
DEPENDENTLY TYPED 
PROGRAMMING IN AGDA 
Ulf Norell 
TLDI’09 
Savannah, Georgia 
January 24, 2009 



DEPENDENTLY TYPED PROGRAMMING 

 Dependently typed programs 
  as opposed to simply typed programs with 

dependently typed proofs 
  dependent types = more precise types 

 Trade-off: precision vs. extra work 
  Often, more precise types does not mean more 

complicated programs 
  The type checker can do a lot of work for us 

 Key tools 
  Indexed inductive definitions 
  Pattern matching 



Nice 
syntax 

Emacs 
IDE 

Compiler 
to Haskell 

Module 
system 

Inductive 
families 

Mutual 
induction-
recursion 

Coinductive 
types 

Total 
language 

Libraries 
(~25kloc) 

No automation / 
proof tactics 

Not super fast 

AGDA 

Agda 

http://www.cs.chalmers.se/~ulfn/Agda 

Powerful 
termination 

checker 

Implicit 
arguments 

Mixfix 
operators 

Good pattern 
matching 
support 

Separate 
compilation/type 

checking 

Support for 
calling Haskell 

functions 



EXAMPLE - LIST LOOKUP 

 We could proceed to prove this function correct, 
but… 
  Proving properties of programs is tedious 
  Anytime you need to know that lookup does the right 

thing you have to invoke the correctness lemmas 
  Better: write the correct function to start with! 

 Here’s a familiar function 



LIST LOOKUP - SPECIFICATION 

 What does it mean to be an element in a list? 

 We can recover the index of x in xs from a proof of 
x ∈ xs. 



CORRECT LIST LOOKUP 

 A precise type for the result of lookup 

 The correct by construction lookup function 



WHAT’S THE PATTERN HERE? 

 Define the result type of a function so that it tells 
you something about the arguments 
  If lookup xs n = outside we learn that n ≥ length xs 
  If lookup xs n = inside x p we learn that n is the index 

encoded by a proof p that x ∈ xs 

  In the terminology of McBride and McKinna 
  Lookup xs n is a view on natural numbers n 

describing how n can be seen as an index into xs. 



EXAMPLE – TYPE CHECKING λ-CALCULUS 

 Let’s start with the punch line 



RAW AND TYPED TERMS 



COMPARING TYPES 



ERASURE 



THE TYPE CHECKER 



EXAMPLE – COMPILING EXPRESSIONS 

 A minimal expression language 



TAKE 1 – NO GUARANTEES 



TAKE 2 – STACK SAFETY 



TAKE 3 – CORRECT BY CONSTRUCTION 



TAKE 3 – CORRECT BY CONSTRUCTION 



CONCLUSIONS 

 Dependently Typed Programming 
  Write programs that don’t need any proofs 
  Using views capturing the relation between inputs 

and output 
  Encode program invariants in the types 

 To make this work: 
  Inductive families 
  Pattern matching 


