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Constructive Stacks?

Goal

Generalize sheaf models of Intuitionistic Logic to Univalent Type Theory
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Constructive Stacks?

Reminder: main issue

The problem is how to model universes

The collection of sheaves don’t form a sheaf

If we define F (V ) to be the collection of all U-sheaves on V then F is a
presheaf which is not a sheaf in general, since glueing will only be defined up to
isomorphism

This basic fact was the motivation for the notion of stacks
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Constructive Stacks?

Reminder: what is a sheaf of sets?

Small category C, objects X,Y,Z, . . . and J Grothendieck topology on C

F presheaf: collection of sets F (X) with restriction maps u↦ uf

S in J(X): we can form the set DS(F )(X)

An element of this set is a family u(f) in F (Y ) for f ∶ Y → X in S which is
compatible: u(f)g = u(fg) if g ∶ Z → Y

We have a map ηF ∶ F (X) →DS(F )(X) natural in X,S

The presheaf F is a sheaf if each map ηF is a bijection
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Constructive Stacks?

Reminder: what is a sheaf of sets?

If J(X) contains only the trivial sieve

Then we have a patch function

DS(F )(X) → F (X)

uz→ u(1X)
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Constructive Stacks?

What should be a stack?

If now F (X) is a presheaf of spaces/types

The equality u(fg) → u(f)g may only be given as a path equality u(f, g)

We should then ask a cocycle condition at the next level

and then higher equalities u(f1, . . . , fn)

The compatible descent data still form a space DS(F )

We require the map F →DS(F ) to be an equivalence
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Constructive Stacks?

What should be a stack?

Theorem: The collection of stacks form a new model of univalent type theory
with higher inductive types

Even for the trivial topology, this provides new models of type theory

Equivalence coincides with pointwise equivalence
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Constructive Stacks?

What should be a stack?

DSF (X) → F (X)

uz→ u(1X)

This might not be natural anymore

u(1X)f may not be strictly equal to u(f)
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Constructive Stacks?

What should be a stack?

How to organize these definitions?

Key fact: we have constructive models of univalence

Hence these models relativize automatically to presheaf models

We define stacks from these models using left exact modalities

How to define these left exact modalities?
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Constructive Stacks?

Content of the talk

Part 1: abstract notion of descent data

frame/point-free space model of univalent type theory
nucleus lex modality

prenucleus abstract notion of descent data
x ⩽ p(x) well-pointed endofunctor D,η

p(1) = 1 p(x ∧ y) = p(x) ∧ p(y) lex endofunctor
x = p(x) η is an equivalence

frame of fixpoints new model of univalent type theory

cf. Mart́ın Escardó Joins in the frame of nucleus, 2003
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Constructive Stacks?

Content of the talk

Part 2: examples of lex operations
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Constructive Stacks?

Lex operations

We express in type theory the notion of endomorphism of tribes

Functor that preserves

terminal objects, fibrations, base change of fibrations and anodyne maps

We have a map E ∶ U → U which defines a strict functor
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Constructive Stacks?

Lex operations

A type theoretic function T → A is a fibration if it is strictly isomorphic, as a
map over A, to some projection map ΣAB → A.

We express that E preserves fibrations by giving a map L ∶ E(U) → U

In this way from B ∶ A→ U we can define

Ẽ(B) = L ○E(B) ∶ E(A) → U

and we express that E(ΣAB) → E(A) is isomorphic to ΣE(A)Ẽ(B) → E(A),
naturally in A
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Constructive Stacks?

Lex operations

The map E(1) → 1 should be a strict isomorphism

E also should preserve equivalences

This corresponds to the preservation of anodyne maps

If E is a lex operation we have a natural transformation ηA ∶ A→ E(A)

This natural transformation is furthermore uniquely determined
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Constructive Stacks?

