three = p.fst
```

- Why don't we have it?
 - We want to start simple.
 - Signatures and structures will appear in Agda II Take Two (but probably not in the same form as in Agda).

<ロト < 団ト < 巨ト < 巨ト - 巨

Pi in Set Signatures and Structures Inductive Families

Inductive Families

- What does it mean?
 - For instance:

```
data Vec (A : Set) : Nat \rightarrow Set where
vnil : Vec A zero
vcons : (n : Nat) \rightarrow A \rightarrow Vec A n \rightarrow Vec A (suc n)
```

- Why don't we have it?
 - The inductive families in Agda are very limited in terms of what you can do with them.
 - We want something better, which will require some thinking.

<ロ> < 四 > < 団 > < 豆 > < 豆 > 三三

Datatypes

Standard, garden-variety, strictly positive datatypes:

Datatypes

Implicit Arguments

Module System

Definitions by Pattern Matching

data Nat : Set where
 zero : Nat
 suc : Nat → Nat

data Exist (A : Set) ($P : A \rightarrow Prop$) : Prop where witness : (x : A) $\rightarrow P x \rightarrow Exist A P$

data Acc (A : Set) ((<) : $A \rightarrow A \rightarrow Prop$) (x : A) : Prop where acc : ((y : A) \rightarrow y < x \rightarrow Acc A (<) y) \rightarrow Acc A (<) x

• Note that **data** ... is a declaration (not a term or type).

<ロト < 団ト < 団ト < 団ト = 三日

Datatypes Definitions by Pattern Matching Implicit Arguments Module System

Definitions by Pattern Matching

- Functions are defined by pattern matching
 - Arbitrarily nested, exhaustive, possibly overlapping patterns.
 - No case expressions!

< ロ > < 団 > < 目 > < 目 > < 目 > < 目 > < < つ <

Datatypes Definitions by Pattern Matching Implicit Arguments Module System

Mutual induction-recursion

• You can have mutually inductive-recursive definitions:

mutual

even :	$Nat \rightarrow$		Bool	
even	zero	=	true	
even	(suc n)	=	odd n	
odd :	$Nat \rightarrow$		Bool	

odd	zero	=	false
odd	(suc n)	=	even n

 I'd show the standard universe construction example of induction-recursion, but you need ∏ in Set for that.

<ロ > < 同 > < 三 > < 三 > < 三 > <

æ

Datatypes Definitions by Pattern Matching Implicit Arguments Module System

Local functions

• Functions (and datatypes) can be local to a definition:

- ▲ ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ④ ♀ @

Datatypes Definitions by Pattern Matching Implicit Arguments Module System

Termination

- We allow general recursion.
- Termination checking is done separately (as in Agda).
- Example:

qsort :	List Nat \rightarrow		List Nat
qsort	nil	=	nil
qsort	(<i>x</i> :: <i>xs</i>)	=	filter $(\lambda y \rightarrow y < x) xs ++$
			$x :: filter (\lambda y \rightarrow y \ge x) xs$

Datatypes Definitions by Pattern Matching Implicit Arguments Module System

Meta Variables

- There are two kinds of meta variables (only one in Agda):
 - Interaction points: ? and {! ... !}
 - Go figure¹: _
- The type checker should be able to figure out the value of a go figure without user intervention...
- ...whereas the value of an interaction point is supplied by the user.
- We use go figures to implement implicit arguments.

<ロ > < 同 > < 三 > < 三 > < 三 > <

æ

Datatypes Definitions by Pattern Matching Implicit Arguments Module System

Implicit Arguments

• Curly braces { } are used to indicate implicitness:

Syntax

id :
$$\{A : Set\} \rightarrow A \rightarrow A$$

id $\{A\} x = x$
zero' = id $\{Nat\}$ zero

Implicit arguments can be omitted: *id x* means *id* {_} *x*.
Both in left-hand-sides and right-hand-sides:

$$id : \{A : Set\} \rightarrow A \rightarrow A$$

 $id x = x$

Datatypes Definitions by Pattern Matching Implicit Arguments Module System

Example

```
data List (A : Set) : Set where

nil : List A

(::) : A \rightarrow List A \rightarrow List A

(++) : {A : Set} \rightarrow List A \rightarrow List A \rightarrow List A

nil ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)
```

Note that constructors are polymorphic:

- \vdash *nil* : *List* A, for any A
- \nvdash nil : {A : Set} \rightarrow List A.

▲□▶▲□▶▲目▶▲目▶ 目 少えぐ

Datatypes Definitions by Pattern Matching Implicit Arguments Module System

Module System

- Purpose:
 - Control the scope of names.
 - (Not to model algebraic structures.)
- Guiding principle:
 - Scope checking should not require type checking or computation.
- Consequence:
 - Modules are not first class.

- 문

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▲□▶ ▲□▶ ▲ □▶ ▲ 亘▶

Datatypes Definitions by Pattern Matching Implicit Arguments Module System

Submodules

 Each source file contains a single module, which in turn can contain any number of submodules:

module Prelude where module Nat where

. . .

module List where

. . .

module Fold where

- 4 日 + 4 0 + 4 0

Datatypes Definitions by Pattern Matching Implicit Arguments Module System

Accessing the Module Contents

• To use a module from a file the module has to be *imported*

import *Prelude*

• We can then use the names in the module fully qualified

one = Prelude.Nat.suc Prelude.Nat.zero

• Or we can open a module

open *Prelude*.*Nat one* = *suc zero*

Datatypes Definitions by Pattern Matching Implicit Arguments Module System

Controlling what is imported

We can exercise finer control over what is imported or opened.

```
import Prelude as P
open P.Nat, hiding (+), renaming (zero to z)
open P.List, using (replicate)
zz : P.List.List Nat
zz = replicate (suc (suc z)) z
```

< □ ▶ < □ ▶ < □ ▶ < □ ▶ .

-21

Datatypes Definitions by Pattern Matching Implicit Arguments Module System

Controlling what is exported

• Private things are not exported.

```
module BigProof where
private minorLemma = ...
mainTheorem : P == NP
mainTheorem = ...minorLemma ...
```

Abstract things export only their type.

```
module Stack where
abstract
Stack : Set → Set
Stack = List
```

• Private things still reduce, abstract things don't.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ →

- 문

Datatypes Definitions by Pattern Matching Implicit Arguments Module System

Parameterised Modules

• Modules can be parameterised.

```
module Monad (M : Set \rightarrow Set)
(return : \{A : Set\} \rightarrow A \rightarrow MA)
((>>=) : \{A, B : Set\} \rightarrow MA \rightarrow (A \rightarrow MB) \rightarrow MB)
where
liftM : \{A, B : Set\} \rightarrow (A \rightarrow B) \rightarrow MA \rightarrow MB
liftM f m = m >>= \lambda x \rightarrow return (f x)
```

And instantiated

module MonadList = Monad List singleton (flip concatMap) lemma : $\{A, B : Set\} \rightarrow (f : A \rightarrow B) \rightarrow (xs : List A) \rightarrow$ map f xs == MonadList.liftM f xs

• You need to instantiate a parameterised module to use it.

SQ (~

That's it folks

- Agda II is very much work in progress.
- At this point very little is set in stone, so if you think things should be a different way now is the time to speak up.
- Most of what you've seen will be available for use during the 4th Agda Implementors Meeting starting next week in Japan.

<ロ > < 同 > < 三 > < 三 > < 三 > <