
Constructive Stacks?

Munich, 20 December 2019

Constructive Stacks?

Goal

Generalize sheaf models of Intuitionistic Logic to Univalent Type Theory

1

Constructive Stacks?

Reminder: main issue

The problem is how to model universes

The collection of sheaves don’t form a sheaf

If we define F (V) to be the collection of all U-sheaves on V then F is a
presheaf which is not a sheaf in general, since glueing will only be defined up to
isomorphism

This basic fact was the motivation for the notion of stacks

2

Constructive Stacks?

Reminder: what is a sheaf of sets?

Small category C, objects X,Y,Z, . . . and J Grothendieck topology on C

F presheaf: collection of sets F (X) with restriction maps u↦ uf

S in J(X): we can form the set DS(F)(X)

An element of this set is a family u(f) in F (Y) for f ∶ Y → X in S which is
compatible: u(f)g = u(fg) if g ∶ Z → Y

We have a map ηF ∶ F (X) →DS(F)(X) natural in X,S

The presheaf F is a sheaf if each map ηF is a bijection

3

Constructive Stacks?

Reminder: what is a sheaf of sets?

If J(X) contains only the trivial sieve

Then we have a patch function

DS(F)(X) → F (X)

uz→ u(1X)

4

Constructive Stacks?

What should be a stack?

If now F (X) is a presheaf of spaces/types

The equality u(fg) → u(f)g may only be given as a path equality u(f, g)

We should then ask a cocycle condition at the next level

and then higher equalities u(f1, . . . , fn)

The compatible descent data still form a space DS(F)

We require the map F →DS(F) to be an equivalence

5

Constructive Stacks?

What should be a stack?

Theorem: The collection of stacks form a new model of univalent type theory
with higher inductive types

Even for the trivial topology, this provides new models of type theory

Equivalence coincides with pointwise equivalence

6

Constructive Stacks?

What should be a stack?

DSF (X) → F (X)

uz→ u(1X)

This might not be natural anymore

u(1X)f may not be strictly equal to u(f)

7

Constructive Stacks?

What should be a stack?

How to organize these definitions?

Key fact: we have constructive models of univalence

Hence these models relativize automatically to presheaf models

We define stacks from these models using left exact modalities

How to define these left exact modalities?

8

Constructive Stacks?

Content of the talk

Part 1: abstract notion of descent data

frame/point-free space model of univalent type theory
nucleus lex modality

prenucleus abstract notion of descent data
x ⩽ p(x) well-pointed endofunctor D,η

p(1) = 1 p(x ∧ y) = p(x) ∧ p(y) lex endofunctor
x = p(x) η is an equivalence

frame of fixpoints new model of univalent type theory

cf. Mart́ın Escardó Joins in the frame of nucleus, 2003

9

Constructive Stacks?

Content of the talk

Part 2: examples of lex operations

10

Constructive Stacks?

Lex operations

We express in type theory the notion of endomorphism of tribes

Functor that preserves

terminal objects, fibrations, base change of fibrations and anodyne maps

We have a map E ∶ U → U which defines a strict functor

11

Constructive Stacks?

Lex operations

A type theoretic function T → A is a fibration if it is strictly isomorphic, as a
map over A, to some projection map ΣAB → A.

We express that E preserves fibrations by giving a map L ∶ E(U) → U

In this way from B ∶ A→ U we can define

Ẽ(B) = L ○E(B) ∶ E(A) → U

and we express that E(ΣAB) → E(A) is isomorphic to ΣE(A)Ẽ(B) → E(A),
naturally in A

12

Constructive Stacks?

Lex operations

The map E(1) → 1 should be a strict isomorphism

E also should preserve equivalences

This corresponds to the preservation of anodyne maps

If E is a lex operation we have a natural transformation ηA ∶ A→ E(A)

This natural transformation is furthermore uniquely determined

13

Constructive Stacks?

Lex operations

We require L ○ ηU = E

This implies that the (strict) gap map of the commuting diagram

T

πB
��

ηT
// E(T)

E(πB)��

A
ηA

// E(A)

where T = ΣAB, is the map ηBa ∶ Ba→ E(Ba) over A

14

Constructive Stacks?