Lex operations

We require L ○ ηU = E

This implies that the (strict) gap map of the commuting diagram

T

πB
��

ηT
// E(T )

E(πB)��

A
ηA

// E(A)

where T = ΣAB, is the map ηBa ∶ Ba→ E(Ba) over A
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Constructive Stacks?

E-modal types

We say that a type A is E-modal if the map ηA ∶ A→ E(A) is an equivalence
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Constructive Stacks?

Family of E-modal types

Theorem: If B is a family of types over A then this is a family of E-modal
types iff the strict commuting diagram

T

πB
��

ηT
// E(T )

E(πB)��

A
ηA

// E(A)

where T = ΣAB, is a homotopy pullback diagram.
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Constructive Stacks?

Family of E-modal types

Corollary: Families of E-modal types are closed by composition
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Constructive Stacks?

Example

If R is a type then E(A) = AR

We can define L ∶ E(U) → U by L(B) = ΠRB

E preserves fibrations and equivalences

The map ηA ∶ A→ AR is defined by ηA a x = a
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Constructive Stacks?

Example

Consider a (cubical) presheaf model over a small category C

We define E(A)(X) to be the set of families u(f) in A(Y ) for f ∶ Y →X

E(A)(X) = ∏f ∶Y →XA(Y )

E preserves fibrations and equivalences

The map ηA ∶ A→ E(A) is defined by (ηA a)(f) = af
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Constructive Stacks?

Abstract descent data

Definition: An abstract notion of descent data is a lex operation D,η such
that there is a path between ηD(A) and D(ηA)

Furthermore this path should be natural in A along fibrations

Well-pointed endofunctor up to homotopy

A is a stack for D if A is D-modal i.e. ηA ∶ A→D(A) is an equivalence
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Constructive Stacks?

Example

In general D(A) = AR may not be a notion of descent data

But this is the case if R is a proposition
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Constructive Stacks?

Abstract descent data

This notion of abstract descent data can be seen as a higher version of the
notion of prenucleus on a frame, i.e. a map such that x ⩽ p(x) and p(1) = 1 and
p(x ∧ y) = p(x) ∧ p(y)

The fixpoints of p form a frame

There is a least nucleus j such that p ⩽ j and p and j have the same fixpoints

We are going to see a higher version of these results

First we show that the D-modal types form a model of type theory
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Constructive Stacks?

Family of stacks

Proposition 1: Family of stacks are preserved by D
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Constructive Stacks?

Family of stacks

T → A family of stacks

D(T )
D(πB) ��

ηD(T )
// D2(T )

D2(πB)��

D(A)
ηD(A)

// D2(A)

should be homotopy pull-back
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Constructive Stacks?

Family of stacks

We know that this is the case for

D(T )
D(πB) ��

D(ηT )
// D2(T )

D2(πB)��

D(A)
D(ηA)

// D2(A)

since D is lex and B is a family of stacks
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Constructive Stacks?

Family of stacks

Proposition 2: A is a stack iff ηA has a left homotopy inverse

We call such a left inverse a patch function

Theorem: The type US = Σ(X ∶ U)isStack(X) is a stack

We have a family of stacks π1 ∶ US → U

Hence by Proposition 1, D(π1) is a family of U-stacks over D(US)

In this way we build a patch function D(US) → US, using L ○ ηU =D
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Constructive Stacks?

Application: left exact modality

D(A) may not be a stack in general

We define M as a HIT

inc : A→M(A)
patch : D(M(A)) →M(A)
linv : Π(x ∶M(A)) patch(ηM(A)x) =M(A) x

Theorem: The pair M, isStack defines a left exact modality

This corresponds to the nucleus associated to a prenucleus obtained by
(maybe) transfinite iteration
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Constructive Stacks?

Application: left exact modality

Note that A is D-modal iff A is M -modal

Corresponds to the fact that, if j is the nucleus generated by a prenucleus p
then p(x) = x iff j(x) = x
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Constructive Stacks?

