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Inductive Definitions and Constructive Mathematics

This talk

Survey some use of inductive definitions in constructive mathematics

Generalised inductive definitions

-ordinals

-formal/point-free topology

-σ-complete Boolean algebra

-Cantor-Bendixson as analysed by Lorenzen

-open induction and infinitary combinatorics

-some remarks on invariance
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Generalised Inductive Definitions in Mathematics

Cantor introduction of ordinals iteration of F ′ operation, derived subset of F

Finite iteration F (n) and then introduces symbol F (ω) = ∩nF (n)

Cantor-Bendixson, a special case of the continuum hypothesis

A closed subset of [0,1] is either countable of of cardinality 2ℵ0

Borel’s introduction of Borel sets, starting from open intervals (r, s) and
iterating the operation of countable disjoint union, and the operation B −A for
A ⊆ B
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Inductive Definitions in Logic

Frege Begriffsschrift, 1879

Transitive closure of a relation defined using an impredicative quantification

Generalized to transfinite induction in Principia Mathematica, 1912
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Inductive Definitions in Type Theory

Hauptsatz for the intuitionistic theory of iterated inductive definitions, 1971

On the Strength of Intuitionistic Reasoning
talk at the Bucharest conference 1971, August 29 to September 4

First place where Martin-Löf hints at a connection of dependent type theory
with computer science

Formulated with a type of all types, that was shown inconsistent by Girard,
but the formulation can be taken as it is with a hierarchy of universes
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Inductive Definitions in Type Theory

In the formal theory the abstract entities (natural numbers, ordinals, functions,
types, and so on) become represented by certain symbol configurations, called
terms, and the definitional schema, read from the left to the right, become
mechanical reduction rules for these symbol configurations. Type theory
effectuates the computerization of abstract intuitionistic mathematics that above
all Bishop has asked for.

It provides a framework in which we can express conceptual mathematics in a
computational way.

All computations are expressed in a fixed programming language (general
recursion and case analysis)
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Inductive Definitions in Type Theory

We can introduce the type N , the type of natural numbers. 0 is an object of
type N and, if n is an object of type N , so is its successor n + 1.
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Inductive Definitions in Type Theory

Given an object c of type C(0) and a function g of type Πn∶NC(n)→ C(n+1)
we may introduce a function f of type Πn∶NC(n) by the recursion schema

f(0) = c f(n + 1) = g(n, f(n))
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Inductive Definitions in Type Theory

Thinking of C(x) as a proposition f is a proof of the universal proposition
Πn∶NC(n) which we get by applying the principle of mathematical induction In
the case C(x) does not depend explicitely on x we get the schema of primitive
recursion (at higher types), schema introduced by Hilbert and used later by Gödel
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Inductive Definitions in Type Theory

We can introduce the type Ord, the type of ordinal numbers. 0 is an object
of type Ord and, if x is an object of type Ord, so is its successor x + 1 and if u
is a function of type N → Ord then its limit lim u is an object of type Ord
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Inductive Definitions in Type Theory

Given an object c of type C(0) and a function g of type Πα∶OrdC(α)→ C(α+1)
and h a function of type Πu∶N→Ord(Πn∶NC(u(n)))→ C(lim u) we may introduce
a function f of type Πα∶OrdC(α) by the recursion schema

f(0) = c f(α + 1) = g(α, f(α)) f(lim u) = h(u, f ○ u)

where (f ○ u)(n) = f(u(n))
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Inductive Definitions in Type Theory

Thinking of C(α) as a proposition, f is a proof of the universal proposition
Πα∶OrdC(α) which we get by applying the principle of transfinite induction over
the second number class ordinals.
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Iterated Inductive Definitions in Type Theory

Much of the literature on recursive ordinals is done nonconstructively. Closer
inspection shows that this theory is much more elegant if done intuitionistically.

Kreisel in Lectures on modern mathematics, vol. 3, edited by T. L. Saaty,
1965
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Example: slow growing versus fast growing hierarchy

Hardy hierarchy h 0 n = n, h (x + 1) n = h x (n + 1), h α n = h αn n

Introduced by Hardy 1903, to show ℵ1 ⩽ 2ℵ0

h ω n = 2n and h ωω of the order of Ackermann function

Slow growing hierarchy s 0 n = 0, s (x + 1) n = (s x n) + 1, s α n = s αn n

s ω n = n and s (ω + ω) n = 2n and s ωω n = nn

Given α can we find β such that h α = s β? (Wainer, Girard)

S. Wainer conjectured that this holds for α = β = Γ0
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Example: slow growing versus fast growing hierarchy