E-modal types

We say that a type A is E-modal if the map ηA ∶ A→ E(A) is an equivalence

15

Constructive Stacks?

Family of E-modal types

Theorem: If B is a family of types over A then this is a family of E-modal
types iff the strict commuting diagram

T

πB
��

ηT
// E(T)

E(πB)��

A
ηA

// E(A)

where T = ΣAB, is a homotopy pullback diagram.

16

Constructive Stacks?

Family of E-modal types

Corollary: Families of E-modal types are closed by composition

17

Constructive Stacks?

Example

If R is a type then E(A) = AR

We can define L ∶ E(U) → U by L(B) = ΠRB

E preserves fibrations and equivalences

The map ηA ∶ A→ AR is defined by ηA a x = a

18

Constructive Stacks?

Example

Consider a (cubical) presheaf model over a small category C

We define E(A)(X) to be the set of families u(f) in A(Y) for f ∶ Y →X

E(A)(X) = ∏f ∶Y →XA(Y)

E preserves fibrations and equivalences

The map ηA ∶ A→ E(A) is defined by (ηA a)(f) = af

19

Constructive Stacks?

Abstract descent data

Definition: An abstract notion of descent data is a lex operation D,η such
that there is a path between ηD(A) and D(ηA)

Furthermore this path should be natural in A along fibrations

Well-pointed endofunctor up to homotopy

A is a stack for D if A is D-modal i.e. ηA ∶ A→D(A) is an equivalence

20

Constructive Stacks?

Example

In general D(A) = AR may not be a notion of descent data

But this is the case if R is a proposition

21

Constructive Stacks?

Abstract descent data

This notion of abstract descent data can be seen as a higher version of the
notion of prenucleus on a frame, i.e. a map such that x ⩽ p(x) and p(1) = 1 and
p(x ∧ y) = p(x) ∧ p(y)

The fixpoints of p form a frame

There is a least nucleus j such that p ⩽ j and p and j have the same fixpoints

We are going to see a higher version of these results

First we show that the D-modal types form a model of type theory

22

Constructive Stacks?

Family of stacks

Proposition 1: Family of stacks are preserved by D

23

Constructive Stacks?

Family of stacks

T → A family of stacks

D(T)
D(πB) ��

ηD(T)
// D2(T)

D2(πB)��

D(A)
ηD(A)

// D2(A)

should be homotopy pull-back

24

Constructive Stacks?

Family of stacks

We know that this is the case for

D(T)
D(πB) ��

D(ηT)
// D2(T)

D2(πB)��

D(A)
D(ηA)

// D2(A)

since D is lex and B is a family of stacks

25

Constructive Stacks?

Family of stacks

Proposition 2: A is a stack iff ηA has a left homotopy inverse

We call such a left inverse a patch function

Theorem: The type US = Σ(X ∶ U)isStack(X) is a stack

We have a family of stacks π1 ∶ US → U

Hence by Proposition 1, D(π1) is a family of U-stacks over D(US)

In this way we build a patch function D(US) → US, using L ○ ηU =D

26

Constructive Stacks?

Application: left exact modality

D(A) may not be a stack in general

We define M as a HIT

inc : A→M(A)
patch : D(M(A)) →M(A)
linv : Π(x ∶M(A)) patch(ηM(A)x) =M(A) x

Theorem: The pair M, isStack defines a left exact modality

This corresponds to the nucleus associated to a prenucleus obtained by
(maybe) transfinite iteration

27

Constructive Stacks?

Application: left exact modality

Note that A is D-modal iff A is M -modal

Corresponds to the fact that, if j is the nucleus generated by a prenucleus p
then p(x) = x iff j(x) = x

28

Constructive Stacks?

Application: left exact modality

We then get a model of univalent type theory

A type now a pair A,p where p is a proof that A is a stack

We can even interpret HIT, e.g. N is interpreted by

zero : N
succ : N → N
patch : D(N) → N
linv : Π(x ∶ N) patch(ηNx) =N x

29

Constructive Stacks?