Application: left exact modality

We then get a model of univalent type theory

A type now a pair A,p where p is a proof that A is a stack

We can even interpret HIT, e.g. N is interpreted by

zero : N
succ : N → N
patch : D(N) → N
linv : Π(x ∶ N) patch(ηNx) =N x
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Constructive Stacks?

How to define a notion of descent data

Consider a (cubical) presheaf model over a small category C

We have defined E(A)(X) = ∏f ∶Y →XA(Y )

This defines a lex operation with a natural transformation η ∶ A→ E(A)

(η a)(f) = af in A(Y ) for f ∶ Y →X and a in A(X)

In general, this might not define a well-pointed notion of descent data
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Constructive Stacks?

How to define a notion of descent data

We define D(A) from E(A)

An element u of D(A) is now a family u(i1, . . . , in) in En+1(A) which satisfies
the compatibility conditions

We have v = u() in E(A) and then a path between η v and E(η) v

u(0) = η v, u(1) = E(η) v
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Constructive Stacks?

How to define a notion of descent data

Then we express the cocycle conditions between these paths

i = 0→ u(i, j) = ηu(j),
i = j → u(i, j) = E(η)u(i),
j = 1→ u(i, j) = E2(η)u(i)

and so on

This defines a new space D(A)

We get in this way an abstract notion of descent data
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Constructive Stacks?

How to define a notion of descent data

If we start instead from E(A) = AR

What is an element an element of D(A)?

it should be a map v ∶ A → R which is constant v(r1) = v(r2) and with the
cocycle conditions between these paths and so on

it is a coherently constant map, as defined in the PhD thesis of Nicolai Kraus,

hence to give such a map is to give an element of ∥R∥ → A
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Constructive Stacks?

How to define a notion of descent data

An element of D2(A) is a double sequence v(⃗i)(j⃗)

The proof that D is well-pointed is by defining

vk(⃗i)(j⃗) = u(k ∧ i⃗, k, k ∨ j⃗)

a path between D(ηA)(u)(⃗i)(j⃗) and ηD(A)(u)(⃗i)(j⃗)
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Constructive Stacks?

Presheaf models

We get in this way a model of univalent type theory on presheaves that are
D-modals
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Constructive Stacks?

Presheaf models

For the “direct” presheaf model, it might be that each F (X) is contractible
as a space but that F has no global point

An example: presheaves over 0 ⩽ 1 ⩽ 2 ⩽ . . .

Let F (n) be the trivial groupoid on the set n,n + 1, n + 2, . . .

The inclusion F (n + 1) → F (n) is the restriction map

Then each F (n) is contractible but F has no global point
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Constructive Stacks?

Presheaf models

Another example over G = Z/2Z

Take the trivial groupoid A = a↔ b with a, b swapped by G

Then the map A→ 1 is an equivalence as a groupoid map

But A has no global points, so this is not a G-equivalence
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Constructive Stacks?

Presheaf models

Let A be a family of types over Γ in the presheaf model

Proposition: If each A(X) is a family of contractible types over Γ(X) then
D(A) has a section over Γ

Corollary: If each A(X) is a family of modal contractible types over Γ(X)
then A is contractible

Corollary: If A and B are D-modals and σ ∶ A→ B is a pointwise equivalence,
then it is an equivalence
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Constructive Stacks?

Application

Cf. the work of Matthew Weaver and Dan Licata

A Model of Type Theory with Directed Univalence in Bicubical Sets

Presheaf model

The obstacle there was precisely that a pointwise equivalence might not be in
general a global equivalence

Hope: these new models solve this issue
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Constructive Stacks?

Application

Model of parametrised pointed type

This is the model over the walking retract
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Constructive Stacks?

Example: Countable choice

We then can define a family of sets (stacks) A n, e.g. for A 0, A 1 and A 2
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Constructive Stacks?

Example: Countable choice

Π(n ∶ N)A n is (a proposition) is not globally inhabited and ∥A n∥ is globally
inhabited because of the stack condition
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