0 0,1,2,3,4,5,6,7,8,. . .
1 1,2,3,4,5,6,7,8,9,. . .
2 2,3,4,5,6,7,8,9,10,. . .
3 3,4,5,6,7,8,9,10,11,. . .
. . . . . .
ω 0,2,4,6,8,10,12,14,16,. . .
ω+1 2,4,6,8,10,12,14,16,18,. . .
. . . . . .
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Example: slow growing versus fast growing hierarchy

0 0,0,0,0,0,0,0,0,0,. . .
1 1,1,1,1,1,1,1,1,1,. . .
2 2,2,2,2,2,2,2,2,2,. . .
3 3,3,3,3,3,3,3,3,3,. . .
4 4,4,4,4,4,4,4,4,4,. . .
. . . . . .
ω 0,1,2,3,4,5,6,7,8,. . .
ω+1 1,2,3,4,5,6,7,8,9,. . .
. . . . . .
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Iterated Inductive Definitions in Type Theory

J.-Y. Girard showed that we have to go much further, e.g. hε0 is sϕεΩ+1
(0) and

we need to introduce a more complex inductively defined data type

The first point at which the slow growing hieararchy catches up with Hardy
hierarchy is the ordinal of the theory ID<ω, of arbitrary finite iterations of an
inductive definition

Formally, no problem in introducing Ord2 with constructors 0, µ + 1 for
µ ∶ Ord2, lim u for u ∶ N → Ord2 and Lim v for v ∶ Ord→ Ord2
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Iterated Inductive Definitions in Type Theory

Already in Lorenzen’s work, but for defining predicates

Suggested in Tait’s paper Constructive Reasoning

For any type X type of trees branching over X

Used in Scott’s paper Constructive Validity, and later generalized by the W
type in Martin-Löf’s paper 1979

Type T (X) with constructors 0 ∶ T (X) and u+ ∶ T (X) for u ∶X → T (X)
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Example: slow growing versus fast growing hierarchy

Define S µ n ∶ Ord for µ ∶ Ord2 by induction

S 0 n = 0 S (µ + 1) n = (S µ n) + 1 S (lim u) n = S (un) n

S (Lim v) n = lim (λpS (vp) n)

Define H µ α ∶ Ord for µ ∶ Ord2 by induction

H 0 α = α H (µ+ 1) α =H µ (α+ 1) H (lim u) α = lim (λnH (un) α)

H (Lim v) α =H (vα) α
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Example: slow growing versus fast growing hierarchy

Define the proposition ψ n µ for µ ∶ Ord2 by recursion on µ

ψ n 0 = ⊺ ψ n (µ + 1) = ψ n µ ψ n (lim u) = ∀mψ n (um)

ψ n (Lim v) = ∀α ψ n (vα) ∧ S (vα) n = S v(s α n) n
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Example: slow growing versus fast growing hierarchy

Alternatively ψ n µ can be defined as an inductively defined predicate

ψ n 0

ψ n µ

ψ n (µ + 1)

∀mψ n (um)

ψ n (lim u)

∀α ψ n (vα) ∀α S (vα) n = S v(s α n) n

ψ n (Lim v)
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Example: slow growing versus fast growing hierarchy

Following the presentation in the paper of Wainer JSL 1989, we can prove

Theorem: If ψ n µ then s (H µ α) n = h (S µ n) (s α n)

For instance, if Ω = Lim (λαα), we have S Ω n = n and s ω n = n and
H Ω ω = ω + ω and we can prove ψ n α for all α ∶ Ord

Hence h ω = s (ω + ω)

One of the first example tried in the implementation of inductive types

Inductively Defined Types, 1989, Th.C. and Ch. Paulin
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Formal Topology

Example in ID2

H µ α defines an element of Ord using an element of Ord1

Seemingly impredicative definition

Non monotonic: introducing Ord2 we can define new elements of Ord
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Formal Topology

Inductive definitions are fundamental for the development of formal or point-
free representation of topological spaces

Critical analysis following the Lorenzen’s terminology introduced in
Logical reflection and formalism, JSL 1958

To connect this with use of ordinals, we can cite Tait, Constructive Reasoning

Brouwer applied the theory of ordinals to his non-atomistic theory of non-
discrete spaces such as Baire space and the continuum. But, it is just as
convenient to work directly with trees, rather than with their ordering as ordinals.
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Formal Topology

Martin-Löf Notes on Constructive Mathematics, 1970

It is written in the setting of recursive mathematics but most of its results
hold in constructive mathematics

Cantor space C seen as a set of infinite binary sequences α = α0, α1, . . .
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Point-free analysis