How to define a notion of descent data

Consider a (cubical) presheaf model over a small category C

We have defined E(A)(X) = ∏f ∶Y →XA(Y)

This defines a lex operation with a natural transformation η ∶ A→ E(A)

(η a)(f) = af in A(Y) for f ∶ Y →X and a in A(X)

In general, this might not define a well-pointed notion of descent data

30

Constructive Stacks?

How to define a notion of descent data

We define D(A) from E(A)

An element u of D(A) is now a family u(i1, . . . , in) in En+1(A) which satisfies
the compatibility conditions

We have v = u() in E(A) and then a path between η v and E(η) v

u(0) = η v, u(1) = E(η) v

31

Constructive Stacks?

How to define a notion of descent data

Then we express the cocycle conditions between these paths

i = 0→ u(i, j) = ηu(j),
i = j → u(i, j) = E(η)u(i),
j = 1→ u(i, j) = E2(η)u(i)

and so on

This defines a new space D(A)

We get in this way an abstract notion of descent data

32

Constructive Stacks?

How to define a notion of descent data

If we start instead from E(A) = AR

What is an element an element of D(A)?

it should be a map v ∶ A → R which is constant v(r1) = v(r2) and with the
cocycle conditions between these paths and so on

it is a coherently constant map, as defined in the PhD thesis of Nicolai Kraus,

hence to give such a map is to give an element of ∥R∥ → A

33

Constructive Stacks?

How to define a notion of descent data

An element of D2(A) is a double sequence v(⃗i)(j⃗)

The proof that D is well-pointed is by defining

vk(⃗i)(j⃗) = u(k ∧ i⃗, k, k ∨ j⃗)

a path between D(ηA)(u)(⃗i)(j⃗) and ηD(A)(u)(⃗i)(j⃗)

34

Constructive Stacks?

Presheaf models

We get in this way a model of univalent type theory on presheaves that are
D-modals

35

Constructive Stacks?

Presheaf models

For the “direct” presheaf model, it might be that each F (X) is contractible
as a space but that F has no global point

An example: presheaves over 0 ⩽ 1 ⩽ 2 ⩽ . . .

Let F (n) be the trivial groupoid on the set n,n + 1, n + 2, . . .

The inclusion F (n + 1) → F (n) is the restriction map

Then each F (n) is contractible but F has no global point

36

Constructive Stacks?

Presheaf models

Another example over G = Z/2Z

Take the trivial groupoid A = a↔ b with a, b swapped by G

Then the map A→ 1 is an equivalence as a groupoid map

But A has no global points, so this is not a G-equivalence

37

Constructive Stacks?

Presheaf models

Let A be a family of types over Γ in the presheaf model

Proposition: If each A(X) is a family of contractible types over Γ(X) then
D(A) has a section over Γ

Corollary: If each A(X) is a family of modal contractible types over Γ(X)
then A is contractible

Corollary: If A and B are D-modals and σ ∶ A→ B is a pointwise equivalence,
then it is an equivalence

38

Constructive Stacks?

Application

Cf. the work of Matthew Weaver and Dan Licata

A Model of Type Theory with Directed Univalence in Bicubical Sets

Presheaf model

The obstacle there was precisely that a pointwise equivalence might not be in
general a global equivalence

Hope: these new models solve this issue

39

Constructive Stacks?

Application

Model of parametrised pointed type

This is the model over the walking retract

40

Constructive Stacks?

Example: Countable choice

We then can define a family of sets (stacks) A n, e.g. for A 0, A 1 and A 2

∅ ∅ ∅

{0}
�

{1}
-

{0}
�

∅
-

{0}
�

∅
-

{0,1}
�

-

{1}
-

{0}
�

-

{1}
-

{0}
�

-

∅
-

{0,1}
�

-
........ {0,1}

�
-

........ {0}
�

-

..........
.........

.........
........

41

Constructive Stacks?

Example: Countable choice

Π(n ∶ N)A n is (a proposition) is not globally inhabited and ∥A n∥ is globally
inhabited because of the stack condition

∅

{0}
�

∅
-

{0}
�

-

∅
-

{0}
�

-
..........

........

42