An open subset of Cantor space is determined by a subset U(σ) of basic open,
that we can take to be finite binary sequences

We can define when a basic open σ is covered by U by the inductive definition

U(σ)

U ∣σ

U ∣σ0 U ∣σ1

U ∣σ

U is a bar on the tree means that we have U ∣() for the empty sequence ()

The closed open subsets form a Boolean algebra of propositional logic built
on formal atoms α(n) = 0
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Point-free analysis

A proof of U ∣() is a finite object

With this analysis, Heine-Borel has a direct proof: if U ∣() holds then already
a finite number of elements of U cover the space

“Any cover of Cantor space has a finite subcover”
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Point-free analysis

For Baire space we consider sequences of natural numbers and U ∣σ becomes
then a generalized inductive definitios

U(σ)

U ∣σ

U ∣σ0 U ∣σ1 U ∣σ2 . . .

U ∣σ

As before, U is a bar means that we have U ∣()
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σ-Complete Boolean Algebra

Novikov 1943, Lorenzen 1944 (published 1951) introduced a new use of
generalized inductive definitions

How to build the free σ-complete Boolean algebra B → B̃ on a given Boolean
algebra B

There, generalized inductive definitions are used twice

-for defining the elements of B̃ that are now formal infinitary expressions built
by iterating form infinite conjunctions and disjunctions

-for defining the order relation X ⩽ Y between these formal expressions that
is now defined by a sequent calculus involving an infinitary rule
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σ-Complete Boolean Algebra

Using this technique, Lorenzen/Novikov could show the following fundamental
result

Theorem: (Lorenzen) The initial map B → B̃ is an embedding

Lorenzen noticed that the proofs of these embedding result are formally similar
to the (original) proof of consistency by Gentzen using a form of ω-rule

One goal of Gentzen was to explain in a constructive way the classical notion
of truth of an arithmetical statement

It cannot Tarski truth semantics for a statement such as ∃n∀mf(n) ⩽ f(m)
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σ-Complete Boolean Algebra

Martin-Löf Notes on Constructive Mathematics

If we start from the Boolean algebra B of closed open subsets of Cantor
spaces (Boolean algebra of propositional logic) then B̃ is the σ-complete Boolean
algebra of Borel subsets of Cantor space

This provides a constructive way to understand what is classically inclusion
between Borel subsets

In this setting a hyper-arithmetical proposition is defined to be an element of
Ñ2 where N2 is the Boolean algebra {0,1}
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σ-Complete Boolean Algebra

Both basic open sets and Borel sets are seen, not as set of points, but as
purely symbolic expressions

E.g. α(0) = 0 is the closed open subset of sequences starting with 0

⋀nα(n) = 0 is the closed subset with only the sequence 0,0,0, . . .
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σ-Complete Boolean Algebra

The set of normal sequences is

⋀
k
⋁
m
⋀
n>m

bn,k

where bn,k is the basic open expressing that

1/n∣Σi<nri(α)∣ < 1/2k

where ri(α) = 2αi − 1
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Lusin Measure Problem

Martin-Löf suggested to define a hyper-arithmetical real to be a Dedekind cut
seen as a family of hyper-arithmetical propositions over the rationals

Following Lusin

Leçons sur les ensembles analytiques et leurs applications, 1930

he formulated the problem of defining the measure µ(X) of a Borel set as a
hyper-arithmetical real in a purely inductive way

One issue is that µ(⋁nXn) is not clearly a function of µ(Xn)
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Lusin Measure Problem

A crucial insight of Fr. Riesz Sur la décomposition des opérations fonctionelles
linéaires, 1928, is that the function b↦ µ(b∩X) with b basic open of Cantor set,
can be defined by recursion on X. Using this, we can show rather directly

Theorem (Th.C.) It is possible to define in a purely inductive way the measure
of a Borel set as a hyper-arithmetical real

For instance, we can define the measure of the set of normal binary sequences
and show that it has measure 1

See the discussion in the paper Lorenzen and Constructive Mathematics
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Cantor-Bendixson

In this paper, we also explain the analysis of Cantor-Bendixson that Lorenzen
presents in Logical reflection and formalism, JSL 1958 and reformulated for Cantor
space C

Classically, if F closed subset, we want to define the perfect subset K = ∩αF (α)

Lorenzen gives a point-free analysis of this situation: given C−F as a predicate
U(b) on basic open, he defines C −K of the form V (b) where V is obtained from
U by a generalised inductive definition
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Cantor-Bendixson

This example was historically important since Kreisel, in

Analysis of Cantor-Bendixson theorem by mean of the analytic hierarchy 1959

could show that V could not be obtained “predicatively” from U , for a suitable
notion of “predicativity”

Conjecture: it would be interesting to present this result in a constructive
setting, giving an example with U decidable and V not hyper-arithmetic
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Open induction on Cantor space

This shows the relevance of generalized inductive definitions for constructive
mathematics, stressed in the paper of Lorenzen and Myhill

Constructive definition of certain analytic sets of numbers, 1959

I want now to present another another example of a property of Cantor space
which involves a generalized inductive definition, the principle of open induction
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Open induction on Cantor space

In term of points, this is the following principle

Let < be the lexicographic ordering of (finite or infinite) sequences

Note that < is not well-founded on sequences

1 > 01 > 001 > 0001 > 00001 > . . .
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Open induction on Cantor space

Let U be an open subset of Cantor space C, if we have

(∀ββ < α → β ∈ U)→ α ∈ U

then U = C
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Open induction on [0,1]

The same principle holds on [0,1] with the usual ordering <

Let U be an open subset of [0,1], if we have

(∀yy < x→ y ∈ U)→ x ∈ U

then U = [0,1]
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Point-free analysis

To express that we have open induction

(∀ββ < α → β ∈ U)→ α ∈ U (∗)

in a point-free way we need to introduce the subtree of sequences α satisfying

∀ββ < α → β ∈ U

This is the subtree defined by the predicate

M(σ) = ∀σ′σ
′ < σ → U ∣σ′
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Point-free analysis

(∗) becomes then that U is a bar on the subtree M

It is then direct to show by induction

Theorem (Th. C.) If U is a bar on the subtree M then U ∣()

Since the subtree M(σ) = ∀σ′σ′ < σ → U ∣σ′ refers to U ∣, the notion of “bar”
on the subtree M is now a generalised inductive definition
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Open Induction on Cantor space

The principle of open induction can be formulated in the setting of intuitionistic
analysis FIM, as formulated by Kleene and Vesley, and the previous result can be
translated to a proof of this principle, but using bar induction on Baire space

Theorem (W. Veldman) The principle of open induction implies that ε0 is
well-founded
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Open Induction on Cantor space

Technically, BIM ⊢ OI(C)→WF (ε0)

Using a previous result of Troesltra, this means that open induction cannot
be proved only using fan theorem, BIM + FAN ⊬ OI(C), though the principle
is about Cantor space

Open induction on [0,1] is equivalent to open induction on Cantor space
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Open Induction on Baire space

Similarly, one can prove the principle of open induction on Baire space, but
the proof uses bar induction on a tree with uncountable branching

Conjecture: by analogy with what happens on Cantor space, it is likely that
open induction principle for Baire space cannot be proved in the system FIM of
Kleene and Vesley.
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Iteration of inductive definitions

This analysis of open induction was motivated by the problem of understanding
constructively Nash-Williams’ “minimal bad sequence” argument, used for an
element proof of a Kruskal well quasi-ordering theorem on trees

G. Stolzenberg (and later D. Isles), in particular, stressed the apparent
“circularity” of this seemingly impredicative argument

Interesting that this may require ID2

Following Kreisel, systems ID2, ID3, . . . have been used in proof theory for
consistency proof of subsystems of analysis
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Iteration of inductive definitions

Tait, Constructive Reasoning

I have been unable to arrive at any conception of inductive definitions which
distinguishes the countable case from the more general one.

I will now try to comment shortly on this issue
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Remark on Invariance

How to represent mathematically the notion of “growing” collection

Extensions by sheaf models

These extensions may introduce new functions/reals

E.g. in the sheaf models on [0,1] we obtain a “new” real corresponding to
the injection [0,1]→ R

So a collection such as R or N → N2 is not “stable” by change of base, but
may grow
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Remark on Invariance

Well-founded relation should not be defined in term of universal quantification
over functions (negative) but in term of existence of a well-founded tree (positive)

E.g. well quasi-ordering is best formulated in terms of bar

∀f∃n U(f(n)) vs U ∣()
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Remark on Invariance

Some types are stable by sheaf extension: N , Nk

Some types grow: N → N , Ord, U ∣σ

Non monotone behavior: (N → N)→ N , Ord2, ID2

Technically: “coherent/geometric theories are preserved by pullback along
geometric morphisms between topoi”
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Conclusion

Generalized inductive definitions seem essential to represent in a constructive
setting some notions and results of classical mathematics

-Classical validity of arithmetical statements

-Inclusion of Borel subsets and measure of Borel subsets

-Cantor-Bendixson

The conceptual status of extensions of ID1 needs to be further analysed
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